KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
|
|
- Timo Heino
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 KJR-C1001 Statiikka ja dynamiikka Luento Susanna Hurme
2 Päivän aihe: Voiman momentin käsite (Kirjan luvut ) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan laskemaan momentti akselin ympäri Voimaparin momentti
3 Mikä on voiman momentti? (Kirjan luvut ) Voima pyrkii kiertämään kappaletta vaikutussuoransa ulkopuolisen pisteen suhteen Tätä kutsutaan joskus väännöksi, mutta yleensä voiman momentiksi tai momentiksi Momentin suuruus on suoraan verrannollinen voiman suuruuteen ja pisteen ja vaikutussuoran väliseen kohtisuoraan etäisyyteen, voiman varteen
4 Mikä on voiman momentti? Momentilla on suuruus ja suunta: Momentti on siis vektori Voima F aiheuttama momentti pisteen O ympäri on M O Momentin suuruus on voima kertaa varsi M O = Fd Momentin suunta määräytyy oikean käden säännön mukaisesti Vastapäivään positiivinen, myötäpäivään negatiivinen
5 Esimerkki Mikä on voiman varsi d, kun halutaan laskea momentti pisteen O ympäri?
6 Momentin skalaarimuoto Tasossa (2D) on kätevää tarkastella momenttia skalaarimuodossa Yhtälöt ovat yksinkertaisempia, kuin vektorimuotoiset yhtälöt Tasossa momentin resultantti saadaan laskemalla yhteen kaikkien voimasysteemin voimien aiheuttamat momentit + M R O = ΣFd M R O = F 1 d 1 F 2 d 2 + F 3 d 3
7 Momentin skalaarimuoto Esimerkki: Laske resultanttimomentti, kun F 1 = F 2 = F 3 = 100 N, d 1 = 1 m, d 2 = 1,3 m, d 3 = 1,2 m M R O = F 1 d 1 F 2 d 2 + F 3 d 3 = Nm = 90(Nm) Laske resultanttimomentti, kun F 1 = F 3 = 100 N, F 2 = 200 N, d 1 = d 3 = 1 m, d 2 = 1,2 m M R O = Nm = 40(Nm) Mihin suuntaan positiivinen ja negatiivinen resultanttimomentti pyrkivät pyörittämään kappaletta?
8 Momentin vektorimuoto (Kirjan luvut ) Momenttivektori on paikkavektorin ja voimavektorin ristitulo M O = r F Mitä tämä tarkoittaa? Kerrataan seuraavaksi ristitulon ominaisuuksia
9 Momentin vektorimuoto Ristitulo Kahden vektorin ristitulo tuottaa vektorin C = A B Vektorin C suuruus on C = AB sin θ C = AB sin θ u C Vektori C on kohtisuorassa vektoreiden A ja B muodostamaa tasoa vastaan ja sen suunta määräytyy oikean käden säännön avulla B A =?
10 Momentin vektorimuoto Ristitulo Muodostetaan ristitulon karteesinen esitys Kantavektoreiden ristitulo i j : Suuruus: i j sin 90 = = 1 Suunta oikean käden säännön mukaisesti Ratkaise i k =? Ratkaise i i =? i j = k
11 Momentin vektorimuoto Ristitulo Muodostetaan ristitulon karteesinen esitys A B = A x i + A y j + A z k B x i + B y j + B z k = A x B x i i + A x B y i j + A x B z i k +A y B x j i + A y B y j j + A y B z j k +A z B x k i + A z B y k j + A z B z k k A B = A y B z A z B y i + A z B x A x B z j + A x B y A y B x k = A y B z A z B y i A x B z A z B x j + A x B y A y B x k = i j k A x A y A z B x B y B z
12 Momentin vektorimuoto Ristitulo Miten determinantti ratkaistaan? i-alkiolle: i j k A x A y A z B x B y B z = i(a y B z A z B y ) Määritelmän mukaan: A 11 A 12 A 21 A 22 = A 11 A 22 A 12 A 21 j-alkiolle: i j k A x A y A z B x B y B z = j(a x B z A z B x ) Muista miinus-merkki! k-alkiolle: i j k A x A y A z B x B y B z = k(a x B y A y B x ) Lopuksi lasketaan tulokset yhteen.
