MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
|
|
- Kauko Heikkilä
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi Periodi I
2 Sisältö Satunnaismuuttujan käsite Jakauma ja kertymäfunktio Jakauman tiheysfunktio Monen muuttujan yhteisjakauma Ehdollinen jakauma Esimerkkejä
3 Satunnaismuuttuja Satunnaismuuttuja on suure, jonka arvo määräytyy satunnaisilmiön toteumasta: Sattuma määrää satunnaisilmiön toteuman s S Toteuma s määrää satunnaismuuttujan arvon X (s) Tapahtuma {X = a} := {s S : X (s) = a} Esim (Kaksi noppaa) Perusjoukon S = {(s, s 2 ) : s, s 2 =,..., } satunnaismuuttujia: Silmälukujen maksimi M(s) = max{s, s 2 } Silmälukujen summa N(s) = s + s 2
4 Satunnaismuuttuja: Tulkinta Satunnaismuuttuja X on suure, jonka arvo X (s) määräytyy satunnaisilmiön toteumasta s S: Yhteen satunnaisilmiöön liittyy useita satunnaismuuttujia. Toteuma s S määrää niiden kaikkien arvot. Todennäköisyysteoriassa tutkitaan satunnaismuuttujien arvojen todennäköisyyksiä, kun satunnaisilmiötä kuvaavan perusjoukon S todennäköisyysjakauma P tunnetaan. Tilastotieteessä pyritään havaittujen satunnaismuuttujien arvojen perusteella tekemään johtopäätöksiä perusjoukon S tuntemattomasta todennäköisyysjakaumasta P. Matemaattisesti (MS-E00 Probability theory): Satunnaismuuttuja on mitallinen kuvaus X : S S Tapahtuman {X B} todennäköisyys on luku P(A), missä A = X (B) on joukon B alkukuva
5 Eri tyyppisiä satunnaismuuttujia Satunnaismuuttujasta X : S S saatetaan käyttää nimitystä Nimitys Arvojoukko Satunnaisluku S R Satunnaisvektori S R n Satunnaismatriisi S R m n Stokastinen prosessi S R T (aikavälin T funktiot) Satunnaiskenttä S R U (alueen U funktiot) Satunnaisverkko S {0, } V V (solmujoukon V verkot) Tällä kurssilla käsitellään lähes yksinomaan satunnaislukuja (eli reaaliarvoisia satunnaismuuttujia) ja R 2 :n satunnaisvektoreita.
6 Sisältö Satunnaismuuttujan käsite Jakauma ja kertymäfunktio Jakauman tiheysfunktio Monen muuttujan yhteisjakauma Ehdollinen jakauma Esimerkkejä
7 Satunnaismuuttujan jakauma Satunnaismuuttujan X jakauma on taulukko tai funktio, josta voidaan määrittää X :n mahdolliset arvot ja niiden todennäköisyydet. Esim (Kaksi noppaa) Nopan silmäluvun X jakauma on k P(X = k) eli lukujoukon {,..., } tasajakauma. Nopan 2 silmäluvulla X 2 on sama jakauma. = Satunnaismuuttujat X ja X 2 ovat samoin jakautuneita.
8 Esim. Kahden nopan maksimi M = max(x, X 2 ), missä X ja X 2 ovat kahden nopan tulokset. P(M = k) = P(M k) P(M k ) = P(X k, X 2 k) P(X k, X 2 k ) = P(X k) P(X 2 k) P(X k ) P(X 2 k ) ( ) k 2 ( ) k 2 = = 2k Satunnaismuuttujan M jakauma: 0. k P(M = k)
9 Esim. Metron odotusaika X = seuraavan metron odotusaika (min) asemalla, jonne metroja saapuu 0 min välein. Mikä on satunnaismuuttujan X jakauma? P(2 X ) = 0 = 0. P(2.9 X ) = 0. 0 = 0.0 P( X ) = = P(X = ) = 0 Vastaavasti päätelleen havaitaan, että P(X = t) = 0 kaikilla t. Menikö yo. päättelyssä jotain väärin? Ei mennyt. Koska X :n arvojoukko on jatkuva väli [0, 5], tarkoittaa {X = } tapahtumaa, että X :n arvo on äärettömän monen desimaalin tarkkuudella. Tällaisen tapahtuman todennäköisyys on nolla. Tarvitaan vaihtoehtoinen tapa esittää odotusajan jakauma.
