SEKASTRATEGIAT PELITEORIASSA

Koko: px
Aloita esitys sivulta:

Download "SEKASTRATEGIAT PELITEORIASSA"

Transkriptio

1 SEKASTRATEGIAT PELITEORIASSA Matti Estola 8. joulukuuta 2013 Sisältö 1 Johdanto 2 2 Ratkaistaan sukupuolten välinen taistelu sekastrategioiden avulla 5 Teksti on suomennettu kirjasta: Gibbons: A Primer in Game Theory 1

2 1 Johdanto Tarkastellaan esimerkkinä sellaista peliä, jossa 2 pelaajaa päättävät asettavatko he yhden markan pöytään numero- vai leijonapuoli ylöspäin ( matching pennies eli mp). Molemmat tekevät päätöksensä toisen päätöksestä tietämättä. Jos rahat osoittautuvat olevan sama puoli ylöspäin, pelaaja 2 saa molemmat rahat. Jos rahat ovat eripäin, pelaaja 1 saa molemmat rahat. Pelimatriisi on seuraava. pelaaja 2 numero leijona pelaaja 1 numero 1, +1 +1, 1 leijona +1, 1 1, +1 Pelissä ei ole puhtailla strategioilla pelattuna Nash -tasapainoa. Jos pelattu strategiavektori on (numero, leijona) tai (leijona, numero), pelaaja 2 haluaa muuttaa strategiaansa ja jos strategiavektori on (numero, numero) tai (leijona, leijona), pelaaja 1 haluaa muuttaa strategiaansa. Pelaajat pyrkivät arvaamaan toisen pelaajan strategian ja valitsevat omansa sillä perusteella. Yllä kuvatun pelin kanssa samantyyppisiä pelejä ovat erilaiset pokeri- ja muut korttipelit, kaksinkamppailut, sukupuolten välinen taistelu jne. Pokerissa bluffaaminen silloin tällöin liittyy siihen, että vaikeutetaan vastapelaaja(ie)n kykyä arvata omat kortit. Jos pelaaja ei koskaan bluffaa, muut tietävät hänellä olevan hyvät kortit hänen nokittaessaan; toisaalta usein bluffaavan pelaajan korttien arvaaminen on myös helpompaa kuin satunnaisesti bluffaavan. Yleisesti ottaen mp :n tyyppisissä peleissä pelaajan kannattaa salata oma strategiavalintansa muilta pelaajilta mahdollisimman hyvin, kun taas sukupuolten välisessä taistelussa pelaajan kannattaa ilmaista strategiansa vastapelaajalle mahdollisimman hyvin. Esim. Mp:ssä pelaajan 1 sekastrategia on todennäköisyysjakauma (p, 1 p), 0 p 1, missä p on todennäköisyys, että 1 pelaa strategiaa numero ja 1 p on leijonan pelaamisen todennäköisyys. Sekastrategia p = 1 (1 p = 0) on tällöin puhdas strategia numero ja vastaavasti sekastrategia p = 0 (1 p = 1) vastaa puhdasta strategiaa leijona. Esim. Aiemmin tarkastelimme pelaajan valintaa pelissä, jossa hänellä oli strategiat vasen, keski, oikea. Yksi mahdollinen sekastrategia olisi tällöin todennäköisyysjakauma (q, p, 1 q p), 0 q 1, 0 p 1 ja 0 p+q 1, missä q on strategian vasen, p strategian keski ja 1 q p strategian oikea todennäköisyys. Yleisesti ottaen, tietyn pelaajan n:stä puhtaasta strategiasta voidaan muodostaa sekastrategia seuraavasti: p i on strategian i pelaamistodennäköi- 2

3 syys ja n i=1 p i = 1. Sekastrategioiden käytön yksi etu on se, että kaikki puhtaat strategiat saadaan yhden sekastrategian erikoistapauksina. Tarkastelu on tällöin yleisempää ja merkinnällisesti yksinkertaisempaa. Tarkastellaan sekastrategioiden käytön sallimisen vaikutusta pelin ratkaisemiseen muutaman esimerkin avulla. Esim. Tarkastellaan yllä esitettyä peliä mp pelaajan 1 näkökulmasta ja oletetaan hänen pelaavan sekastrategiaa (p, 1 p) aiemman esimerkin mukaisesti. Merkitään odotusarvo-operaattoria E:llä ja esitetään pelaajan 1 tuleman odotusarvot olettamalla, että pelaaja 2 pelaa jompaa kumpaa strategiaansa N tai L, E(jos 2 pelaa strategiaa N) = 1 p + 1 (1 p) = 1 2p, E(jos 2 pelaa strategiaa L) = 1 p 1 (1 p) = 2p 1. Asettamalla yllä olevat odotusarvot yhtäsuuriksi, saamme 1 2p = 2p 1 p = 1 2. Jos siis pelaaja 1 pelaa sekastrategiaansa todennäköisyyksillä (p, 1 p) = (1/2, 1/2), hänelle on odotusarvomielessä yhdentekevää, kumpaa strategiaa pelaaja 2 pelaa. Tällä tavalla pelaaja 1 voi suojata itsensä pelaajan 2 strategioita vastaan; sama pätee pelaajalla 2. Kummankin pelaajan kannattaa siten pelata sekastrategiaa (p, 1 p) = (1/2, 1/2), sillä kaikki muut strategiat paljastuessaan antavat vastapelaajalle mahdollisuuden hyödyntää sitä informaatiota. Saimme siis sekastrategioiden avulla ratkaistua pelin sellaiseen muotoon, josta kumpikaan pelaaja ei ole halukas poikkeamaan (pelin Nash -tasapaino). Esim. Oletetaan seuraava peli. pelaaja 2 L R pelaaja 1 T 3, 0, M 0, 3, B 1, 1, Pelaajan 2 tulemia ei ole huomioitu pelimatriisissa, koska tarkastelemme vain pelaajan 1 pelaamista. Jos sekastrategioita ei sallita, pelaajalla 1 strategia B on aidosti dominoitu yhdessä strategioiden T ja M taholta, mutta kumpikaan niistä yksin ei aidosti dominoi B:tä. Tällaisessa tilanteessa sekastrategia K, jossa pelaaja 1 pelaa strategiaa T todennäköisyydellä 1/2 ja strategiaa M todennäköisyydellä 1/2 dominoi aidosti strategiaa B odotusarvomielessä. O- soitetaan tämä seuraavasti. 3