13 Momentin vektorimuoto Ristitulo Esimerkki: Laske A B, kun A = 2i + j k ja B = 5j + 2k Tapa 1. Sijoitetaan suoraan yhtälöön A B = A y B z A z B y i A x B z A z B x j + A x B y A y B x k = (1)(2) ( 1)(5) i (2)(2) ( 1)(0) j + (2)(5) 1 0 k = 7i 4j + 10k Huom. Voisimme myös lähteä ratkaisemaan alusta, eli (2i + j k) (5j + 2k), koska osaamme laskea kantavektorien ristitulot Tapa 2. Ratkaistaan determinantti i j k A x A y A z = B x B y B z i j k = 2 5 i 4 0 j k = 7i 4j + 10k
14 Momentin vektorimuoto Momentti saadaan siis paikkavektorin ja voiman ristitulona M O = r F Momentin suuruus on ristitulon määritelmän mukaan M O = rf sin θ = F(r sin θ) = Fd Momentin suunta määräytyy oikean käden säännön mukaan. Ei ole väliä mihin pisteeseen voiman vaikutussuoralla paikkavektori osoittaa.
15 Momentin vektorimuoto Karteesinen momenttivektori Voimasysteemin resultanttimomentti M O = r F = i j k r x r y r z F x F y F z M RO = Σ(r F) = r y F z r z F y i r x F z r z F x j + r x F y r y F x k = (M O ) x i + (M O ) y j + (M O ) z k Momentti x-akselin ympäri
16 Esimerkki Määritä voimien aiheuttama resultanttimomentti pisteen O ympäri. Tapa 1. Skalaarimenetelmä Kerrotaan jokainen voima etäisyydellään pisteeseen O, ja summataan momentit y ( cos 45 ) m +M O = 600N 1m 300N m + 500N(( ) m) = Nm = 1254 Nm 2.5 sin 45 m x M O = 1254k Nm
17 Esimerkki Määritä voimien aiheuttama resultanttimomentti pisteen O ympäri. y F 3 = Tapa 2. Vektorimenetelmä Määritetään paikkavektorit ja voimavektorit r 1 = i m F 1 = 600j N r 2 = r 3 = i j m F 2 = 300i N F 3 = 500j N r 2 = r 3 = F 2 M RO = Σ r F = r 1 F 1 + r 2 F 2 + r 3 F 3 F 1 = r 1 x = i j k i j k = 600k k k + i j k = k = 1254k Nm
18 Esimerkki Momenttiperiaate Tapa 1. Lasketaan geometrian avulla voiman vaikutussuoran etäisyys pisteestä O Kulmakertoimen avulla saadaan mitta a a 2m = 4 3 a = 8 3 m Esimerkki. Laske voiman momentti pisteen O ympäri. Kulmakertoimen avulla saadaan myös kulma α y d tan α = 3 4 Etäisyys d voidaan ratkaista nyt trigonometria avulla α a x d = 5 + a sin α = 4,6 m Momentti pisteen O ympäri on M O = Fd = 100N 4,6 m = 460 Nm M O = 460k Nm
19 Esimerkki Momenttiperiaate Momenttiperiaatteen mukaan voiman aiheuttama momentti pisteen ympäri on yhtä suuri kuin voiman komponenttien aiheuttamien momenttien summa pisteen ympäri. Tapa 2. Jaetaan voima komponentteihinsa ja lasketaan molempien komponenttien aiheuttama momentti pisteen O ympäri. Lopuksi summataan momentit. Kulmakertoimen avulla saadaan voiman komponentit: Esimerkki. Laske voiman momentti pisteen O ympäri. F x 100N = 4 5 F x = 80 N y F y F y 100N = 3 5 F y = 60 N F x Lasketaan momentti x +M O = F x 2m F y 5m = 80N 2m 60 N 5m = 460 Nm M O = 460k Nm
20 Momentti akselin ympäri Momentti y-akselin ympäri, M y, halutaan tietää. M y M O M O = Fd M y = Fd y = Fd cos θ Momentin suunta määräytyy oikean käden säännön mukaan.