10 Esim. Metron odotusaika X = seuraavan metron odotusaika (min) asemalla, jonne metroja saapuu 0 min välein. Mikä on satunnaismuuttujan X jakauma? Koska P(X =t) = 0 kaikilla t, ei X :n jakaumaa voi määrittää pistetodennäköisyyksien avulla. Tarvitaan muita keinoja. P(a X b) = P(a < X b) = P(X b) P(X a) = F X (b) F X (a), missä 0, t 0, F X (t) = t 0, 0 < t < 0,, t 0. on odotusajan jakauman kertymäfunktio
11 Kertymäfunktio Satunnaisluvun (eli reaaliarvoisen satunnaismuuttujan) jakauman kertymäfunktio on funktio F X (t) = P(X t). Fakta Kertymäfunktio määrää jakauman: funktion F X (t) avulla voidaan laskea kaikkien tapahtumien {X B} todennäköisyydet. Esim (Metron odotusaika) Millä todennäköisyydellä odotusaika osuu välille (, 2) tai (, 4)? P(X (, 2) tai X (, 4)) = P(X (, 2)) + P(X (, 4)) = (F X (2) F X ()) + (F X (4) F X ()) ( 2 = 0 ) ( ) 0 = 0.2.
12 Sisältö Satunnaismuuttujan käsite Jakauma ja kertymäfunktio Jakauman tiheysfunktio Monen muuttujan yhteisjakauma Ehdollinen jakauma Esimerkkejä
13 Tiheysfunktio X on diskreetti, jos sen jakauma voidaan esittää funktion f X (x) 0 avulla muodossa P(X A) = f X (x), x A S X missä numeroituva joukko S X sisältää X :n mahdolliset arvot X on jatkuva, jos sen jakauma voidaan esittää funktion f X (x) 0 avulla muodossa P(X A) = f X (x) dx. A
14 Diskreetin jakauman tiheysfunktio Diskreetin satunnaismuuttujan tiheysfunktio voidaan kirjoittaa muodossa f X (x) = P(X = x) ja se toteuttaa ehdot f X (x) 0 ja x S X f X (x) =. Vastaavasti mikä tahansa yo. ehdot toteuttava funktio on jonkin diskreetin jakauman tiheysfunktio.
15 Diskreetin jakauman tiheysfunktio Kun satunnaismuuttujan arvojoukko on pieni, kannattaa jakauma esittää taulukkona. Esim (Kruunien lukumäärä 5:llä kolikonheitolla) k P(X = k) Suuren arvojoukon tapauksessa jakauma kannattaa esittää tiheysfunktion avulla. Esim (Kruunien lukumäärä n = :lla kolikonheitolla) f X (k) = ( n k ) ( 2 ) k ( 2) n k, k = 0,,..., n. Tämä on binomijakauma parametreina n = ja p = 2.
16 Jatkuvan jakauman tiheysfunktio Jatkuvan jakauman tiheysfunktio toteuttaa ehdot f X (x) 0 ja f X (x) dx =, Vastaavasti mikä tahansa yo. ehdot toteuttava funktio on jonkin jatkuvan jakauman tiheysfunktio. Jatkuvan jakauman tiheysfunktiota ei voi kirjoittaa pistetodennäköisyyksien avulla, sillä P(X = x) = 0. Tiheysfunktio on todennäköisyys suhteessa reaalilukujen esitystarkkuuteen; sen jatkuvuuspisteissä pienillä h > 0 arvoilla f X (x) P(X = x ± h/2) h
17 Kertymäfunktio ja tiheysfunktio Jatkuvan satunnaisluvun kertymäfunktio saadaan tiheysfunktion integraalina F X (x) = P(X x) = x f X (t) dt tiheysfunktio saadaan kertymäfunktion derivaattana f X (x) = F X (x) kertymäfunktion derivoituvuuspisteissä.
18 Esim. Jatkuva tasajakauma Funktio f (t) = { b a, a < t < b, 0, muuten. /(b a) on erään jatkuvan jakauman tiheysfunktio: lukuvälin [a, b] jatkuva tasajakauma. Kertymäfunktio saadaan integraalina F (t) = t f (s) ds = 0, t < a, t b a, a t b,, t > b. 0 a a b b Sijoittamalla a = 0 ja b = 0 saadaan metron odotusajan jakauma.