4 Ajatellaan että pelaaja 1 olettaa 2:n pelaavan strategiaa L todennäköisyydellä p, 0 p 1 ja strategiaa R todennäköisyydellä (1 p). Lasketaan strategian B tuleman odotusarvo pelaajalle 1, E(B) = 1 p + 1 (1 p) = 1. Jos pelaaja 1 olettaa 2:n pelaavan strategiaa L todennäköisyydellä p, 0 p 1, sekastrategian K tuleman odotusarvo pelaajalle 1 saadaan vastaavasti E(K) = 1 2 E(T ) E(M) = 1 [3 p + 0 (1 p)] [0 p + 3 (1 p)] = 3 2 p (1 p) = 3 2. Havaitsemme siis, että riippumatta siitä millä todennäköisyydellä pelaaja 2 pelaa omia strategioitaan, pelaajalla 1 sekastrategia K dominoi aidosti puhdasta strategiaa B odotusarvomielessä. Sekastrategioiden käytön salliminen saattaa siten auttaa pelin ratkaisemista siten, että pelistä löydetään aidosti dominoituja strategioita. Esim. Tämä esimerkki osoittaa, että jokin puhdas strategia voi olla pelaajan paras vastastrategia toisen pelaajan sekastrategialle siitä huolimatta, että ko. puhdas strategia ei ole pelaajan paras vastastrategia mitään toisen pelaajan puhdasta strategiaa vastaan. Oletetaan seuraava peli pelaaja 2 L R pelaaja 1 T 3, 0, M 0, 3, B 2, 2, ja tarkastellaan sitä pelaajan 1 näkökulmasta. Jos 2 valitsee L:n, 1:n kannattaa valita T ; jos 2 valitsee R:n, 1:n kannattaa valita M. B ei siis ole 1:n paras vastastrategia mitään 2:n puhdasta strategiaa vastaan. Oletetaan nyt 2:n pelaavan strategiaa L todennäköisyydellä q ja strategiaa R todennäköisyydellä 1 q. Pelaajan 1 tulemien odotusarvot eri strategioilla ovat tällöin E(T ) = 3 q + 0 (1 q) = 3q, E(M) = 0 q + 3 (1 q) = 3(1 q), E(B) = 2 q + 2 (1 q) = 2. Tarkistetaan vielä, millä q:n arvoilla B on pelaajan 1 paras vastastrategia yllä kuvatulle 2:n sekastrategialle. E(B) > E(T ) 2 > 3q q < 2 3 E(B) > E(M) 2 > 3(1 q) q >

5 Puhdas strategia B on siten 1:n paras vastastrategia 2:n yllä kuvattua sekastrategiaa vastaan, jos 1/3 < q < 2/3. Yllä johdettu tulos voidaan tulkita seuraavasti: B on 1:n paras vastastrategia 2:n sekastrategiaa vastaan, jos pelaaja 1 uskoo 2:n pelaavan strategiaa L todennäköisyyksillä 1/3 < q < 2/3. Tämä esimerkki osoittaa sen, että pelaajien sekastrategiat voidaan tulkita vastapelaajien uskomuksiksi heidän puhtaiden strategioidensa pelaamistodennäköisyyksistä. Tämän tulkinnan sekastrategioille antoi Harsanyi vuonna 1973 ja se osoittaa, miten pelaajien uskomukset muiden pelaajien strategioiden pelaamistodennäköisyyksistä vaikuttavat heidän valintoihinsa. 2 Ratkaistaan sukupuolten välinen taistelu sekastrategioiden avulla Olkoon q todennäköisyys, jolla nainen pelaa strategiaa ooppera ja 1 q todennäköisyys, jolla nainen pelaa strategiaa jalkapallo. Miehen pelaamistodennäköisyydet ovat vastaavasti: ooppera r ja jalkapallo 1 r. Miehen tulemien odotusarvot ovat tällöin E( o ) = 1 q + 0 (1 q) = q, E( j ) = 0 q + 2 (1 q) = 2(1 q). Miehellä puhdas strategia o vastaa tilannetta r=1 ja se on paras vastastrategia naisen sekastrategialle, jos E( o ) > E( j ), eli q > 2(1 q) 3q > 2 q > 2 3. Jos q < 2/3, puhdas strategia j (joka vastaa tilannetta r = 0) on miehen paras vastastrategia naisen sekastrategialle. Jos q = 2/3, mikä tahansa r:n arvo 0 r 1 on miehen paras vastastrategia naisen sekastrategialle, sillä tällöin yllä olevan yhtälöryhmän mukaan miehellä pätee E( o ) = E( j ) r:stä riippumatta. Odotusarvomielessä on tällöin sama, millä todennäköisyyksillä mies strategioitaan pelaa, sillä molempien odotusarvot ovat samat, joten jokaisella niistä muodostetulla sekastrategialla on sama odotusarvo. Vastaava päättely voidaan suorittaa naisen kohdalla. Naisen puhtaiden strategioiden tulemien odotusarvot ovat E( o ) = 2 r + 0 (1 r) = 2r, E( j ) = 0 r + 1 (1 r) = 1 r. 5

