Yhteistyötä sisältämätön peliteoria jatkuu
|
|
- Topi Mäki
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1
2 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen Täydellinen Bayes Optimointiopin seminaari - Syksy 2000 / 2
3 Johdanto Staattinen peli: Päätökset samanaikaisia Luonnollinen Nashin tasapainon laajennus vajaan tiedon peleihin Vajaa tieto Ei tietoa etukäteen muiden pelaajien luonteista Optimointiopin seminaari - Syksy 2000 / 3
4 Luonne (1/2) Luonne t peliteoreettisena käsitteenä määrittelee kaiken, mikä on oleellista pelaajan päätöksenteon kannalta (strategia-avaruus, mieltymykset) Päätöstapahtuma pelaajien luonnetta kuvaavan satunnaismuuttujan realisaatio Optimointiopin seminaari - Syksy 2000 / 4
5 Luonne (2/2) Luonteille on a priori jakauma p( t 1,..., t i,... t n ) Tällöin kukin pelaaja voi laskea muiden pelaajien ehdolliset todennäköisyydet (oman luonteen tietäminen voidaan ajatella ensimmäisenä realisaationa) p i ( t i ti ), t i ( t1,..., ti 1, ti+ 1,... tn ) Optimointiopin seminaari - Syksy 2000 / 5
6 Hyötyfunktio Pelaajan hyöty i ( a,..., an, t1,..., t 1 n Hyöty riippuu valitusta strategiasta ja pelaajien luonteista Kukin pelaaja pystyy laskemaan Nashilaiset strategiat eri luonteisille pelaajille { a } j ( t j ) j i ) Optimointiopin seminaari - Syksy 2000 / 6
7 Tasapaino Bayesilainen tasapaino on joukko luonteen suhteen ehdollisia strategioita, jotka maksimoivat odotusarvoa i * * pi ( t i ti ) ( a1 ( t1),..., ai,..., an( tn), t1,..., ti Odotusarvo lasketaan ehdollisena omalle luonteelle,..., t n ) Optimointiopin seminaari - Syksy 2000 / 7
8 Yhteenveto I Staattinen peli, luonteeltaan erilaiset pelaajat, vajaa tieto Yleinen luonteiden jakauma, muiden pelaajien luonteen tn:t hyödyt eri strategioille Omalle luonteelle ehdollinen hyödyn odotusarvoa maksimoiva strategiajoukko a p( t 1,..., t i,... t n ) Ai f { a j ( t j )} j i * { } n i t i ) i a ( = 1 Optimointiopin seminaari - Syksy 2000 / 8
9 Esimerkki Luonne t1 Luonne t2 p2 p1 L R L R U 3,1 2,0 3,0 2,1 D 0,1 4,0 0,0 4,1 Optimointiopin seminaari - Syksy 2000 / 9
10 Odotusarvon laskeminen Pelaajalla 1 vain yksi vaihtoehto luonteelle Pelaajalla 2 molemmilla luonteilla dominoiva strategia -> pelaa sen mukaisesti Luonne tasajakautunut odotusarvo pelaajalla 1 strategialle U: ½(3+2) Strategialle D: ½(0+4) Pelaaja 1 valitsee strategian U Optimointiopin seminaari - Syksy 2000 / 10
11 Täydellinen Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen Täydellinen Bayes Optimointiopin seminaari - Syksy 2000 / 11
12 Johdanto Dynaaminen peli: Päätökset tehdään ajassa edeten, pelaaja kerrallaan Epätäydellinen tieto Ei täydellistä tietoa muiden pelaajien aikaisemmista liikkeistä Optimointiopin seminaari - Syksy 2000 / 12
13 Juoni Pelaaja voi juontaa aikaisemmista liikkeistä omaan päätöksentekoon vaikuttavaa tietoa Bayesilainen päivittäminen aikaisempia liikkeitä koskeviin todennäköisyysjakaumiin Optimointiopin seminaari - Syksy 2000 / 13