19 Eksponenttijakauma Eksponenttijakauman parametrina λ > 0 tiheysfunktio on { λe λx, x > 0 f (x) = 0, x 0. f(x) λ x Integroimalla tiheysfunktiota = kertymäfunktio on { 0, x 0, F (x) = e λx, x > 0 F(x) x
20 Eksponenttijakauman muistittomuus F (t) = e λt, t 0 P ( X > s + t X > s ) = = P(X > s + t ja X > s) P(X > s) P(X > s + t) F (s + t) = P(X > s) F (s) = e λ(t+s) e λs = e λt = P(X > t) Siis P(X > s + t X > s) = P(X > t) kaikilla s, t 0. Tulkinta Huolimatta siitä, kuinka kauan bussia on jo odotettu, on tn että pitää odottaa vielä t min lisää sama kuin tn, että juuri pysäkille saapunut henkilö odottaa yli t min.
21 Satunnaisluvut yhteenveto Diskreetti jakauma X :n arvot sisältyvät äärelliseen tai numeroituvasti äärettömään arvojoukkoon S X P(X = x) = f X (x) kaikilla x S X Jakauma määräytyy tiheysfunktiosta kaavalla P(X A) = A (x)f X (x) x S X Jatkuva jakauma X :n arvot sisältyvät ylinumeroituvasti äärettömään lukujoukkoon P(X = x) = 0 kaikilla x Jakauma määräytyy tiheysfunktiosta kaavalla P(X A) = A (x)f X (x) dx Tiheysfunktion arvot ovat tarkkoja todennäköisyyksiä f X (x) = P(X = x) Tiheysfunktion arvot ovat suhteellisia likiarvoisia todennäköisyyksiä f X (x) h P(X = x ± h/2)
22 Sisältö Satunnaismuuttujan käsite Jakauma ja kertymäfunktio Jakauman tiheysfunktio Monen muuttujan yhteisjakauma Ehdollinen jakauma Esimerkkejä
23 Satunnaismuuttujien yhteisjakauma Samaan satunnaisilmiöön liittyvien satunnaismuuttujien X ja Y yhteisjakauma on taulukko tai funktio, josta voidaan määrittää parin (X, Y ) mahdolliset arvot ja niiden todennäköisyydet. Esim (Kaksi noppaa) Noppien silmälukujen X ja X 2 yhteisjakauma on X 2 X eli tulojoukon {,..., } {,..., } tasajakauma.
24 Ensimmäisen nopan ja noppien maksimin yhteisjakauma P(X =, M = ) = P(X =, X 2 = ) = Yleisesti: k < i = P(X = i, M = k) = 0 k = i = P(X = i, M = k) = P(X = i, X 2 i) = k k > i = P(X = i, M = k) = P(X = i, X 2 = k) = Satunnaismuuttujien X ja M yhteisjakauma: M X
25 Indikaattorifunktio Joukon A indikaattorifunktio määritellään kaavalla {, x A, A (x) = 0, muuten. Sen avulla voidaan yhden muuttujan jakaumien esityskaavat kirjoittaa muodossa P(X A) = A (x)f X (x) x S X ja P(X A) = A (x)f X (x) dx.
26 Diskreetti ja jatkuva yhteisjakauma Satunnaismuuttujilla X ja Y on diskreetti yhteisjakauma, jos niiden todennäköisyydet voidaan esittää funktion f X,Y (x, y) 0 avulla muodossa P((X, Y ) A) = A (x, y)f X,Y (x, y), y S Y x S X missä joukot S X ja S Y ovat numeroituvia, ja jatkuva yhteisjakauma, jos niiden todennäköisyydet voidaan esittää funktion f X,Y (x, y) 0 avulla muodossa P((X, Y ) A) = A (x, y)f X,Y (x, y) dx dy.
27 Yhteisjakauman reunajakaumat Rivi- ja sarakesummia kutsutaan yhteisjakauman reunajakaumiksi. M X Yht Yht 5 Rivisummista saadaan X :n jakauma Sarakesummista saadaan M:n jakauma 7 9
28 Silmälukujen yhteisjakauman reunajakaumat X 2 X Yht Yht Rivisummista saadaan X :n jakauma Sarakesummista saadaan X 2 :n jakauma
29 Reunajakaumat Diskreettiä yhteisjakaumaa noudattavien satunnaismuuttujien X ja Y tiheysfunktiot saadaan yhteisjakauman tiheysfunktiosta kaavoilla f X (x) = f X,Y (x, y) y S Y f Y (y) = f X,Y (x, y). x S X Jatkuvan yhteisjakauman tapauksessa f X (x) = f Y (y) = f X,Y (x, y) dy f X,Y (x, y) dx.