6 Naisen paras vastastrategia miehen sekastrategialle on o (joka vastaa tilannetta q = 1), jos 2r > (1 r) 3r > 1 r > 1 3. Vastaavasti j (joka vastaa tilannetta q = 0) on naisen paras vastastrategia miehen sekastrategialle, kun r < 1/3. Jos r = 1/3, tällöin naisella pätee E( o ) = E( j ), eli on sama millä todennäköisyyksillä 0 q 1 nainen strategioitaan pelaa. Todennäköisyyksillä (q, r) = (2/3, 1/3) muodostettu sekastrategiapari on siten yksi pelin Nash -tasapaino, joka voidaan esittää pelaajien reaktiofunktioiden leikkauspisteenä. Pelaajien reaktiofunktiot koordinaatistossa (q, r) leikkaavat toisensa kolmessa pisteessä (q, r) = (0, 0), (q, r) = (1, 1) ja (q, r) = (2/3, 1/3), jotka kaikki ovat pelin Nash -tasapainoja. Nash - tasapainot (0, 0) ja (1, 1) on muodostettu puhtaista strategioista ja (2/3, 1/3) sekastrategioista. Jos mies uskoo naisen pelaavan strategiaa o todennäköisyydellä q < 2/3, miehen paras strategia on j (r = 0). Jos mies uskoo että q > 2/3, miehen paras strategia on o (r = 1). Jos nainen uskoo miehen pelaavan strategiaa o todennäköisyydellä r < 1/3, naisen paras strategia on j (q = 0). Jos nainen uskoo että r > 1/3, naisen paras strategia on o (q = 1). Siis uskomuksia (q < 2/3, r < 1/3) vastaa Nash -tasapaino ( j, j ), uskomuksia (q > 2/3, r > 1/3) vastaa Nash -tasapaino ( o, o ) ja uskomusten (q = 2/3, r = 1/3) tilanteessa, mikä tahansa strategia on yhtä hyvä. 6

PELITEORIAN PERUSTEITA

PELITEORIAN PERUSTEITA PELITEORIAN PERUSTEITA Matti Estola 29. marraskuuta 2013 Sisältö 1 Johdanto 2 2 Peliteoreettisen analyysin vaiheet 2 3 Staattiset pelit täydellisen informaation vallitessa 3 4 Pelin ratkaiseminen 4 4.1

Lisätiedot

Epätäydellisen tiedon jatkuvat pelit. Mika Viljanen Peliteorian seminaari

Epätäydellisen tiedon jatkuvat pelit. Mika Viljanen Peliteorian seminaari Epätäydellisen tiedon jatkuvat pelit Mika Viljanen Peliteorian seminaari Erityispiirteitä Erityispiirteitä Epätäydellinen tieto aiemmista toiminnoista Erityispiirteitä Epätäydellinen tieto aiemmista toiminnoista

Lisätiedot

Rationalisoituvuus ja yleinen tieto rationaalisuudesta

Rationalisoituvuus ja yleinen tieto rationaalisuudesta Rationalisoituvuus ja yleinen tieto rationaalisuudesta Keskeiset termit: Rationalizability rationalisoituvuus ratkaisukonsepti peliteoriassa Rationalizable rationalisoituva Rationality rationaalisuus pelaajat

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena

Lisätiedot

Johdanto peliteoriaan Kirja kpl. 2

Johdanto peliteoriaan Kirja kpl. 2 Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 1 Johdanto peliteoriaan Kirja kpl. 2 Ilkka Leppänen 20.1.2010 Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 2 Aiheet Laajennettu

Lisätiedot

PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA

PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA Matti Estola 29 marraskuuta 2013 Sisältö 1 Cournot'in duopolimalli 2 2 Pelin Nash -tasapainon tulkinta 3 3 Cournot'in mallin graanen ratkaisu 4 4 Bertrandin duopolimalli

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan lyhyesti peliteoriaan. Peliteorian ratkaisukäsite on Nashin tasapaino, jonka jo Augustin Cournot esitti duopolimallinsa ratkaisuna v. 1838. Cournot n

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 5

MS-C2105 Optimoinnin perusteet Malliratkaisut 5 MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien

Lisätiedot

Sekastrategia ja Nash-tasapainon määrääminen

Sekastrategia ja Nash-tasapainon määrääminen May 24, 2016 Sekastrategia Monissa peleissä ei ole Nash-tasapainoa puhtaissa strategioissa H T H 1, 1 1, 1 T 1, 1 1, 1 Ratkaisu ongelmaan löytyy siitä, että laajennetaan strategiat käsittämään todennäköisyysjakaumat

Lisätiedot

Mikrotalousteoria 2, 2008, osa IV

Mikrotalousteoria 2, 2008, osa IV Sisältö Mikrotalousteoria 2, 2008, osa IV 1 Hyvinvoinnin taloustiedettä 2 2 Pareto-kriteeri 2 3 Kaldorin kompensaatiokriteeri 2 4 Peliteoriasta 3 5 Peliteoreettisen analyysin vaiheet 3 6 Staattiset pelit

Lisätiedot

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

Sekastrategiat ja intensiiviyhteensopivuus

Sekastrategiat ja intensiiviyhteensopivuus Sekastrategiat ja intensiiviyhteensopivuus Petteri Räty 2010-03-14 God does not play dice with the universe Albert Einstein Agenda Intensiiviyhteensopivuuden käsite Yrittää vastata kysymykseen, mitä sekastrategiat