21 Momentti akselin ympäri Vektorimenetelmä 1. Lasketaan momentti M O jossain y-akselin pisteessä O 2. Momentti y-akselilla saadaan momentin M O projektiosta y-akselille Projektio saadaan pistetulolla 3. Momenttivektori on M y = j M O M y = M y j
22 Momentti akselin ympäri Vektorimenetelmä Yleisesti: u a on akselin a suuntainen yksikkövektori Voiman F momentti akselin a ympäri on M a = u a (r F) Kyseessä on skalaarikolmitulo, joka voidaan laskea determinantista M a = u a (r F) = u a x u a y u a z r x r y r z F x F y F z, M a = M a u a
23 Esimerkki Määritä voimien aiheuttama momentti x-, y- ja z- akselien ympäri. Momentti x-akselin ympäri. + M x = 100N 3m = 300 Nm Momentti y-akselin ympäri. z 100 N + M y = 200N 2m = 400 Nm 50 N 200 N y Momentti z-akselin ympäri. 2 m + M z = 300N 2m = 600 Nm x 3 m 300 N
24 Esimerkki Momentti lasketaan skalaarikolmitulosta: Määritä momentti x- akselin ympäri, kun F = 300i 200j + 150k N. M a = u a (r F) = u a x u a y u a z r x r y r z F x F y F z Määritetään voiman paikkavektori r OB : r OB = 0.3i + 0.4j 0.2k m r OB Yksikkövektori u a x-akselin suuntaan on kantavektori i. Lasketaan skalaarikolmitulo. M a = i (r OB F) = = = 20 (Nm)
25 Voimaparin momentti Voimapari on kaksi samansuuruista ja yhdensuuntaista mutta erimerkkistä voimaa Voimaparin voimien välinen kohtisuora etäisyys on d Resultanttivoima on nolla, F F = 0, joten voimapari aiheuttaa ainoastaan momentin, jota kutsutaan voimaparin momentiksi Voimaparin momentti lasketaan molempien voimien momenttien summana M = r B F + r A F Huom. r B = r A + r eli r = r B r A = (r B r A ) F M = r F Voimaparin momentti on vapaa vektori!
26 Voimaparin momentti Voimaparin momentin suuruus on M = Fd Missä d on voimien välinen kohtisuora etäisyys Voimaparin momentin suunta määräytyy oikean käden säännön mukaisesti Voimaparit ovat samanarvoisia kun niiden momentit ovat yhtä suuria ja samansuuntaisia
27 Voimaparin momentti Voimaparin momentin resultantti saadaan laskemalla kaikki voimaparien momentit yhteen M R = M 1 + M 2 M R = Σ(r F)
28 Esimerkki Laske voimaparin momentti ja esitä se karteesisena vektorina Määritetään paikkavektori pisteestä A pisteeseen B (eilisen luennolla opittu) r AB = (x B x A )i + (y B y A )j + (z B z A )k = i j k = 0.4i m Kirjoitetaan voima F B karteesisena vektorina r AB F B = F B x i + F By j + F Bz k Voimaparin momentti on = ( )j + ( )k = 360j 270k N M = r AB F B = i j k = j k = 108j + 144k Nm
29 Mitä tänään opimme? Voiman momentin määritelmä Voiman momentin laskeminen skalaari- ja vektorimenetelmillä Voiman momentti akselin ympäri Voimaparin momentti
KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit
KJR-C1001: Statiikka L2 Luento 21.2.2018: voiman momentti ja voimasysteemit Apulaisprofessori Konetekniikan laitos Luennon osaamistavoitteet Tämän päiväisen luennon jälkeen opiskelija Pystyy muodostamaan,
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 10.3.2016 Susanna Hurme Statiikan välikoe 14.3.2016 Ajankohta ma 14.3.2016 klo 14:15 17:15 Salijako Aalto-Sali: A-Q (sukunimen alkukirjaimen mukaan) Ilmoittautuminen
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 25.2.2016 Susanna Hurme Päivän aihe: Voimasysteemien samanarvoisuus ja jakaantuneen voiman käsite (Kirjan luvut 4.7-4.9) Osaamistavoitteet: 1. Ymmärtää, mikä on
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 2.3.2016 Susanna Hurme äivän aihe: Staattisesti määrätyn rakenteen tukireaktiot (Kirjan luvut 5.7 ja 6.6) Osaamistavoitteet: Ymmärtää, mitä tarkoittaa staattisesti
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 1.3.2016 Susanna Hurme Päivän aihe: Jäykän kappaleen tasapaino ja vapaakappalekuva (Kirjan luvut 5.1-5.4) Osaamistavoitteet: 1. Ymmärtää, mitä tukireaktiot ovat
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 8.3.2016 Susanna Hurme Päivän aihe: Normaalivoiman, leikkausvoiman ja taivutusmomentin käsitteet (Kirjan luku 7.1) Osaamistavoitteet: Ymmärtää, millaisia sisäisiä
LisätiedotVEKTORIT paikkavektori OA
paikkavektori OA Piste A = (2, -1) Paikkavektori OA = 2i j 3D: kuvan piirtäminen hankalaa Piste A = (2, -3, 4) Paikkavektori OA = 2i 3j + 4k Piste A = (a 1, a 2, a 3 ) Paikkavektori OA = a 1 i + a 2 j
LisätiedotVektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa
Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden
LisätiedotA B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1
Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!