30 Esim. Yksikköneliön tasajakauma Yksikköneliön (0, ) 2 tasajakaumaa noudattavan satunnaisvektorin (U, U 2 ) tiheysfunktio on {, kun x (0, ) ja x 2 (0, ), f U,U 2 (x, x 2 ) = 0, muuten. Yhteisjakauman reunatiheysfunktiot ovat {, kun x (0, ), f U (x ) = f U,U 2 (x, x 2 ) dx 2 = 0, muuten. f U2 (x 2 ) = f U,U 2 (x, x 2 ) dx = {, kun x 2 (0, ), 0, muuten. U ja U 2 noudattavat siis välin (0, ) tasajakaumaa.
31 Sisältö Satunnaismuuttujan käsite Jakauma ja kertymäfunktio Jakauman tiheysfunktio Monen muuttujan yhteisjakauma Ehdollinen jakauma Esimerkkejä
32 Ehdolliset jakauma Y :n ehdollinen tiheysfunktio X :n suhteen määritellään kaavalla f Y X (y x) = f X,Y (x, y). f X (x) Diskreetissä tapauksessa f Y X (y x) 0 ja y S Y f Y X (y x) =, Jatkuvassa tapauksessa f Y X (y x) 0 ja f Y X (y x) dy =. = y f Y X (y x) on yhden muuttujan jakauman tiheysfunktio. Tulkinta diskreetille: f Y X (y x) = P(Y = y X = x). Tulkinta jatkuvalle: yhteisjakauman tiheysfunktion jatkuvuuspisteissä pienillä h > 0 arvoilla pätee f Y X (y x) P(Y = y ± h/2 X = x ± h/2). h
33 Satunnaismuuttujien riippuvuus ja riippumattomuus Satunnaismuuttujat X ja Y ovat stokastisesti riippumattomat, jos kaikilla A, B pätee Yhtäpitävästi: tai P(X A, Y B) = P(X A) P(Y B). P(Y B X A) = P(Y B) P(X A Y B) = P(X A). Tapahtuma X A ei sisällä mitään informaatiota, josta olisi hyötyä Y :n arvon ennustamiseen.
34 Satunnaismuuttujien riippuvuus ja riippumattomuus Fakta Diskreettiä tai jatkuvaa yhteisjakaumaa noudattavat satunnaismuuttujat X ja Y ovat riippumattomat jos ja vain niiden yhteisjakauman tiheysfunktio voidaan esittää muodossa f X,Y (x, y) = f X (x)f Y (y) Tämä vastaa ehtoa f Y X (y x) = f Y (y), eli Y :n ehdollinen jakauma X :n suhteen on sama kuin Y :n jakauma sellaisenaan.
35 Esim. Satunnaisotanta Kuinka moni opiskelijoista katsoi viime to Salatut elämät? S = Kaikki opiskelijat, #S = A = Salkkarit katsoneet opiskelijat, #A =. (#A olisi käytännön tilanteessa tuntematon) Haastatellaan satunnaiset n = 2 opiskelijaa ja merkitään {, jos. haastateltu opiskelija A X = 0, muuten X 2 = {, jos 2. haastateltu opiskelija A 0, muuten Mikä on X :n ja X 2 :n yhteisjakauma? P(X =, X 2 = ) =?
36 Satunnaisotanta palauttaen ja palauttamatta Palauttaen Palauttamatta X 2 X 0 Yht 0 Yht X 2 X 0 Yht Yht Molemmissa tapauksissa saadaan samat reunajakaumat. Yhteisjakaumaan vaikuttaa, miten otanta suoritetaan.
37 Satunnaisotanta palauttaen ja palauttamatta Palauttaen Palauttamatta X 2 X 0 Yht 0 Yht f X,X 2 (i, j) = f X (i)f X2 (j) X 2 X 0 Yht Yht f X,X 2 (i, j) f X (i)f X2 (j) Molemmissa tapauksissa saadaan samat reunajakaumat. Satunnaisotannassa palauttaen ovat X ja X 2 riippumattomat. Satunnaisotannassa palauttamatta X ja X 2 ovat riippuvat.