Lisätiedot

Pohdiskeleva ajattelu ja tasapainotarkennukset

Pohdiskeleva ajattelu ja tasapainotarkennukset Pohdiskeleva ajattelu ja tasapainotarkennukset Sanna Hanhikoski 24.3.2010 Sisältö Pohdiskeleva ajattelu Nashin tasapainotarkennukset Täydellinen tasapaino Täydellinen bayesiläinen tasapaino Vaiheittainen

Lisätiedot

Luento 8. June 3, 2014

Luento 8. June 3, 2014 June 3, 2014 Luokka pelejä, joissa pelaajilla on epätäydellistä informaatiota toistensa preferensseistä ja joissa valinnat tehdään samanaikaisesti. Tämä tarkoittaa, että pelaajat eivät tiedä toistensa

Lisätiedot

Pelien teoriaa: tasapainokäsitteet

Pelien teoriaa: tasapainokäsitteet Pelien teoriaa: tasapainokäsitteet Salanién (2005) ja Gibbonsin (1992) mukaan Mat-2.4142 Optimointiopin seminaari Jukka Luoma 1 Sisältö Staattinen Dynaaminen Staattinen Dynaaminen Pelityyppi Täydellinen

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C1 Assist. Jan Jääskeläinen Syksy 17 Mallivastaukset 7. 1. Kaupungissa on kaksi suurta taidemuseoa (pelaajat) ja 5 asukasta. Taidemuseoilla on

Lisätiedot

Peliteoria luento 3. May 27, Peliteoria luento 3

Peliteoria luento 3. May 27, Peliteoria luento 3 May 27, 2015 Dominanssi Mitkä ovat uskottavia tulemia? Ja miksi? Yksi päätösteoreettinen periaate on dominanssi. Kuten lähes kaikkia taloustieteessä kiinnostavia käsitteitä niitä on kahta lajia. Aito ja

Lisätiedot

JOHDATUSTA PELITEORIAAN

JOHDATUSTA PELITEORIAAN JOHDATUSTA PELITEORIAAN Satu Adel Pro gradu -tutkielma Heinäkuu 2019 MATEMATIIKAN JA TILASTOTIETEEN LAITOS TURUN YLIOPISTO Turun yliopiston laatujärjestelmän mukaisesti tämän julkaisun alkuperäisyys on

Lisätiedot

Peliteoria luento 2. May 26, 2014. Peliteoria luento 2

Peliteoria luento 2. May 26, 2014. Peliteoria luento 2 May 26, 2014 Pelien luokittelua Peliteoriassa pelit voidaan luokitella yhteistoiminnallisiin ja ei-yhteistoiminnallisiin. Edellisissä kiinnostuksen kohde on eri koalitioiden eli pelaajien liittoumien kyky

Lisätiedot

Epätäydellisen tiedon jatkuvat pelit

Epätäydellisen tiedon jatkuvat pelit Epätäydellisen tiedon jatkuvat pelit Mika Viljanen Helsinki 4..2006 Peliteorian seminaari HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö Johdanto 2 Epätäydellisen tiedon jatkuva peli 2. Jatkuvan

Lisätiedot

Yhteistyötä sisältämätön peliteoria jatkuu

Yhteistyötä sisältämätön peliteoria jatkuu Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen

Lisätiedot

Luento 7. June 3, 2014

Luento 7. June 3, 2014 June 3, 2014 Peli, jossa on kaksi Nash-tasapainoa. Yksi tasapaino on (1; 2) ja toinen (2; 1); P1:n valinta on ilmoitettu ensin. Ensimmäinen tasapaino ei vaikuta hyvältä; se perustuu epäuskottavaan uhkaukseen.

Lisätiedot

Peliteoria luento 1. May 25, 2015. Peliteoria luento 1

Peliteoria luento 1. May 25, 2015. Peliteoria luento 1 May 25, 2015 Tavoitteet Valmius muotoilla strategisesti ja yhteiskunnallisesti kiinnostavia tilanteita peleinä. Kyky ratkaista yksinkertaisia pelejä. Luentojen rakenne 1 Joitain pelejä ajanvietematematiikasta.

Lisätiedot

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17)

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) 11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen riippuvan

Lisätiedot

Tasapaino epätäydellisen tiedon peleissä

Tasapaino epätäydellisen tiedon peleissä hyväksymispäivä arvosana arvostelija Tasapaino epätäydellisen tiedon peleissä Marja Hassinen Helsinki 9..2006 Peliteoria-seminaarin esitelmä HESINGIN YIOPISTO Tietojenkäsittelytieteen laitos Sisältö Johdanto

Lisätiedot

Luento 9. June 2, Luento 9

Luento 9. June 2, Luento 9 June 2, 2016 Otetaan lähtökohdaksi, että sopimuksilla ei voida kattaa kaikkia kontingensseja/maailmantiloja. Yksi kiinnostava tapaus on sellainen, että jotkut kontingenssit ovat havaittavissa sopimusosapuolille,

Lisätiedot

Yhteistyötä sisältämätön peliteoria

Yhteistyötä sisältämätön peliteoria Yhteistyötä sisältämätön peliteoria jarkko.murtoaro@hut.fi Optimointiopin seminaari Kevät 2003 / 1 Sisältö Johdanto Käsitteistö Työkalut Nashin tasapaino Täydellinen tasapaino Optimointiopin seminaari

Lisätiedot

Johdatus peliteoriaan

Johdatus peliteoriaan Johdatus peliteoriaan Kahden pelaajan nollasummapelien ratkaiseminen ja Nashin tasapainojen olemassaolo usean pelaajan yleisessä summapelissä Henri Nousiainen Matematiikan pro gradu Jyväskylän yliopisto

Lisätiedot

Y56 laskuharjoitukset 6

Y56 laskuharjoitukset 6 Y56 Kevät 00 Y56 laskuharjoitukset 6 Palautus joko luennolle/mappiin tai Katjan lokerolle (Koetilantie 5, 3. krs) to.4. klo 6 mennessä (purku luennolla ti 7.4.) Ole hyvä ja vastaa suoraan tähän paperiin.