14 Pelin kulku 1 L M R 2 3 a i k a Pelaajalla 1 strategiat L, M ja R Pelaaja 2 tietää päätöstilanteessa 1:n valinneen M:n tai R:n, mutta ei tiedä kumman -> epätäydellinen tieto Tällöin pelaaja 2 voi päivittää 1:n valinnan jakaumaa Optimointiopin seminaari - Syksy 2000 / 14
15 Tasapainon elementit Hyödyn odotusarvoa maksimoivat strategiat eri osapeleille 1 Bayesilaiset todennäköisyydet aikaisempien pelaajien liikkeille 1 { } a * 2 2 { a * 2 } Bay p = µ 2 Bay p = 1 µ Optimointiopin seminaari - Syksy 2000 / 15
16 Tasapaino (1/2) Käänteisellä induktiolla voidaan määrittää Bayesilaisista todennäköisyyksistä riippuva optimistrategia Bayesilaisella päivityksellä voidaan laskea todennäköisyydet Tasapaino muodostetaan hyödyn odotusarvoa maksivoivilla strategioilla Optimointiopin seminaari - Syksy 2000 / 16
17 Tasapaino (2/2) * Bay a a ( µ ( a)) 1 Strategiat ovat optimaalisia odotusarvoihin nähden 2 3 Bay µ µ ( a * ( µ )) Todennäköisyydet saadaan mahdollisista strategioista ja havainnoista Määrittäminen perustuu tulemien ja päivittämättömien todennäköisyyksien tuntemiseen Optimointiopin seminaari - Syksy 2000 / 17
18 Yhteenveto II Dynaaminen peli, vajaa tieto, epätäydellinen tieto Hyödyn odotusarvoa maksimoivat strategiat osapeleille, riippuvat ehdoll. tn:stä 1 Käänteisen induktion kautta Bayesilainen päivitetyt todennäköisyydet -> hyötyä maksivoivat strategiat a 2 1 { } a * 2 2 { } a * p =?? Optimointiopin seminaari - Syksy 2000 / 18
19 Käytäntö Tasapainolle ei ole yleistä ratkaisumallia Määritelmän ymmärtäminen mahdollistaa usein pääteltävissä olevan ratkaisun Optimointiopin seminaari - Syksy 2000 / 19
20 Kotitehtävä! Duopolin kilpailu, firmat 1 ja 2 (i=1,2) Yritykset maksimoivat voittoa i q ( t q q ) i i i j q on tuotettu määrä (yrityksen strategia) t on viivallisen kysyntäkäyrän vakion ja yrityksen vakioyksikkökustannuksen erotus (yrityksen luonne) t1 jakauma: p(t1=1) = 1 t2 jakauma. p(t2=3/4) = 0,5 ; p(t2=5/4) = 0,5 Optimointiopin seminaari - Syksy 2000 / 20
21 Kotitehtävä! Yritykset valitsevat tuotetun määrän yhtä aikaa 1. Mitkä ovat tuotantomäärät Bayesilaisessa tasapainossa? 2. Selitä voittofunktion määräytyminen käytännön tilanteen kannalta. Optimointiopin seminaari - Syksy 2000 / 21
Pelien teoriaa: tasapainokäsitteet
Pelien teoriaa: tasapainokäsitteet Salanién (2005) ja Gibbonsin (1992) mukaan Mat-2.4142 Optimointiopin seminaari Jukka Luoma 1 Sisältö Staattinen Dynaaminen Staattinen Dynaaminen Pelityyppi Täydellinen
Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly
Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä
Luento 8. June 3, 2014
June 3, 2014 Luokka pelejä, joissa pelaajilla on epätäydellistä informaatiota toistensa preferensseistä ja joissa valinnat tehdään samanaikaisesti. Tämä tarkoittaa, että pelaajat eivät tiedä toistensa
Yhteistyötä sisältämätön peliteoria
Yhteistyötä sisältämätön peliteoria jarkko.murtoaro@hut.fi Optimointiopin seminaari Kevät 2003 / 1 Sisältö Johdanto Käsitteistö Työkalut Nashin tasapaino Täydellinen tasapaino Optimointiopin seminaari