38 Esim. Satunnaisotanta palauttaen Mikä on satunnaismuuttujan X 2 ehdollinen jakauma tapahtuman {X = 0} sattuessa? X 2 X 0 Yht 0 Yht f X2 X (0 0) = f X2 X ( 0) = =. =. Tässä tapauksessa X 2 :n ehdollinen jakauma tapahtuman {X = 0} sattuessa on sama kuin X 2 :n ehdoton jakauma.
39 Esim. Satunnaisotanta palauttamatta Mikä on satunnaismuuttujan X 2 ehdollinen jakauma tapahtuman {X = 0} sattuessa? X 2 X 0 Yht Yht f X2 X (0 0) = f X2 X ( 0) = = = 79. Tässä tapauksessa X 2 :n ehdollinen jakauma tapahtuman {X = 0} sattuessa on eri kuin X 2 :n ehdoton jakauma.
40 Sisältö Satunnaismuuttujan käsite Jakauma ja kertymäfunktio Jakauman tiheysfunktio Monen muuttujan yhteisjakauma Ehdollinen jakauma Esimerkkejä
41 Ääretön diskreetti arvojoukko Diskreetin satunnaismuuttujan mahdollisten arvojen joukko voi olla ääretön. Esim (Kimblen alkuvaihe) N = nopanheittojen lukumäärä, kunnes saadaan kuutonen. P(N = k) = P(X,..., X k, X k = ) = P(X ) P(X k ) P(X k = ) ( = ) k ( ) Satunnaismuuttuja N noudattaa äärettömän arvojoukon {, 2,... } geometrista jakaumaa onnistumistodennäköisyytenä p =. Tämä on numeroituvasti äärettömän joukon diskreetti jakauma, tiheysfunktiona f N (k) = ( p) k p, k =, 2,...
42 Esimerkki: Metron odotusaika Y = odotusaika (min) asemalla, jonne metroja saapuu 0 min välein, ja jossa metrot pysähtyvät min ajan. Y :n jakauma =? X = aika (min) edellisen metron saapumisesta noudattaa välin [0, 0] tasajakaumaa. Kun t [0, 9], P(Y t) = P(Y = 0) + P(0 < Y t) = F Y (t) = = P(X ) + P(0 < 0 X < t). Onko Y :n jakauma diskreetti vai jatkuva? 0, t < 0, 0 + t 0, 0 t 9,, t > 9. Y saa arvoja jatkuvalla välillä [0, 9] = ei diskreetti P(Y = 0) > 0 = ei jatkuva
43 Esimerkki: Metron odotusaika Y = odotusaika (min) asemalla, jonne metroja saapuu 0 min välein, ja jossa metrot pysähtyvät min ajan. Kertymäfunktio voidaan kirjoittaa muodossa F Y (t) = 0 F Y 0 (t) F Y (t), missä F Y0 (t) = { 0, t < 0,, t 0, F Y (t) = 0, t < 0, t 9, 0 t < 9,, t 9, Y :n jakauma on diskreetin ja jatkuvan jakauman sekoitus: Y 0 on diskreetti sm, joka varmuudella saa arvon 0 (Y :n jakauma ehdolla, että metro on odottamassa asemalla) Y on jatkuva sm, joka noudattaa välin [0, 9] tasajakaumaa (Y :n jakauma ehdolla, että metroa joudutaan odottamaan)