Lisätiedot

Yleinen tietämys ja Nashin tasapaino

Yleinen tietämys ja Nashin tasapaino Yleinen tietämys ja Nashin tasapaino 24.3.2010 Nashin tasapaino Ratkaisumalli kahden tai useamman pelaajan pelille. Yleisesti: Jos jokainen pelaaja on valinnut strategiansa eikä yksikään pelaaja voi hyötyä

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 017 Mallivastaukset 7. Kaupungissa on kaksi suurta taidemuseoa (pelaajat) ja 500 000 asukasta. Taidemuseoilla

Lisätiedot

Peliteoria ja huutokauppamekanismit

Peliteoria ja huutokauppamekanismit Peliteoria ja huutokauppamekanismit Satu Ruotsalainen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2015 Tiivistelmä: Satu Ruotsalainen, Peliteoria ja huutokauppamekanismit

Lisätiedot

Evolutiivinen stabiilisuus populaation

Evolutiivinen stabiilisuus populaation Antti Toppila sivu 1/20 Optimointiopin seminaari Syksy 2008 Evolutiivinen stabiilisuus populaation määrittämisessä Antti Toppila 24.9.2008 Antti Toppila sivu 2/20 Optimointiopin seminaari Syksy 2008 Sisältö

Lisätiedot

Strateginen kanssakäyminen. Taloustieteen perusteet Matti Sarvimäki

Strateginen kanssakäyminen. Taloustieteen perusteet Matti Sarvimäki Strateginen kanssakäyminen Taloustieteen perusteet Matti Sarvimäki Johdanto Viime viikolla tilanteet joissa valinnat eivät riipu muiden valinnoista Tänään aloitamme valintojen vuorovaikutuksen tutkimisen

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 Harjoitus 4 Ratkaisuehdotuksia 1. Olkoon herra K.:n hyötyfunktio u(x) = ln x. (a) Onko herra K. riskinkaihtaja, riskinrakastaja vai riskineutraali?

Lisätiedot

Toistetut pelit Elmeri Lähevirta. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Toistetut pelit Elmeri Lähevirta. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Toistetut pelit MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Elmeri Lähevirta The document can be stored and made available to the public on the open internet pages of Aalto University.

Lisätiedot

Signalointi: autonromujen markkinat

Signalointi: autonromujen markkinat Signalointi: autonromujen markkinat Mat-.414 Optimointiopin seminaari Klaus Mattila 1.0.008 1 Esityksen rakenne Johdanto Autonromujen markkinat: Akerlofin malli Kustannuksellinen signalointi: Spencen malli

Lisätiedot

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,

Lisätiedot

Nollasummapelit ja muut yleisemmät summapelit

Nollasummapelit ja muut yleisemmät summapelit Nollasummapelit ja muut yleisemmät summapelit Teemu Orjatsalo Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 2013 Tiivistelmä: Teemu Orjatsalo, Nollasummapelit

Lisätiedot

3. laskuharjoituskierros, vko 6, ratkaisut

3. laskuharjoituskierros, vko 6, ratkaisut Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa

Lisätiedot

Peliohje 20.4.2011 1(6)

Peliohje 20.4.2011 1(6) 1. Rakentaja Cup, reikäpeli 2 1.1. Yleistä reikäpelistä 2 1.2. Arvonta ja pelaajien sijoittaminen ottelukaavioon 2 1.3. Tasoitukset ja tiit 3 1.4. Pelikentät ja kustannukset 3 1.5. Tuomaritoiminta 4 1.6.

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Tero Sirkka. Peliteoriaa

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Tero Sirkka. Peliteoriaa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Tero Sirkka Peliteoriaa Informaatiotieteiden yksikkö Matematiikka Toukokuu 2013 Tampereen yliopisto Informaatiotieteiden yksikkö Sirkka, Tero: Peliteoriaa Pro gradu

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mallivastaukset 8. 1. Esimerkki 1: Peli on symmetrinen, joten riittää, että tarkastelemme, mikä on tasapaino

Lisätiedot

Prof. Marko Terviö Assist. Jan Jääskeläinen

Prof. Marko Terviö Assist. Jan Jääskeläinen Mallivastaukset 6. 1. (a) Molemmilla yrityksillä on kaksi mahdollista toimenpidettä, joten pelissä on 2 2 = 4 potentiaalisesti erilaista tulemaa. i. Jos Row Corporation valitsee Mainosta ja Column Industries

Lisätiedot

Taloustieteen Nobel peliteorian kehittäjille

Taloustieteen Nobel peliteorian kehittäjille Kansantaloudellinen aikakauskirja - 90. vsk. - 4/1994 Katsauksiaja keskustelua Taloustieteen Nobel peliteorian kehittäjille KLAUS KULTTI Vuoden 1994 taloustieteen Nobelin palkinnon saivat professori John

Lisätiedot

Rahapelaamisen riskirajoilla. Mirka Smolej, Salla Karjalainen, Tapio Jaakkola 5.11.2015

Rahapelaamisen riskirajoilla. Mirka Smolej, Salla Karjalainen, Tapio Jaakkola 5.11.2015 Rahapelaamisen riskirajoilla Mirka Smolej, Salla Karjalainen, Tapio Jaakkola 5.11.2015 Rahapelaamisen riskirajoilla Arpa-projekti Arpa-projekti tukee aikuisten rahapelaamisen hallintaa Tietoa ja välineitä

Lisätiedot

12 Oligopoli ja monopolistinen kilpailu

12 Oligopoli ja monopolistinen kilpailu 12 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, 2nd ed., chs 16-17; Taloustieteen oppikirja, s. 87-90) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä

Lisätiedot

A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä. 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä.