Nollasummapelit ja bayesilaiset pelit
Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1
Pohdiskeleva ajattelu ja tasapainotarkennukset
Pohdiskeleva ajattelu ja tasapainotarkennukset Sanna Hanhikoski 24.3.2010 Sisältö Pohdiskeleva ajattelu Nashin tasapainotarkennukset Täydellinen tasapaino Täydellinen bayesiläinen tasapaino Vaiheittainen
Johdanto peliteoriaan Kirja kpl. 2
Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 1 Johdanto peliteoriaan Kirja kpl. 2 Ilkka Leppänen 20.1.2010 Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 2 Aiheet Laajennettu
Signalointi: autonromujen markkinat
Signalointi: autonromujen markkinat Mat-.414 Optimointiopin seminaari Klaus Mattila 1.0.008 1 Esityksen rakenne Johdanto Autonromujen markkinat: Akerlofin malli Kustannuksellinen signalointi: Spencen malli
MS-C2105 Optimoinnin perusteet Malliratkaisut 5
MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien
Sekastrategia ja Nash-tasapainon määrääminen
May 24, 2016 Sekastrategia Monissa peleissä ei ole Nash-tasapainoa puhtaissa strategioissa H T H 1, 1 1, 1 T 1, 1 1, 1 Ratkaisu ongelmaan löytyy siitä, että laajennetaan strategiat käsittämään todennäköisyysjakaumat
Hintakilpailu lyhyellä aikavälillä
Hintakilpailu lyhyellä aikavälillä Virpi Turkulainen 5.3.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Johdanto Bertrandin ristiriita ja sen lähestyminen Bertrandin ristiriita Lähestymistavat:
SEKASTRATEGIAT PELITEORIASSA
SEKASTRATEGIAT PELITEORIASSA Matti Estola 8. joulukuuta 2013 Sisältö 1 Johdanto 2 2 Ratkaistaan sukupuolten välinen taistelu sekastrategioiden avulla 5 Teksti on suomennettu kirjasta: Gibbons: A Primer
Y56 laskuharjoitukset 6
Y56 Kevät 00 Y56 laskuharjoitukset 6 Palautus joko luennolle/mappiin tai Katjan lokerolle (Koetilantie 5, 3. krs) to.4. klo 6 mennessä (purku luennolla ti 7.4.) Ole hyvä ja vastaa suoraan tähän paperiin.
11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17)
11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen riippuvan
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C1 Assist. Jan Jääskeläinen Syksy 17 Mallivastaukset 7. 1. Kaupungissa on kaksi suurta taidemuseoa (pelaajat) ja 5 asukasta. Taidemuseoilla on
PELITEORIAN PERUSTEITA
PELITEORIAN PERUSTEITA Matti Estola 29. marraskuuta 2013 Sisältö 1 Johdanto 2 2 Peliteoreettisen analyysin vaiheet 2 3 Staattiset pelit täydellisen informaation vallitessa 3 4 Pelin ratkaiseminen 4 4.1
Rationalisoituvuus ja yleinen tieto rationaalisuudesta
Rationalisoituvuus ja yleinen tieto rationaalisuudesta Keskeiset termit: Rationalizability rationalisoituvuus ratkaisukonsepti peliteoriassa Rationalizable rationalisoituva Rationality rationaalisuus pelaajat
Toistetut pelit Elmeri Lähevirta. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly
Toistetut pelit MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Elmeri Lähevirta The document can be stored and made available to the public on the open internet pages of Aalto University.