44 Seuraavalla kerralla puhutaan satunnaismuuttujien odotusarvoista...
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
LisätiedotSatunnaismuuttujat ja jakaumat
Luku 2 Satunnaismuuttujat ja jakaumat Lasse Leskelä Aalto-yliopisto 2. syyskuuta 207 2. Satunnaismuuttujan käsite Käytännön tilanteissa ei yleensä olla kiinnostuneita satunnaisilmiön kaikista yksityiskohdista,
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
LisätiedotMS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden
LisätiedotTodennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset
LisätiedotMS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
LisätiedotTehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
LisätiedotSatunnaismuuttujan odotusarvo ja laskusäännöt
Luku 3 Satunnaismuuttujan odotusarvo ja laskusäännöt Lasse Leskelä Aalto-yliopisto 16. syyskuuta 2017 3.1 Odotusarvon käsite ja suurten lukujen laki Lukuarvoisen satunnaismuuttujan X odotusarvo määritellään
LisätiedotMS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
LisätiedotMS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 4. lokakuuta 2007 Antti Rasila () TodB 4. lokakuuta 2007 1 / 17 1 Moniulotteiset todennäköisyysjakaumat Johdanto Kaksiulotteiset satunnaismuuttujat Kaksiulotteisen
LisätiedotStokastiikka ja tilastollinen ajattelu
Stokastiikka ja tilastollinen ajattelu Versio 0.9 Lasse Leskelä Aalto-yliopisto 3. tammikuuta 208 Sisältö Todennäköisyyden käsite ja laskusäännöt 5. Todennäköisyyden käsite...................... 5.2 Satunnaisilmiön
LisätiedotStokastiikka ja tilastollinen ajattelu
Stokastiikka ja tilastollinen ajattelu Versio 0.93 Lasse Leskelä Aalto-yliopisto 7. helmikuuta 208 Sisältö Todennäköisyyden käsite ja laskusäännöt 5. Todennäköisyyden käsite...................... 5.2 Satunnaisilmiön
LisätiedotLisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia
Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma
LisätiedotStokastiikka ja tilastollinen ajattelu
Stokastiikka ja tilastollinen ajattelu Versio 0.96 Lasse Leskelä Aalto-yliopisto 7. syyskuuta 208 Sisältö Todennäköisyyden käsite ja laskusäännöt 5. Todennäköisyyden käsite...................... 5.2 Satunnaisilmiön
LisätiedotJohdatus tn-laskentaan perjantai 17.2.2012
Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;
LisätiedotMatemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto
Matemaattinen tilastotiede Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Alkusanat Tämä moniste perustuu vuosina 2002-2004 pitämiini matemaattisen tilastotieteen luentoihin
LisätiedotMS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
LisätiedotStokastiikka ja tilastollinen ajattelu
Stokastiikka ja tilastollinen ajattelu Versio 0.990 Lasse Leskelä Aalto-yliopisto 8. maaliskuuta 209 Sisältö Todennäköisyyden käsite ja laskusäännöt 5. Todennäköisyyden käsite...................... 5.2
LisätiedotSallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,
Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on
LisätiedotSatunnaismuuttujan odotusarvo ja laskusäännöt
Luku 3 Satunnaismuuttujan odotusarvo ja laskusäännöt Lasse Leskelä Aalto-yliopisto 17. marraskuuta 2017 3.1 Odotusarvon käsite ja suurten lukujen laki Lukuarvoisen satunnaismuuttujan X odotusarvo määritellään
Lisätiedot30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
LisätiedotLuku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017
Luku 1 Bayesläiset estimaattorit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 217 1.1 Bayesläiset piste-estimaatit Tarkastellaan datalähdettä, joka tuottaa tiheysfunktion f(x θ) mukaan jakautuneita riippumattomia
Lisätiedot1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden
Lisätiedot(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.
Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.
LisätiedotPoisson-prosessien ominaisuuksia ja esimerkkilaskuja
4B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Tuntitehtävät 4B1 Eksponentiaalisten odotusaikojen toistuva odottaminen. Satunnaisluvun X sanotaan noudattavan Gamma-jakaumaa parametrein k ja λ,
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Bayesläinen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy
Lisätiedot2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
LisätiedotTodennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1
Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen
LisätiedotTodennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset 1. Olkoon X satunnaismuuttuja, ja olkoot a R \ {0}, b R ja Y = ax + b. (a) Olkoon X diskreetti ja f sen pistetodennäköisyysfunktio.
LisätiedotKäytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:
8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)
LisätiedotSatunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
LisätiedotSatunnaisluvut, satunnaisvektorit ja niiden jakaumat
1A Satunnaisluvut, satunnaisvektorit ja niiden jakaumat Ensimmäisen harjoituksen tavoitteena on kerrata todennäköisyyden peruskäsitteitä, jotka ovat välttämättömiä stokastisten prosessien käsittelyssä.