A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä. 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. HUUTOKAUPOISTA A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. 2. Huutokauppapelejä voidaan käyttää taloustieteen

Lisätiedot

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi.

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. 10.1 Yleistä Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. Esimerkkejä: 2x 8 = 12 A = πr 2 5 + 7 = 12 Yhtälöissä voi olla yksi tai useampi muuttuja Tuntematonta muuttujaa merkitään usein

Lisätiedot

Peliteoria Strategiapelit ja Nashin tasapaino. Sebastian Siikavirta sebastian.siikavirta@helsinki.fi

Peliteoria Strategiapelit ja Nashin tasapaino. Sebastian Siikavirta sebastian.siikavirta@helsinki.fi Peliteoria Strategiapelit ja Nashin tasapaino Sebastian Siikavirta sebastian.siikavirta@helsinki.fi Helsinki 11.09.2006 Peliteoria Tomi Pasanen HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö

Lisätiedot

Strateginen kanssakäyminen Taloustieteen perusteet Matti Sarvimäki

Strateginen kanssakäyminen Taloustieteen perusteet Matti Sarvimäki 6/9/8 Johdanto Strateginen kanssakäyminen Taloustieteen perusteet Matti Sarvimäki Viime viikolla tilanteet joissa valinnat eivät riipu muiden valinnoista Tänään aloitamme valintojen vuorovaikutuksen tutkimisen

Lisätiedot

Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely)

Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely) Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely) Riku Hyytiäinen 23.02.2015 Ohjaaja: Harri Ehtamo Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa

Lisätiedot

Johdatus go-peliin. 25. joulukuuta 2011

Johdatus go-peliin. 25. joulukuuta 2011 Johdatus go-peliin 25. joulukuuta 2011 Tämän dokumentin tarkoitus on toimia johdatuksena go-lautapeliin. Lähestymistapamme poikkeaa tavallisista go-johdatuksista, koska tässä dokumentissa neuvotaan ensin

Lisätiedot

Strategiset valinnat. Taloustieteen perusteet Matti Sarvimäki

Strategiset valinnat. Taloustieteen perusteet Matti Sarvimäki Strategiset valinnat Taloustieteen perusteet Matti Sarvimäki Johdanto Viime viikolla tilanteet joissa valinnat eivät riipu muiden valinnoista Tänään aloitamme valintojen vuorovaikutuksen tutkimisen peliteorian

Lisätiedot

Paljonko maksat eurosta -peli

Paljonko maksat eurosta -peli Paljonko maksat eurosta -peli - Ajattele todellinen tilanne ja toimi oman näkemyksesi mukaisesti - Tee tarjous eurosta: * Korkein tarjous voittaa euron. * Huonoimman tarjouksen esittäjä joutuu maksamaan

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

Strategiset valinnat Taloustieteen perusteet Matti Sarvimäki. A. Peliteorian alkeet. Johdanto. Johdanto 15/09/19

Strategiset valinnat Taloustieteen perusteet Matti Sarvimäki. A. Peliteorian alkeet. Johdanto. Johdanto 15/09/19 Johdanto Strategiset valinnat Taloustieteen perusteet Matti Sarvimäki Viime viikolla tilanteet joissa valinnat eivät riipu muiden valinnoista Tänään aloitamme valintojen vuorovaikutuksen tutkimisen peliteorian

Lisätiedot

Tenniksen pistelaskusäännöt, lukio/ammatilliset oppilaitokset

Tenniksen pistelaskusäännöt, lukio/ammatilliset oppilaitokset Tenniksen pistelasku Useimmat meistä ovat joskus katsoneet TV:stä tennisottelua. Katsoja kokee jännitystä voidessaan seurata kuinka pisteden kertyminen johtaa ottelun päättymisen toisen pelaajan voittoon

Lisätiedot

Blackjack on korttipeli, jossa pelaajan tavoitteena on voittaa pelinhoitaja.

Blackjack on korttipeli, jossa pelaajan tavoitteena on voittaa pelinhoitaja. POHDIN projekti Blackjack Blackjack on pelinhoitajaa vastaan pelattava korttipeli mutta myös ns. uhkapeli 1. Kun kyseessä on ns. rahapeli, niin ikäraja Suomessa on tällaiselle pelille K-18. Blackjackissä

Lisätiedot

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi

Lisätiedot

Pelaisitko seuraavaa peliä?

Pelaisitko seuraavaa peliä? Lisätehtävä 1 seuraavassa on esitetty eräs peli, joka voidaan mallintaa paramterisena tilastollisena mallina tehtävänä on selvittää, kuinka peli toimii ja näyttää mallin takana oleva apulause (Tehtävä

Lisätiedot

HUUTOKAUPPATEORIAA TTS-Kurssille/Kultti 2012

HUUTOKAUPPATEORIAA TTS-Kurssille/Kultti 2012 HUUTOKAUPPATEORIAA TTS-Kurssille/Kultti 2012 A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä: 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. Muun muassa Yhdysvaltain

Lisätiedot

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

LAAJENNETUN MUODON RATIONALISOITUVUUS. S ysteemianalyysin. Arno Solin Laboratorio. Aalto-yliopiston Teknillinen korkeakoulu