Informaatio ja Strateginen käyttäytyminen
Informaatio ja Strateginen käyttäytyminen Nuutti Kuosa 2.4.2003 Sisältö Johdanto Duopoli ja epätietoisuutta kilpailijan kustannuksista Kilpailijan tietämyksen manipulointi Duopoli ja epätietoisuutta kysynnästä
Luento 5: Peliteoriaa
Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena
Inversio-ongelmien laskennallinen peruskurssi Luento 7
Inversio-ongelmien laskennallinen peruskurssi Luento 7 Kevät 2012 1 Tilastolliset inversio-ongelmat Tilastollinen ionversio perustuu seuraaviin periaatteisiin: 1. Kaikki mallissa olevat muuttujat mallinnetaan
Luento 5: Peliteoriaa
Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan lyhyesti peliteoriaan. Peliteorian ratkaisukäsite on Nashin tasapaino, jonka jo Augustin Cournot esitti duopolimallinsa ratkaisuna v. 1838. Cournot n
INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E. Mat Optimointiopin seminaari Referaatti
12.11.1999 INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E Mat-2.142 Optimointiopin seminaari Referaatti Syksy 1999 1. JOHDANTO Thomas M. Stratin artikkeli Decision Analysis Using Belief Functions käsittelee
Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17)
Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen
12 Oligopoli ja monopolistinen kilpailu
12 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, 2nd ed., chs 16-17; Taloustieteen oppikirja, s. 87-90) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä
Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:
Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva
Luento 7. June 3, 2014
June 3, 2014 Peli, jossa on kaksi Nash-tasapainoa. Yksi tasapaino on (1; 2) ja toinen (2; 1); P1:n valinta on ilmoitettu ensin. Ensimmäinen tasapaino ei vaikuta hyvältä; se perustuu epäuskottavaan uhkaukseen.
Epätäydellisen tiedon jatkuvat pelit. Mika Viljanen Peliteorian seminaari
Epätäydellisen tiedon jatkuvat pelit Mika Viljanen Peliteorian seminaari Erityispiirteitä Erityispiirteitä Epätäydellinen tieto aiemmista toiminnoista Erityispiirteitä Epätäydellinen tieto aiemmista toiminnoista
Dynaaminen hintakilpailu ja sanattomat sopimukset
Dynaaminen hintakilpailu ja sanattomat sopimukset Pasi Virtanen 12.3.2003 Johdanto Hintakilpailu jossa pelaajat kohtaavat toisensa toistuvasti Pelaajien on otettava hintaa valittaessa huomioon hintasodan
Opettaminen ja oppiminen
Opettaminen ja oppiminen MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 19.10.2016 Nina Gunell The document can be stored and made available to the public on the open internet pages of Aalto
Prof. Marko Terviö Assist. Jan Jääskeläinen
Mallivastaukset 9. 2. (a) Dominoiva strategia on tarjota oman arvostuksensa verran, eli tässä e 10 miljoonaa. Tarjoamalla yli oman arvostuksen tekisi vain mahdolliseksi sen, että joutuu maksamaan yli oman
V ar(m n ) = V ar(x i ).
Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia
Tasapaino epätäydellisen tiedon peleissä
hyväksymispäivä arvosana arvostelija Tasapaino epätäydellisen tiedon peleissä Marja Hassinen Helsinki 9..2006 Peliteoria-seminaarin esitelmä HESINGIN YIOPISTO Tietojenkäsittelytieteen laitos Sisältö Johdanto
Evolutiivisesti stabiilin strategian oppiminen
Evolutiivisesti stabiilin strategian oppiminen Janne Laitonen 8.10.2008 Maynard Smith: s. 54-60 Johdanto Käytös voi usein olla opittua perityn sijasta Tyypillistä käytöksen muuttuminen ja riippuvuus aikaisemmista
Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Diskreettiaikainen dynaaminen optimointi
Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u
Uusien keksintöjen hyödyntäminen
Uusien keksintöjen hyödyntäminen Otso Ojanen 9.4.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Käyttöönoton viiveet Ulkoisvaikutukset ja standardointi Teknologiaodotusten koordinointimalli Lisensiointi
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 017 Mallivastaukset 7. Kaupungissa on kaksi suurta taidemuseoa (pelaajat) ja 500 000 asukasta. Taidemuseoilla
Peliteoria Strategiapelit ja Nashin tasapaino. Sebastian Siikavirta sebastian.siikavirta@helsinki.fi
Peliteoria Strategiapelit ja Nashin tasapaino Sebastian Siikavirta sebastian.siikavirta@helsinki.fi Helsinki 11.09.2006 Peliteoria Tomi Pasanen HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö
HUUTOKAUPPATEORIAA TTS-Kurssille/Kultti 2012
HUUTOKAUPPATEORIAA TTS-Kurssille/Kultti 2012 A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä: 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. Muun muassa Yhdysvaltain
Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi
TOD.NÄK JA TILASTOT, MAA0 Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi Kuten tilastojakaumia voitiin esittää tunnuslukujen (keskiarvo, moodi, mediaani, jne.) avulla, niin vastaavasti
Kommunikaatio Visa Linkiö. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly
Kommunikaatio MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 2.11.2016 Visa Linkiö The document can be stored and made available to the public on the open internet pages of Aalto University.