LisätiedotMat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,
LisätiedotSatunnaismuuttujien summa ja keskiarvo
Luku 5 Satunnaismuuttujien summa ja keskiarvo Lasse Leskelä Aalto-yliopisto 21. syyskuuta 2017 5.1 Satunnaismuuttujien summa Satunnaismuuttujien summa S n = X 1 + +X n ja keskiarvo n 1 S n ovat satunnaismuuttujia,
LisätiedotTKK @ Ilkka Mellin (2008) 1/5
Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,
LisätiedotJohdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat
LisätiedotMS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy
LisätiedotIlkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat TKK (c) Ilkka Mellin (2006) 1 Moniulotteiset satunnaismuuttujat ja
LisätiedotTODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä
J. Virtamo 38.3143 Jonoteoria / Todennäköisyyslaskenta 1 TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä Otosavaruus S S on satunnaiskokeen E kaikkien mahdollisten alkeistapahtumien e joukko. Esim. 1. Noppaa
LisätiedotKeskihajonta ja korrelaatio
Luku 4 Keskihajonta ja korrelaatio Lasse Leskelä Aalto-yliopisto 19. syyskuuta 2017 4.1 Jakauman varianssi ja keskihajonta Edellisessä luvussa opittiin, että satunnaismuuttujan odotusarvo on X:n jakauman
Lisätiedot4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
LisätiedotHarjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
LisätiedotMAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi
LisätiedotJohdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat Kaksiulotteiset todennäköisyysjakaumat
LisätiedotABHELSINKI UNIVERSITY OF TECHNOLOGY
Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä
LisätiedotMAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan
LisätiedotMoniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat
TKK (c) Ilkka Mellin (4) todennäköisyysjakaumat Johdatus todennäköisyyslaskentaan todennäköisyysjakaumat TKK (c) Ilkka Mellin (4) todennäköisyysjakaumat: Mitä opimme? /5 hden satunnaismuuttujan todennäköisyysjakaumat
LisätiedotMoniulotteiset satunnaismuuttujat ja jakaumat
Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat KE (2014) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat >> Kaksiulotteiset
LisätiedotTodennäköisyyslaskun kertaus. Heliövaara 1
Todennäköisyyslaskun kertaus Heliövaara 1 Satunnaismuuttujat ja todennäköisyysjakaumat Heliövaara 2 Stunnaismuuttujat ja todennäköisyysjakaumat Jos satunnaisilmiötä halutaan mallintaa matemaattisesti,
LisätiedotSatunnaisluvut, satunnaisvektorit ja niiden jakaumat
1A Satunnaisluvut, satunnaisvektorit ja niiden jakaumat Ensimmäisen harjoituksen tavoitteena on kerrata todennäköisyyden peruskäsitteitä, jotka ovat välttämättömiä stokastisten prosessien käsittelyssä.
LisätiedotIlkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Tilastollisen merkitsevyyden testaus (+ jatkuvan parametrin Bayes-päättely) Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden
LisätiedotMS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
LisätiedotTodennäköisyysjakaumia
8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma
LisätiedotIlkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
LisätiedotOtosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko
ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen
LisätiedotIlkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Satunnaismuuttujat ja todennäköisyysjakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujat ja todennäköisyysjakaumat
LisätiedotD ( ) E( ) E( ) 2.917
Mat-2.091 Sovellettu todennäköisyyslasku 4. harjoitukset/ratkaisut Aiheet: Diskreetit jakaumat Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen jakauma, Kertymäfunktio,
LisätiedotMat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:
Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva
LisätiedotD ( ) Var( ) ( ) E( ) [E( )]
Mat-.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Diskreettejä jakaumia Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Eksponenttijakauma, Geometrinen jakauma, Hypergeometrinen
LisätiedotTalousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa
Talousmatematiikan perusteet: Luento 17 Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Motivointi Kahdella edellisellä luennolla olemme oppineet integrointisääntöjä
LisätiedotIlkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
LisätiedotOpiskelijanumero Yleisarvio Työläys Hyödyllisyys 12345A K K B U 3 3 3
Luku 6 Datajoukkojen jakaumat, tunnusluvut ja kuvaajat Lasse Leskelä Aalto-yliopisto. lokakuuta 207 6. Datajoukko ja datakehikko Tässä monisteessa datajoukko tarkoittaa järjestettyä listaa keskenään samantyyppisiä
LisätiedotTilastomatematiikka Kevät 2008
Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/19 4.3 Varianssi Satunnaismuuttuja on neliöintegroituva, jos odotusarvo
LisätiedotMiten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja.
Luku 1 Johdanto 1.1 Todennäköisyys ja tilastotiede Kurssi käsittelee todennäköisyyslaskentaa ja tilastotiedettä. Laaditaan satunnaisilmiöille todennäköisyysmalleja. Miten hyvin mallit kuvaavat todellisuutta?
LisätiedotJATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos)
J. Virtamo 38.3143 Jonoteoria / Jatkuvat jakaumat 1 JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos) Määritelmä Ei-negatiivisen satunnaismuuttujan X 0, jonka tiheysfunktio on f(x), Laplace-muunnos
LisätiedotTodennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syyslokakuu 019 / Hytönen. laskuharjoitus, ratkaisuehdotukset 1. Kurssilla on 0 opiskelijaa, näiden joukossa Jutta, Jyrki, Ilkka ja Alex. Opettaja aikoo valita umpimähkään opiskelijan
LisätiedotJohdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
LisätiedotSatunnaismuuttujien summa ja keskiarvo
Luku 5 Satunnaismuuttujien summa ja keskiarvo Lasse Leskelä Aalto-yliopisto 17. marraskuuta 2017 5.1 Satunnaismuuttujien summa Kahden satunnaismuuttujan summa X + Y on satunnaismuuttuja, jonka jakauma
LisätiedotMiten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa?
21.3.2019/1 MTTTP1, luento 21.3.2019 7 TILASTOLLISEN PÄÄTTELYN PERUSTEITA Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä
LisätiedotMoniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
LisätiedotPoisson-prosessien ominaisuuksia ja esimerkkilaskuja
5B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Alla on kuhunkin tehtävään esitetty malliratkaisut punaisella sekä malliratkaisujen lisämateriaalit sinisellä. Tuntitehtävät 5B1 Teemu Selänne on
LisätiedotJohdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)
LisätiedotTodennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
LisätiedotJohdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin
LisätiedotMat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-2.090 Sovellettu todennäköisyyslasku A Harjoitus 4 (vko 41/2003) (Aihe: diskreettejä satunnaismuuttujia ja jakaumia, Laininen luvut 4.1 4.7) 1. Kone tekee
LisätiedotInversio-ongelmien laskennallinen peruskurssi Luento 7
Inversio-ongelmien laskennallinen peruskurssi Luento 7 Kevät 2012 1 Tilastolliset inversio-ongelmat Tilastollinen ionversio perustuu seuraaviin periaatteisiin: 1. Kaikki mallissa olevat muuttujat mallinnetaan
Lisätiedot4. laskuharjoituskierros, vko 7, ratkaisut
4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.
Lisätiedot&idx=2&uilang=fi&lang=fi&lvv=2015
20.10.2015/1 MTTTP5, luento 20.10.2015 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 3. Kaksiulotteiset satunnaismuuttujat
.9. Kaksiulotteiset satunnaismuuttujat MS-A Todennäköisslaskennan ja tilastotieteen peruskurssi Viikko Moniulotteiset satunnaismuuttujat sekä niiden jakaumat ja tunnusluvut; Moniulotteisia jakaumia Usein
Lisätiedot031021P Tilastomatematiikka (5 op) viikko 7
0302P Tilastomatematiikka (5 op) viikko 7 Jukka Kemppainen Mathematics Division Yhteisjakauma Edellä on tarkasteltu yksiulotteista satunnaismuuttujaa. Sovelluksissa joudutaan usein tarkastelemaan samanaikaisesti
Lisätiedothttps://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015
12.1.2016/1 MTTTP5, luento 12.1.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa
LisätiedotJohdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja niiden todennäköisyysjakaumat
Lisätiedot0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä
Lisätiedotk S P[ X µ kσ] 1 k 2.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 28 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
LisätiedotJohdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka
LisätiedotMoniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?
TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä
LisätiedotLuento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja
1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma
LisätiedotTodennäköisyyden käsite ja laskusäännöt
Luku 1 Todennäköisyyden käsite ja laskusäännöt Lasse Leskelä Aalto-yliopisto 12. syyskuuta 2017 1.1 Todennäköisyyden käsite Todennäköisyys on tapa kuvailla kvantitatiivisesti jonkin tapahtuman uskottavuutta,
LisätiedotJohdatus tn-laskentaan torstai 16.2.2012
Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki
Lisätiedot3.1 Kaksiulotteinen satunnaisvektori ja sen jakauma
3 Yhteisjakauma Kappaleessa 2 tarkastelimme aina yhtä satunnaismuuttujaa kerrallaan. Tässä kappaleessa näemme, miten aikaisemmat käsitteet yleistyvät siihen tilanteeseen, jossa samalla perusjoukolla on
Lisätiedot