LAAJENNETUN MUODON RATIONALISOITUVUUS. S ysteemianalyysin. Arno Solin Laboratorio. Aalto-yliopiston Teknillinen korkeakoulu LAAJENNETUN MUODON RATIONALISOITUVUUS 3.3.2010 Pähkinänkuoressa: Laajennetun muodon rationalisoituvuus Laajennetun muodon peli (Extensive Form Game) Laajennetun muodon pelin tasapainokäsitteitä. Tosimaailman

Lisätiedot

Dynaaminen hintakilpailu ja sanattomat sopimukset

Dynaaminen hintakilpailu ja sanattomat sopimukset Dynaaminen hintakilpailu ja sanattomat sopimukset Pasi Virtanen 12.3.2003 Johdanto Hintakilpailu jossa pelaajat kohtaavat toisensa toistuvasti Pelaajien on otettava hintaa valittaessa huomioon hintasodan

Lisätiedot

Peliteoria ja kalatalous YE4

Peliteoria ja kalatalous YE4 Peliteoria ja kalatalous YE4 Kansainväliset kalastussopimukset Tarve kansainväliselle yhteistyölle: Vain kestävillä kansainvälisillä sopimuksilla voidaan taata biologinen ja taloudellinen tehokkuus. Neuvottelujen

Lisätiedot

Tilastollisia peruskäsitteitä ja Monte Carlo

Tilastollisia peruskäsitteitä ja Monte Carlo Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia

Lisätiedot

Ongelmallisesti pelaavan nuoren auttaminen

Ongelmallisesti pelaavan nuoren auttaminen Ongelmallisesti pelaavan nuoren auttaminen Lahti 9.4.2014 11.4.2014 Minna Kesänen 1 Rahapelaaminen ja digitaalinen pelaaminen Rahapelaaminen viittaa kaikkeen sellaiseen pelaamiseen, jossa voitto tai tappio

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

Lyhyen aikavälin hintakilpailu 2/2

Lyhyen aikavälin hintakilpailu 2/2 Lyhyen aikavälin hintakilpailu 2/2 Ilkka Männistö Esitelmä 10 - Ilkka Männistö Optimointiopin seminaari - Kevät 2003 / 1 Kilpailun aste Markkinahinta ei kerro mitään kilpailun asteesta jos kustannusrakennetta

Lisätiedot

Demo 1: Simplex-menetelmä

Demo 1: Simplex-menetelmä MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Markkinoiden suunnittelu ja Gale-Shapley-algoritmi

Markkinoiden suunnittelu ja Gale-Shapley-algoritmi Markkinoiden suunnittelu ja Gale-Shapley-algoritmi Markkinat eivät välttämättä synny itsestään ja monesti on useita tapoja järjestää markkinat. Markkinoiden keskeinen tehtävä on mahdollistaa vaihdanta.

Lisätiedot

Kommunikaatio Visa Linkiö. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Kommunikaatio Visa Linkiö. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Kommunikaatio MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 2.11.2016 Visa Linkiö The document can be stored and made available to the public on the open internet pages of Aalto University.

Lisätiedot

http://www.nelostuote.fi/suomi/rummikubsaan.html

http://www.nelostuote.fi/suomi/rummikubsaan.html Sivu 1/5 Pelin sisältö 104 numeroitua laattaa (numeroitu 1-13) 2 laattaa kutakin neljää väriä (musta, oranssi, sininen ja punainen) 2 jokerilaattaa, 4 laattatelinettä, pelisäännöt Pelin tavoite Tavoitteena

Lisätiedot

Pelitehtäviä. Helpot tehtävät. Tuomas Korppi

Pelitehtäviä. Helpot tehtävät. Tuomas Korppi Solmu 1/2012 1 Pelitehtäviä Tuomas Korppi Tämänkertaisissa tehtävissä analysoimme yksinkertaisia pelejä. Tehtävät 1 6 ovat helppoja, ja soveltuvat arvioni mukaan yläasteelle 1. Tehtävät 7 11 ovat vaikeampia,

Lisätiedot

Ratkaiseva päätöskierros

Ratkaiseva päätöskierros Nuoli pysähtyy lippukortin kohdalle: Pelaaja, joka pyöräytti nuolta katsoo lippukorttiaan ja päättää mikä maanosa on kyseessä kierroksen aikana (Eurooppa, Etelä-merikka, Pohjois-merikka, frikka, asia vai

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10 13

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10 13 Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 2 x 2 3 2 3 x 1 4, (b) (x + 1)(x 2)

Lisätiedot

1. Kuinka monella tavalla joukon kaikki alkiot voidaan järjestää jonoksi? Tähän antaa vastauksen: tuloperiaate ja permutaatio

1. Kuinka monella tavalla joukon kaikki alkiot voidaan järjestää jonoksi? Tähän antaa vastauksen: tuloperiaate ja permutaatio TOD.NÄK JA TILASTOT, MAA10 Kombinatoriikka Todennäköisyyksiä (-laskuja) varten tarvitaan tieto tapahtumille suotuisien alkeistapausten lukumäärästä eli tapahtumaa vastaavan osajoukon alkioiden lukumäärästä.

Lisätiedot

Prof. Marko Terviö Assist. Jan Jääskeläinen

Prof. Marko Terviö Assist. Jan Jääskeläinen Mallivastaukset 9. 2. (a) Dominoiva strategia on tarjota oman arvostuksensa verran, eli tässä e 10 miljoonaa. Tarjoamalla yli oman arvostuksen tekisi vain mahdolliseksi sen, että joutuu maksamaan yli oman

Lisätiedot

TALOUSTIETEEN LUENTOJEN TEHTÄVÄT

TALOUSTIETEEN LUENTOJEN TEHTÄVÄT TALOUSTIETEEN LUENTOJEN TEHTÄVÄT 1. Suhteellisen edun periaate 1. Maassa A: 1 maito ~ 3 leipää 1 leipä ~ 0,33 maitoa Maassa B: a. b. 3 maitoa ~ 5 leipää 1 maito ~ 1,67 leipää 1 leipä ~ 0,6 maitoa i. Maalla

Lisätiedot

C2-D2 Final Four-turnaukset

C2-D2 Final Four-turnaukset C2-D2 Final Four-turnaukset 1.4 3.4.2016 C2 AA Lohko 1 C2 AA Lohko 1 Final Four-turnaus pelataan Malmin Jäähallissa Helsingissä 1.4 3.4.2016. Turnaukseen C2 AA Lohko 1 neljä parasta joukkuetta Välierät

Lisätiedot

Hex-pelin matematiikkaa

Hex-pelin matematiikkaa Solmu 3/2013 1 Hex-pelin matematiikkaa Tuomas Korppi Johdanto Hex on kahden pelaajan strategiapeli, jonka ovat keksineet toisistaan riippumatta matemaatikot Piet Hein ja taloustieteen Nobelinkin saanut

Lisätiedot

V ar(m n ) = V ar(x i ).

V ar(m n ) = V ar(x i ). Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia

Lisätiedot

Luento 5: Peliteoria

Luento 5: Peliteoria Luento 5: Peliteoria Portfolion optimointi Sijoittajan tehtävä Nashin tasapaino Vangin ongelma Nashin neuvotteluratkaisu 1 Portfolion optimointi Varallisuus A sijoitetaan n:ään sijoituskohteeseen (osake,

Lisätiedot

Luku 29 Peliteoria. Käsittelemme aluksi peliteorian peruskäsitteitä ja sanastoa, sitten katsomme itse pelejä.

Luku 29 Peliteoria. Käsittelemme aluksi peliteorian peruskäsitteitä ja sanastoa, sitten katsomme itse pelejä. Y56 Kevät 2010 1 Luku 29 Peliteoria Tässä luvussa tarkastellaan peliteorian perusteita. Tavoitteena on, että opit muodostamaan itsenäisesti kutakin peliä kuvaavat osat, ratkaisemaan erilaisten pelien tasapainon

Lisätiedot

1 Komparatiivinen statiikka ja implisiittifunktiolause

1 Komparatiivinen statiikka ja implisiittifunktiolause Taloustieteen matemaattiset menetelmät 27 materiaali 4 Komparatiivinen statiikka ja implisiittifunktiolause. Johdanto Jo opiskeltu antaa nyt valmiu tutkia taloudellisia malleja Kiinnostava malli voi olla

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen 1. Laitosneuvostoon valitaan 2 professoria, 4 muuta henkilökuntaan kuuluvaa jäsentä sekä 4 opiskelijaa. Laitosneuvostoon

Lisätiedot

x+3 = n(y 3) y +n = 3(x n). Kun ylemmästä yhtälöstä ratkaistaan x = n(y 3) 3 ja sijoitetaan alempaan, saadaan

x+3 = n(y 3) y +n = 3(x n). Kun ylemmästä yhtälöstä ratkaistaan x = n(y 3) 3 ja sijoitetaan alempaan, saadaan 19.1. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ ÐÓÔÔÙ ÐÔ ÐÙÒ Ö Ø ÙØ 2018 1. Eevalla ja Martilla on kokonaislukumäärä euroja. Martti sanoi Eevalle: Jos annat minulle kolme euroa, niin minulla on n-kertainen määrä rahaa sinuun

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Matemaatiikan tukikurssi

Matemaatiikan tukikurssi Matemaatiikan tukikurssi Kurssikerta 1 1 Funktiot Funktion määritelmä Funktio on sääntö, joka liittää kahden eri joukon alkioita toisiinsa. Ollakseen funktio tämän säännön on liitettävä jokaiseen lähtöjoukon

Lisätiedot

PANA RY LIIGASA A NNÖ T

PANA RY LIIGASA A NNÖ T PANA RY LIIGASA A NNÖ T 2013 2014 Liigasäännöt ovat PANA ry:n hallituksen laatimat ja hyväksymät. Hallituksella on oikeus muuttaa ja muokata liigapelien sääntöjä, mikäli näkee sen tarpeelliseksi. Sisällysluettelo

Lisätiedot

( 3) ( 5) ( 7) ( 2) ( 6) ( 4) Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 105 Päivitetty

( 3) ( 5) ( 7) ( 2) ( 6) ( 4) Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 105 Päivitetty Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 15 Päivitetty 19..6 31 Tapa 1 Ratkaistaan yhtälöryhmä käyttämällä sijoituskeinoa. x y+ z = x y + 3z = 3x 4y+ z = Ratkaistaan yhtälöstä (1) muuttuja

Lisätiedot

KILPAILUKUTSU 22. MARJOLA BEACH VOLLEY TURNAUKSEEN LAPPEENRANTAAN 19.-20.7.2014. ESI istumalentopallo Lappeenranta

KILPAILUKUTSU 22. MARJOLA BEACH VOLLEY TURNAUKSEEN LAPPEENRANTAAN 19.-20.7.2014. ESI istumalentopallo Lappeenranta KILPAILUKUTSU 22. MARJOLA BEACH VOLLEY TURNAUKSEEN LAPPEENRANTAAN 19.-20.7.2014 ESI istumalentopallo Lappeenranta Se yksi ja alkuperäinen istumalentopallon MARJOLA BEACH VOLLEY turnaus JO VUODESTA 1993

Lisätiedot