Lisätiedot1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen
LisätiedotVektorialgebra 1/5 Sisältö ESITIEDOT: vektori
Vektorialgebra 1/5 Sisältö Skalaaritulo Vektoreiden yhteenlaskun ja skalaarilla kertomisen lisäksi vektoreiden välille voidaan määritellä myös kertolasku. Itse asiassa näitä on kaksi erilaista. Seurauksena
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 29.3.2016 Susanna Hurme Yleisen tasoliikkeen kinematiikka: absoluuttinen ja suhteellinen liike, rajoitettu liike (Kirjan luvut 16.4-16.7) Osaamistavoitteet Ymmärtää,
LisätiedotRistitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti
14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on
Lisätiedot9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa
9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 30.3.2016 Susanna Hurme Yleisen tasoliikkeen kinetiikka (Kirjan luku 17.5) Osaamistavoitteet Osata ratkaista voimia ja niiden aiheuttamia kiihtyvyyksiä tasoliikkeessä
Lisätiedot1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän
LisätiedotSuorista ja tasoista LaMa 1 syksyllä 2009
Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden
LisätiedotHavainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.
Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä
LisätiedotKJR-C1001: Statiikka L3 Luento : Jäykän kappaleen tasapaino
KJR-C1001: Statiikka L3 Luento 27.2.2018: Jäykän kappaleen tasapaino Apulaisprofessori Konetekniikan laitos Luennon osaamistavoitteet Tämän päiväisen luennon (ja laskuharjoitusten) jälkeen opiskelija
LisätiedotSuora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},
Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,
LisätiedotKertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,
Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin
LisätiedotVektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 2-3 Vääntömomentti Oletus: Voimat tasossa, joka on kohtisuorassa pyörimisakselia vastaan. Oven kääntämiseen tarvitaan eri suuruinen voima
LisätiedotVektorin paikalla avaruudessa ei ole merkitystä. Esimerkiksi yllä olevassa kuvassa kaikki kolme vektoria ovat samoja, ts.
49 3 VEKTORIT 3.1 VEKTORIN KÄSITE Vektori on suure, jolla suuruuden lisäksi on myös suunta (esim. kiihtyvyys). Skalaari puolestaan on suure, jolla on vain suuruus (esim. tiheys). Vektori graafisesti: Vektorin
LisätiedotJuuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )
Kertaus K1. a) OA =- i + j + k K. b) B = (, 0, 5) K. a) AB = (6 -(- )) i + ( - ) j + (- -(- 7)) k = 8i - j + 4k AB = 8 + (- 1) + 4 = 64+ 1+ 16 = 81= 9 b) 1 1 ( ) AB = (--(- 1)) i + - - 1 j =-i - 4j AB
LisätiedotVoimapari ja sen momentti
Rakenteiden Mekaniikka Vol. 49, Nro, 06, s. 78-55 rmseura.tkk.fi/rmlehti/ Kirjoittajat 06. Vapaasti saatavilla CC BY-SA 4.0 lisensioitu. Voimapari ja sen momentti Tapio Salmi Tiivistelmä. Artikkelissa
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 31.3.2016 Susanna Hurme Dynamiikan välikoe 4.4.2016 Ajankohta ma 4.4.2016 klo 16:30 19:30 Salijako Aalto-Sali: A-P (sukunimen alkukirjaimen mukaan) Ilmoittautuminen
LisätiedotSuora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste
Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa
LisätiedotLineaarialgebra ja matriisilaskenta I. LM1, Kesä /218
Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.
LisätiedotTekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).
Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä
LisätiedotA-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.
MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään
LisätiedotBM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
Lisätiedot0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan.