3. laskuharjoituskierros, vko 6, ratkaisut
Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa
Sekastrategiat ja intensiiviyhteensopivuus
Sekastrategiat ja intensiiviyhteensopivuus Petteri Räty 2010-03-14 God does not play dice with the universe Albert Einstein Agenda Intensiiviyhteensopivuuden käsite Yrittää vastata kysymykseen, mitä sekastrategiat
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan
Lisää satunnaisuutta ja mahdollisuus keskeyttää projekti
isää satunnaisuutta ja mahdollisuus keskeyttää projekti Esitelmä 7 - Mika lmoniemi Optimointiopin seminaari - Syksy isää satunnaisuutta Tähän mennessä on käytetty vain yhtä satunnaismuuttujaa tuotteen
Tilastollisia peruskäsitteitä ja Monte Carlo
Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.
Luento 5: Peliteoria
Luento 5: Peliteoria Portfolion optimointi Sijoittajan tehtävä Nashin tasapaino Vangin ongelma Nashin neuvotteluratkaisu 1 Portfolion optimointi Varallisuus A sijoitetaan n:ään sijoituskohteeseen (osake,
TALOUSTIETEEN LUENTOJEN TEHTÄVÄT
TALOUSTIETEEN LUENTOJEN TEHTÄVÄT 1. Suhteellisen edun periaate 1. Maassa A: 1 maito ~ 3 leipää 1 leipä ~ 0,33 maitoa Maassa B: a. b. 3 maitoa ~ 5 leipää 1 maito ~ 1,67 leipää 1 leipä ~ 0,6 maitoa i. Maalla
Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:
4. Tyhjentyvyys Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: Voidaanko päätelmät perustaa johonkin tunnuslukuun t = t(y) koko aineiston y sijasta? Mitä
30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
Fuusio vai konkurssi? Hintakilpailun satoa
Fuusio vai konkurssi? Hintakilpailun satoa Pia Kemppainen-Kajola 02.04.2003 Optimointiopin seminaari - Syksy 2000 / 1 Johdanto Yrityskaupat ilmoitetaan kaupparekisteriin. Kauppa kiinnostaa kilpailuviranomaisia,
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mallivastaukset 8. 1. Esimerkki 1: Peli on symmetrinen, joten riittää, että tarkastelemme, mikä on tasapaino
Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely)
Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely) Riku Hyytiäinen 23.02.2015 Ohjaaja: Harri Ehtamo Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa
Lyhyen aikavälin hintakilpailu 2/2
Lyhyen aikavälin hintakilpailu 2/2 Ilkka Männistö Esitelmä 10 - Ilkka Männistö Optimointiopin seminaari - Kevät 2003 / 1 Kilpailun aste Markkinahinta ei kerro mitään kilpailun asteesta jos kustannusrakennetta
LAAJENNETUN MUODON RATIONALISOITUVUUS. S ysteemianalyysin. Arno Solin Laboratorio. Aalto-yliopiston Teknillinen korkeakoulu
LAAJENNETUN MUODON RATIONALISOITUVUUS 3.3.2010 Pähkinänkuoressa: Laajennetun muodon rationalisoituvuus Laajennetun muodon peli (Extensive Form Game) Laajennetun muodon pelin tasapainokäsitteitä. Tosimaailman
Bayesilainen päätöksenteko / Bayesian decision theory
Bayesilainen päätöksenteko / Bayesian decision theory Todennäköisyysteoria voidaan perustella ilman päätösteoriaa, mutta vasta päätösteorian avulla siitä on oikeasti hyötyä Todennäköisyyteoriassa tavoitteena
Peliteoria ja kalatalous YE4
Peliteoria ja kalatalous YE4 Kansainväliset kalastussopimukset Tarve kansainväliselle yhteistyölle: Vain kestävillä kansainvälisillä sopimuksilla voidaan taata biologinen ja taloudellinen tehokkuus. Neuvottelujen
(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.
Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.
Prof. Marko Terviö Assist. Jan Jääskeläinen
Mallivastaukset 6. 1. (a) Molemmilla yrityksillä on kaksi mahdollista toimenpidettä, joten pelissä on 2 2 = 4 potentiaalisesti erilaista tulemaa. i. Jos Row Corporation valitsee Mainosta ja Column Industries
5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3
Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,
Todennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Kertausluento. Tilastollinen päättely II - 2. kurssikoe
Kertausluento Tilastollinen päättely II - 2. kurssikoe Yleistä tietoa TP II -2. kurssikokeesta 2. kurssikoe maanantaina 6.5.2019 klo 12.00-14.30 jossakin Exactumin auditoriossa Kurssikokeeseen ilmoittaudutaan
Evolutiivinen stabiilisuus populaation
Antti Toppila sivu 1/20 Optimointiopin seminaari Syksy 2008 Evolutiivinen stabiilisuus populaation määrittämisessä Antti Toppila 24.9.2008 Antti Toppila sivu 2/20 Optimointiopin seminaari Syksy 2008 Sisältö
HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I
HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Tehtävä 1 on klassikko. 1. Tässä tehtävässä tapahtumat A ja B eivät välttämättä
Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10
Harjoitukset 3 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. a) Autonrenkaita valmistavalla yhtiöllä on 100 000 :n kiinteät kustannukset vuodessa. Kun yritys tuottaa 10 000 rengasta,
Peliteoria luento 3. May 27, Peliteoria luento 3
May 27, 2015 Dominanssi Mitkä ovat uskottavia tulemia? Ja miksi? Yksi päätösteoreettinen periaate on dominanssi. Kuten lähes kaikkia taloustieteessä kiinnostavia käsitteitä niitä on kahta lajia. Aito ja
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 14. syyskuuta 2007 Antti Rasila () TodB 14. syyskuuta 2007 1 / 21 1 Kokonaistodennäköisyys ja Bayesin kaava Otosavaruuden ositus Kokonaistodennäköisyyden
Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w)
4. MARKKINOIDEN TASAPAINOTTUMINEN 4.1. Tasapainoperiaate Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w) Markkinat tasapainossa, kun löydetään
Strateginen kanssakäyminen. Taloustieteen perusteet Matti Sarvimäki
Strateginen kanssakäyminen Taloustieteen perusteet Matti Sarvimäki Johdanto Viime viikolla tilanteet joissa valinnat eivät riipu muiden valinnoista Tänään aloitamme valintojen vuorovaikutuksen tutkimisen
Prof. Marko Terviö Assist. Jan Jääskeläinen
Harjoitukset 3. 1. (a) Dismalandissa eri puolueiden arvostukset katusiivoukselle ovat Q A (P ) = 60 6P P A (Q) = 10 Q/6 Q B (P ) = 80 5P P B (Q) = 16 Q/5 Q C (P ) = 50 2P P C (Q) = 25 Q/2 Katusiivous on
Esteet, hyppyprosessit ja dynaaminen ohjelmointi
Esteet, hyppyprosessit ja dynaaminen ohjelmointi Juha Martikainen 4.10.2000 Oppikirjan sivut 83-87 ja 93-98 Optimointiopin seminaari - Syksy 2000 / 1 Esteet (määritelmät) Muistellaan menneitä: Ajelehtiva
Haitallinen valikoituminen: Kahden tyypin malli
Haitallinen valikoituminen: Kahden tyypin malli Mat-2.4142 Optimointiopin seminaari Mikko Hyvärinen 29.1.2008 Haitallinen valikoituminen kahden tyypin malli Haitallinen valikoituminen tarkoittaa että päämies
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut
Signalointi: kustannukseton signalointi (halpa puhe)
Signalointi: kustannukseton signalointi (halpa puhe) Mat-2.4142 Optimointiopin seminaari Esa Mononen Stag hunt (1/2) Heimon jäsenet joutuvat yksilöinä päättämään menevätkö he metsästämään vai paneutuvatko