Tekijä Pitkä matematiikka 4 9.1.016 168 a) Lasketaan vektorien a ja b pistetulo. a b = (3i + 5 j) (7i 3 j) = 3 7 + 5 ( 3) = 1 15 = 6 Koska pistetulo a b 0, niin vektorit eivät ole kohtisuorassa toisiaan
LisätiedotRTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa
RTEK-2000 Statiikan perusteet 1. välikoe ke 27.2. LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 4 op 1. välikoealue luennot 21.2. asti harjoitukset
LisätiedotKJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti
KJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti Apulaisprofessori Konetekniikan laitos Statiikan välikoe 12.3.2018 Ajankohta ma 12.3.2018 klo 14:00 17:00 Salijako
LisätiedotMb8 Koe Kuopion Lyseon lukio (KK) sivu 1/3
Mb8 Koe 4.11.015 Kuopion Lyseon lukio (KK) sivu 1/3 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 3.3.2016 Susanna Hurme Päivän aihe: Ristikon sauvavoimat (Kirjan luvut 6.1-6.4) Osaamistavoitteet: Ymmärtää, mikä on ristikkorakenne Osata soveltaa aiemmin kurssilla
LisätiedotVoiman momentti M. Liikemäärä, momentti, painopiste. Momentin määritelmä. Laajennettu tasapainon käsite. Osa 4
Osa 4 Liikemäärä, momentti, painopiste Voiman momentti M Voiman vääntövaikutusta mittaava suure on momentti. Esim. automerkkien esitteissä on mainittu moottorin momentti ("vääntö"). Moottorin antama voima
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
LisätiedotTÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA
TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022
LisätiedotInsinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja
LisätiedotSTATIIKKA. TF00BN89 5op
STATIIKKA TF00BN89 5op Sisältö: Statiikan peruslait Voiman resultantti ja jako komponentteihin Voiman momentti ja voimapari Partikkelin ja jäykän kappaleen tasapainoyhtälöt Tukivoimat Ristikot, palkit
LisätiedotMb8 Koe Kuopion Lyseon lukio (KK) sivu 1/2
Mb8 Koe 0.11.015 Kuopion Lyseon lukio (KK) sivu 1/ Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.
LisätiedotKRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA
KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA Aloita kertaamalla hilan indeksointi niin, että osaat kuutiollisen kiteen tasojen ja suuntien Miller-indeksit. Vektorit määritellään yleisessä muodossa r
LisätiedotYhteenlaskun ja skalaarilla kertomisen ominaisuuksia
Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella
Lisätiedot1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.
Matematiikan kurssikoe, Maa4 Vektorit RATKAISUT Sievin lukio Keskiviikko 12.4.2017 VASTAA YHTEENSÄ VIITEEN TEHTÄVÄÄN! MAOL JA LASKIN/LAS- KINOHJELMAT OVAT SALLITTUJA! 1. Olkoot vektorit a, b ja c seuraavasti
LisätiedotLuento 4: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike
LisätiedotTekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.
Tekijä Pitkä matematiikka 4 16.12.2016 K1 Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. 3 r s = 0 4 r+ 4s = 2 12r 4s = 0 + r+ 4s = 2 13 r = 2 r = 2 13 2 Sijoitetaan r = esimerkiksi yhtälöparin
LisätiedotOrtogonaaliset matriisit, määritelmä 1
, määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,
LisätiedotAvaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät
11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit
LisätiedotMuista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:
Määrittelyjoukot Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:, 0 ; log, > 0 ;, 0 (parilliset juuret) ; tan, π + nπ Potenssisäännöt Ole tarkkana kantaluvun kanssa 3 3
LisätiedotPistetulo eli skalaaritulo
Pistetulo eli skalaaritulo VEKTORIT, MAA4 Pistetulo on kahden vektorin välinen tulo. Tarkastellaan ensin kahden vektorin välistä kulmaa. Vektorien a ja, kun a 0, välinen kulma on (kuva) kovera kun a vektorit
LisätiedotSuorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö.
Suorat ja tasot, L6 Suora xyz-koordinaatistossa Taso xyz-koordinaatistossa stä stä 1 Näillä kalvoilla käsittelemme kolmen laisia olioita. Suora xyz-avaruudessa. Taso xyz-avaruudessa. Emme nyt ryhdy pohtimaan,
LisätiedotTaso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora
Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen
LisätiedotKJR-C2002 Kontinuumimekaniikan perusteet, tentti
KJR-C2002 Kontinuumimekaniikan perusteet, tentti 13.12.2017 1. Jos r θ on paikkavektori, niin mitä ovat r θ, esitksiä r θ ja r θ? Kätä Karteesisen koordinaatiston T θ θ r < j < j zθ θ k k z ja / θ < j
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotLuento 6: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
Lisätiedot5.9 Voiman momentti (moment of force, torque)
5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa
LisätiedotTekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.
Tekijä Pitkä matematiikka 4 9.1.016 79 a) Kuvasta nähdään, että a = 3i + j. b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. 5a b = 5(3i + j) ( i 4 j)
LisätiedotLineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi
Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja
LisätiedotLuvun 5 laskuesimerkit
Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.
LisätiedotDerivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r
Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.
LisätiedotMAA15 Vektorilaskennan jatkokurssi, tehtävämoniste
MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste Tason ja avaruuden vektorit 1. Olkoon A(, -, 4) ja B(5, -1, -3). a) Muodosta pisteen A paikkavektori. b) Muodosta vektori AB. c) Laske vektorin AB pituus.
LisätiedotViikon aiheet. Funktion lineaarinen approksimointi
Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen
LisätiedotVoima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!
6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 9.3.2016 Susanna Hurme Päivän aihe: Palkin leikkausvoima- ja taivutusmomenttijakaumat ja kuviot (Kirjan luvut 7.2 ja 7.3) Osaamistavoitteet: Ymmärtää, miten leikkausvoima
LisätiedotLuento 7: Pyörimisliikkeen dynamiikkaa
Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä 1 / 37 Luennon sisältö Johdanto
LisätiedotLineaarialgebran laskumoniste Osa1 : vektorit
Lineaarialgebran laskumoniste Osa1 : vektorit A. Sinin, kosinin ja tangentin laajennetut määritelmät 1. Määritä ao. yksikköympyrän avulla a) sin(120 o ) b) cos(180 o ) (piirrä kulman kylki, ja lue kuvasta
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:
LisätiedotLineaarialgebra 5 op
Lineaarialgebra 5 op Vektorit osa1 Peruslaskutoimitukset Komponenttiesitys Vektorin pituus Jana vektorimuodossa Koordinaatistopisteen paikkavektori Vektorit Vektoreita tarvitaan mekaniikassa ja fysiikassa
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
LisätiedotTehtävä 2. Osoita, että seuraavat luvut ovat algebrallisia etsimällä jokin kokonaislukukertoiminen yhtälö jonka ne toteuttavat.
JOHDATUS LUKUTEORIAAN syksy 017) HARJOITUS 6, MALLIRATKAISUT Tehtävä 1. Etsi Pellin yhtälön x Dy = 1 pienin positiivinen ratkaisu kun D {,, 5, 6, 7, 8, 10}. Ratkaisu 1. Tehtävässä annetuilla D:n arvoilla
LisätiedotF dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause
91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan
LisätiedotTekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Johdanto (Ulaby 1.2 1.3) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Vektorit ja koordinaatistot
LisätiedotKonformigeometriaa. 5. maaliskuuta 2006
Konformigeometriaa 5. maaliskuuta 006 1 Sisältö 1 Konformigeometria 1.1 Viivan esitys stereograasena projektiona............ 1. Euklidisen avaruuden konformaalinen malli........... 4 Konformikuvaukset
LisätiedotRATKAISUT: 19. Magneettikenttä
Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee
Lisätiedot2.3 Voiman jakaminen komponentteihin
Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.
LisätiedotMEI Kontinuumimekaniikka
MEI-55300 Kontinuumimekaniikka 1 MEI-55300 Kontinuumimekaniikka 6. harjoitus jännitysmitat Ratkaisut T 1: Ohuen suoran sauvan pituus referenssitilassa on 0 ja poikkipinta-ala on A 0. Sauvan akselin suuntaisen
LisätiedotDYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän
LisätiedotTalousmatematiikan perusteet: Luento 8. Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo
Talousmatematiikan perusteet: Luento 8 Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo Motivointi Esim. Herkkumatikka maksaa 50 /kg. Paljonko
LisätiedotPotentiaali ja potentiaalienergia
Luku 2 Potentiaali ja potentiaalienergia 2.1 Sähköstaattinen potentiaali ja sähkökenttä Koska paikallaan olevan pistemäisen varauksen aiheuttamalla Coulombin sähkökentällä on vain radiaalikomponentti,
LisätiedotSuora. Hannu Lehto. Lahden Lyseon lukio
Suora Hannu Lehto Lahden Lyseon lukio Suuntavektori Normaalivektori Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 2 / 12 Esimerkki Suuntavektori Normaalivektori Tarkastellaan suoraa y = 2 3 x 1. kulmakerroin
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
LisätiedotTeddy 1. harjoituksen malliratkaisu kevät 2011
Teddy 1. harjoituksen malliratkaisu kevät 2011 1. Dipolimomentti voidaan määritellä pistevarauksille seuraavan vektoriyhtälön avulla: µ = q i r i, (1) i missä q i on i:nnen varauksen suuruus ja r i = (x
LisätiedotSolmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:
Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman
LisätiedotLineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.
Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat
Lisätiedot