Päämies-agentti-malli ja mekanismisuunnittelu
Päämies-agentti-malli ja mekanismisuunnittelu Mat-2.4142 Optimointiopin seminaari Ilkka Leppänen 22.1.2008 Esityksen rakenne Johdanto: päämies-agentti-malli ja epäsymmetrinen informaatio Haitallinen valikoituminen
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
Prospektiteoria. Systeemianalyysin. Antti Toppila. Esitelmä 4 3. helmikuuta laboratorio Aalto-yliopiston TKK
Prospektiteoria Antti Toppila sivu 1/19 Optimointiopin seminaari keväällä 2010 Prospektiteoria Antti Toppila Esitelmä 4 3. helmikuuta 2009 Prospektiteoria Antti Toppila sivu 2/19 Optimointiopin seminaari
Prof. Marko Terviö Assist. Jan Jääskeläinen
1C00100 Mallivastaukset 2. 1. Markkinahinnan aikasarja on esitetty kuvassa 1. Yksittäisten muutosten vaikutukset on kuvattu aikasarjan jälkeen. Hinta 2018 2019 2021 2022 2024 2025 Vuosi Kuva 1: Markkinahinnan
Haitallinen valikoituminen: yleinen malli ja sen ratkaisu
Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä
Projektin arvon määritys
Projektin arvon määritys Luku 6, s. 175-186 Optimointiopin seminaari - Syksy 2000 / 1 Tehtävä Johdetaan menetelmä projektiin oikeuttavan option määrittämiseksi kohde-etuuden hinnan P perusteella projektin
JOHDATUSTA PELITEORIAAN
JOHDATUSTA PELITEORIAAN Satu Adel Pro gradu -tutkielma Heinäkuu 2019 MATEMATIIKAN JA TILASTOTIETEEN LAITOS TURUN YLIOPISTO Turun yliopiston laatujärjestelmän mukaisesti tämän julkaisun alkuperäisyys on
P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu
1. Tyhjentävä tunnusluku (sucient statistics ) Olkoon (P(X = x θ) : θ Θ) todennäköisyysmalli havainnolle X. Datan funktio T (X ) on Tyhjentävä tunnusluku jos ehdollinen todennäköisyys (ehdollinen tiheysfunktio)
I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT
I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT Tehtävä 1! " # $%& ' ( ' % %' ' ) ) * ' + )$$$!," - '$ '' ' )'( % %' ) '%%'$$%$. /" 0 $$ ' )'( % %' +$%$! &" - $ * %%'$$%$$ * '+ ' 1. " - $ ' )'( % %' ' ) ) * '
KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset
KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Tilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
Johdatus tn-laskentaan perjantai 17.2.2012
Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;
Yleinen tietämys ja Nashin tasapaino
Yleinen tietämys ja Nashin tasapaino 24.3.2010 Nashin tasapaino Ratkaisumalli kahden tai useamman pelaajan pelille. Yleisesti: Jos jokainen pelaaja on valinnut strategiansa eikä yksikään pelaaja voi hyötyä
Mallipohjainen klusterointi
Mallipohjainen klusterointi Marko Salmenkivi Johdatus koneoppimiseen, syksy 2008 Luentorunko perjantaille 5.12.2008 Johdattelua mallipohjaiseen klusterointiin, erityisesti gaussisiin sekoitemalleihin Uskottavuusfunktio
Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:
8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)
Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1
Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin
Luento 3: Bayesiläiset pelit
Luento 3: Bayesiläiset pelit Saara Hämäläinen Helsingin yliopisto TA5 Luento 3 2017 1 / 33 Game Theory by Ben Polak (Open Yale) "Nash Equilibrium"(luento 5, kokonaan) "Mixed strategies: definition"(luento
Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi: