Thlousmatematiikan perusteet, orvrs ro:o
|
|
- Martta Hämäläinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tampereen kesäylopsto, kevät 2015 Thlousmatematkan perusteet, orvrs ro:o 3. harjotus, (la ) 1. Tehdas valmstaa vkossa tuotetta määrän q jamyy sen hntaan p (euroa/tuote). Kysyntäfunkto on p(q): ø. Tuotteen valmstamnen aheuttaa kustannuksa 1,5 euroa./tuote ja valmstusmäärästä rppumaton knteä kustannus on23o euroa/vkko. Mllä valmstusmäårällä yrtys saa suurmman voton? (votto=myynttulo - kustannukset) 2. Tarkastellaan uudelleen tehtävän 2 ongelmaa. Nyt kutenkn yrtyksen tuotantokapasteett on 150 tuotetta/vkko. Yrtys vo ylttää kapasteettnsa, jos se teettää kapasteetn ylttävän osan tuottesta yltyönä. Yltyönä tehdyn tuotteen valmstuskustannus on 1,6 euroa./tuote. Jos yltyötä tehdään on knteä kustannus 250 euroa/vkko. Mllä valmstusmäärällä yrtys nyt saa suurmman voton (votto = myynttulo - kustannukset)? 3. Tuotteen A þsyntäfunkto on Pt:20 -O.2qtja tuotteen B þsynnän ja hnnan välstä yhteyttä kuvaa yhtälö qø:60001ú. a) Pnä kummankn tuotteen þsyntäfunkton kuvaaja muodossa p: b) Laske kummankn tuotteen þsynnän hntajousto, kun q1 :20, qz:2l c) Laske kummankn tuotteen þsynnän hntajousto, kun q1 :80, qz:81. þsynnän hntajousto : lq-'- q',ù, 4', pt : f (qt), pz: f (qz) \p2- pt) ql 4.Eräan kappaletavaratuotteen varaston ykskköylläptokustannukset ovat 4 kappaletta ja vuotta koht. Tlauskustannukset ovat 80 tlauserältä. Kysyntä on tasasta ja suuruudeltaan 4000 kpl vuodessa. Täydennystomtukset tapahtuvat ongelmtta, ja varastonttla on rajottamaton. Puutetta e sallta. Mten suur on optmaalnen tlauserän koko ja mten suuret ovat varastonpdon kokonaskustannukset? 5. Suurpesula tarvtsee astaa tettyä pesuanetta kuukaudessa. Ykskköylläptokustannus on O.5 lasta/vuos. Tlauskustannukset ovat75 tlaukselta. Pesula tlaa anetta nykysn astan erssä. Mten suureen vuossäästöön pesulan on mahdollsta päästä muuttamalla tlauspoltkkaansa? Mten tlaukset tällön tehdään? Onko säästö melestäs suur? 6. Vuodessa raaka-anevaraston läp kulkee kappaletavaraa D:1600kpl. Tlauskustannus on 9 lerä ja varaston ylläptokustannus on 1.5 l(kuukaus.kpl). a) Mkä on optmaalnen tlauserän koko, ja mten suuret ovat varastosysteemn vuotuset kokonaskustannukset? b) Raaka-aneen ykskköhnta on S /kpl. Raaka-aneen tomttaja tarjoaa mäåräalennusta, joka on 17o ostohnnasta, kun tlauserä on vähntään 50 kappaletta,ja 37o ostohnnasta, kun tlauserä on vähntään 100 kappaletta. Mkä on nyt optmaalnen tlauserä?
2 Kaavoja: Kysynnän hntajousto: Lq Lp?:n q Varastomallt: perusmall eo: 2KD h rco(q):t *, puutemall et QO h+s tuotantomall q2: qo s Mt: eo.t -l TCt@):-* ^ +r* h+ t' KD M2h (a - M\2s q q q r-d r 3, Mz:eo rcz(q) : {2 + hq(r - D 2r -t
3 Tampereen kesäylopsto, kevät 2015 Thlousmatematkan perusteet, orr,rs ro:o 3. harjotus, (la 28. tt.2015) 1' Tehdas valmstaa vkossa tuotetta määrän q amyy sen hntaan p (euroaltuote). Kysyntäfunkto on p(cl) \rq. Tuotteen valmstamnen aheuttaa kusannuksa 1,5 euroa./tuote ja valmstusmäärästä rppumaton knteä kustannus on 230 euroa/vkko. Mllä valmstusmäärällä yrtys saa suurmman voton? (votto=myynttulo - kustannukset) o : 4 'a.r = t :t r{ L t 0l {),2 M. Lt 4tt ( l l,cs ì? t Y ka { 2. Tarkastellaan uudelleen tehtävän fongelmaa. Nyt kutenkn yrtyksen tuotantokapasteett on 150 tuotetta/vkko. Yrtys vo ylttää kapasteettnsa, jos se teettää kapasteetn ylttavän osan tuottesta yltyönä. Yltyönä tehdyn tuotteen valmstuskustannus on 1,6 euroa./tuote. Jos yltyötä tehdään on knteä kustannus 250 euroa/vkko. Mllä valmstusmäärällä yrtys nyt saa suurmman voton (votto = myynttulo - kustannukset)? e4 1: Vçe t l=, " 4)t{ a t,1"{,t _ \a' 1 TJ:. a,;, ì >; 13 c {
4 -'-t-" 3. Tbotteen A kysyntåfunkto on pa : 2O - 0.2q ja tuotteen B þsynnän ja hnnan välstä yhteyttä kuvaa yhtälö qn : 6OO0 p2a. a) Pnä kummankn tuotteen kysyntäfunkton kuvaaja muodossa p: f (q). b) Laske kummankn tuotteen þsynnân hntajousto, kun 41 :20, qz:21. c) Laske kummankn tuotteen kysynnän hntajousto, kun q1 : 80, øz : 81. _,.-_t kysynnän hntajousto: (qz - qt,pt pt: (pz f(qt),p2: f(qz) - pt) qt' -o z.
5 4. Erään kappaletavaratuotteen varaston ykskköylläptokustannukset ovat 4 kappaletta ja vuotta koht. Tlauskustannukset ovat 80 tlauserältå. Kysyntä on tasasta ja suuruudeltaan 4000 kpl vuodessa. Täydennystomtukset tapahtuvat ongelmtta, ja varastonttla on rajottamaton. Puutetta e sallta. Mten suur on optmaalnen tlauserån koko ja mten suuret ovat varastonpdon kokonaskustannukset? ;1, 2
6 ,) 5. Suurpesula tarvtsee astaa tettyä pesuanetta kuukaudessa. Ykskköylläptokustannus on 0.5 /asta/vuos. Tlauskustannukset ovat 75 tlaukselta. Pesula tlaa anetta nykysn astan erssä. Mten suureen vuossäästöön pesulan on mahdollsta päästä muuttamalla tlauspoltkkaansa? Mten tlaukset tälön tehdään? Onko säästö melestäs suur?
7 6. Vuodessa raaka-anevaraston låp kulkee kappaletavaraa D:1600kp1. Tlauskustannus on 9 lerä ja varaston ylläptokustannus on 1.5 l(kuukaus'kpl) a) Mkä on optmaalnen tlauserân koko, ja mten suuret ovat varastosysteemn vuotuset kokonaskustannukset? b) Raaka-aneen ykskköhnta on 5 /kpl. Raaka-aneen tomttaja tarjoaa märräalennusta, joka on 17o ostohnnasta, kun tlauserä on vähntään 50 kappaletta, ja3vo ostohnnasta, kun tlauserä on vähntään 100 kappaletta. Mkä on nyt optmaalnen tlauserä?,, l : -: -.---!! ---
p'ø):{. P: f (ù: 10 Thlousmatematiikan perusteet, orrvrs ro:o - 5) - O'\lq - 4x, kun g(x) :7x2l5x-3, kun ft(.r) :3x. (x2 f'(3), g'(*), h'(*),
Tampereen kesäyliopisto, kevät 2015 Thlousmatematiikan perusteet, orrvrs ro:o 2. harjoitus, (pe27.11.2015) 1. Yritys valmistaa kappaletavaraa q kappaletta viikossa. Yhden kappaleen materiaali- ja palkkakustannus
"h 'ffi: ,t^-? ùf 'J. x*r:l-1. ri ri L2-14. a)5-x:8-7x b) 3(2x+ l) :6x+ 1 c) +* +5 * I : 0. Talousmatematiikan perusteet, onus to o.
1 Vaasan yopso, kev a 0 7 Taousmaemakan perusee, onus o o R1 R R3 R ma 1-1 ma 1-1 r 08-10 r -1 vkko 3 F9 F53 F5 F53 1.-0..01 R5 R o R7 pe R8 pe - r-1 08-10 10-1 F53 F10 F5 F9 1. Sevennä seuraava ausekkee.
Yrityksen teoria. Lari Hämäläinen S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
Yrtyksen teora Lar Hämälänen.1.003 Yrtys Organsaato, joka muuttaa tuotantopanokset tuotteks ja tom tehokkaammn kun sen osat erllään Yrtys tenaa rahaa myynthnnan sekä ostohnnan ja aheutuneden kustannuksen
Yrityksen teoria ja sopimukset
Yrtyksen teora a sopmukset Mat-2.4142 Optmontopn semnaar Ilkka Leppänen 22.4.2008 Teemoa Yrtyksen teora: tee va osta? -kysymys Yrtys kannustnsysteemnä: ylenen mall Työsuhde vs. urakkasopmus -analyysä Perustuu
':(l,i l) 'iac: (å ;) (x 2v + z- o. I o, * 4z:20. 12, +8y 3z: l0. Thlousmatematiikan perusteet, onus ro 0 opettaja: Matti Laaksonen.
Vaasan kesäyps, kesä 2013 Thusmaemakan perusee, nus r 0 peaja: Ma aaksnen 2. väke, (a 31.8.2013 Rakase 3 ehävää. Kun käsee ehävän, nn käsee sen kakk aakhda. Kkeessa saa a mukana askn (myös graanen ja auukkkrja
Painotetun metriikan ja NBI menetelmä
Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka
Tchebycheff-menetelmä ja STEM
Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot
Tuotteiden erilaistuminen: hintakilpailu
Tuotteden erlastumnen: hntaklalu Lass Smlä 19.03.003 Otmonton semnaar - Kevät 003 / 1 Johdanto Yrtykset evät yleensä halua tuottaa saman tuoteavaruuden tlan täyttävä tuotteta (syynä Bertrandn aradoks)
- Zj + +i, virittämän suunnikkaan pinta-ala. 2x + Y: 4. 3x 2y:2 -x+y:-1. 3x + y:5. -x +2y:2. 4x + Y: 4. voitto : qr Aq+ rr q. : -!A_'r.
Vaasan yliopisto, syksy 2014 Lineaarialgebra, MAH. lo4o 7. harjoitus, (viikko 2, 5.1.-9.1.2015 R01: ma 12-14 Dl15, R02: ke 14-16 D115, R03: to 10-12 F651 Viimeisellä luennolla käsiteltiin opetusmonisteen
4. MARKKINOIDEN TASAPAINOTTUMINEN 4.1. Tasapainoperiaate Yritysten ja kuluttajien välinen tasapaino
4. MARKKINOIDEN TASAPAINOTTUMINEN 4.. Tasapanoperaate 4... Yrtysten ja kuluttajen välnen tasapano Näkymätön käs muodostuu kahdesta vakutuksesta: ) Yrtysten voton maksmont johtaa ne tuottamaan ntä hyödykketä,
Talousmatematiikan perusteet, ORMS1030
Tamprn ksäyliopisto, 2015-2016 Talousmatmatiikan prustt, ORMS1030 1. väliko, (ti 15.12.2015) Ratkais 3 thtävää. Kokssa saa olla mukana laskin (myös graafinn laskin on sallittu) ja taulukkokirja (MAOL tai
EV OUT ekovessat. Modernit kompostoivat wc-laitteet. Raita Environment Modernit kompostoivat wc-laitteet EV MINI L. Kompostointi on vaivatonta
,e ä s yk n n e a. yhj t t n l ä sto o E v p om k k jäl Modernt kompostovat wc-latteet LAAJA MALLISTO: 2 stunvahtoehtoa ECO, SEP 3 kompostvaunuvahtoehtoa 120, 200, 400 EV 200 KU EV OUT ekovessat Modernt
Kuluttajahintojen muutokset
Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä
Luento 7. DEE Piirianalyysi Risto Mikkonen
DEE- Pranalyys Luento 7 Luento 6 - Recap Johdatus vahtosähköön snmuotoset suureet Tehollsarvo Passvset prkomponentt mpedanss Laskenta hetkellsarvolla Luento 7 - ssältö Osotnlaskenta Knteä tehollsarvon
Käyttövarmuuden ja kunnossapidon perusteet, KSU-4310: Tentti ma
KSU-430/Ten 4..2008/Prof. Seppo Vranen /3 Käyövarmuuden ja kunnossapdon perusee, KSU-430: Ten ma 4..2008 Huom. Vasaus van veen kysymykseen. Funko- ja/a ohjelmoavan laskmen, musnpanojen, luenomonseden ja
4. A priori menetelmät
4. A pror menetelmät 4. Arvofunkto-menetelmä 4.2 Lekskografnen järjestämnen 4.3 Tavoteohjelmont Tom Bäckström Optmontopn semnaar - Kevät 2000 / 4. Arvofunkto-menetelmä Päätöksentekjä antaa eksplsttsen
Kansainvälisen konsernin verosuunnittelu ja tuloksenjärjestely
Kansanvälsen konsernn verosuunnttelu ja tuloksenjärjestely Kansantaloustede Pro gradu -tutkelma Talousteteden latos Tampereen ylopsto Toukokuu 2007 Pekka Kleemola TIIVISTELMÄ Tampereen ylopsto Talousteteden
Talousmatematiikan perusteet
kevät 2019 / orms.1030 Talousmatematiikan perusteet 1. välikoe tiistaina 29.1.2019 MALLIRATKAISUT Ratkaise 3 tehtävää. Kokeessa saa olla mukana laskin ja taulukkokirja (MAOL tai vastaava). Kun teet tehtävän,
Voitonmaksimointi esimerkkejä, L9
Voitonmaksimointi esimerkkejä, L9 (1) Yritys Valmistaa kuukaudessa q tuotetta. Kysyntäfunktio on p = 15 0, 05q ja kustannusfunktio on C(q) = 350 + 2q + 0, 05q 2. a) Yritys valmistaa nyt tuotteita kuukaudessa
Mat Lineaarinen ohjelmointi
Mat-2.340 Lneaarnen ohjelmont 3.9.2007 Luento Johdanto (krja.-.4) S ysteemanalyysn Laboratoro eknllnen korkeakoulu Eeva Vlkkumaa Lneaarnen ohjelmont - Syksy 2007 / Luentorunko Hstoraa Lneaarnen optmonttehtävä
1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä
Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10
EV EKOVESSAT. Modernit kompostoivat wclaitteet. Useita wc-istuinmalleja:
Modernt kompostovat wc-latteet,e ä s yk n n e a. yhj t t n l ä sto o E v p om k k jäl Helppo hotaa ja tyhjentää - 4 stunvahtoehtoa - 3 kompostvaunuvahtoehtoa EV EKOVESSAT Modernt kompostovat wclatteet
w%i rf* meccanoindex.co.uk
&, w% r* lr,ryd* kro g ; - C +gä!! r -. ä.;'! dg+s Zt t0, y < 9 -! 8 tü;r" lun.'-y; ',ä lrl;!tä u l - 9 9! - ä 6 ^ 9 b - q - cz * ; *'a! a = ;6 f
Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi
Sähkön- ja lämmöntuotannon kustannussmulont ja herkkyysanalyys Pekka Nettaanmäk Osmo Schroderus Jyväskylän ylopsto Tetoteknkan latos 2010 1 2 Tvstelmä Raportn tarkotuksena on esttää pelkstetyn matemaattsen
"#$#%&'()*%+,$-#.!&,*$#-/0!1'&),*,,.!23*&343.!'45,,.!#$3#6�#44,!!!!!
"#$%%&'())(*+(,))*%-./))/**01*'/,)&23*4%%&(+'*,5" "#$#%&'()*%+,$-#.&,*$#-/01'&),*,,.23*&343.'45,,.#$3#6�#44, 7&&'--#$%*$,'$%545-5-$#..%.%)#..3/-,-/8 "'69,.0#:5;?@A B,,--'74'$'44''.:''*'+'C'-*#C''*-%
Aamukatsaus 13.02.2002
Indekst & korot New Yorkn päätöskursst, euroa Muutos-% Päätös Muutos-% Helsnk New York (NY/Hel) Dow Jones 9863.7-0.21% Noka 26.21 26.05-0.6% S&P 500 1107.5-0.40% Sonera 5.05 4.99-1.1% Nasdaq 1834.2-0.67%
Mekaniikan jatkokurssi Fys102
Mekankan jatkokurss Fys102 Syksy 2009 Jukka Maalamp LUENTO 2 Alkuverryttelyä Vääntömomentt Oletus: Vomat tasossa, joka on kohtsuorassa pyörmsaksela vastaan. Oven kääntämseen tarvtaan er suurunen voma
Jaksolliset ja toistuvat suoritukset
Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e
1, MITÄ TARKOITETAAN SEURAAVILLA TERMEILLÄ:
KRANPDON TNTT 14.4.2014 LAY/OTK OT: Vst jkseen kysymykseen erllselle pperlle (must merktä nm myös krjnptu"t.u"ppern). ös et vst jhnkn kysymykseen, jätä nmetty vstuspper myös kysesen tehtävän slt' rrävär:
Rajatuotto ja -kustannus, L7
ja -kustannus, L7 1 Kun yritys valmistaa tuotetta jaksossa määrän q (kpl/jakso), niin kassaan kertyvä tuotto on R(q) = p q = p(q) q. Esimerkki. Jos kysyntäfunktio on p = 20 0.1q, niin tuotto funktio on
Paperikoneiden tuotannonohjauksen optimointi ja tuotefokusointi
TEKNILLINEN KORKEAKOULU Teknllsen fyskan koulutusohjelma ERIKOISTYÖ MAT-2.108 Sovelletun matematkan erkostyöt 22.4.2003 Paperkoneden tuotannonohjauksen optmont ja tuotefokusont Jyrk Maaranen 38012p 1 Ssällysluettelo
F_l/ mlmz SOVE LLU STE HTÄV Ä G RAVITAATI O LA I STA. Fon. (vetovoima) mr ja lxz välinen gravitaatiovoima. kappaleiden massat ovat mr ja mz (kg)
SOVE LLU STE HTÄV Ä G RAVITAATI O LA I STA ltl ka ppa leiden (vetovoima) m ja lxz välinen gavitaatiovoima Fon F_l/ mlmz 2 kappaleiden massat ovat m ja mz (kg) on kappaleiden keskipisteiden välinen etäisyys
etappi.com VIESTI PAUKAHTAA LAKEURELTA 4. 5.11.2009
VIESTI PAUKAHTAA LAKEURELTA 4. 5.11.2009 Tervetuloa kakspäväslle Lakeuden Etapn ja JLY - Jätelatosyhdstys ry:n järjestämlle vestntäpävlle 4.-5.11.2009 Senäjoelle. Pävlle odotetaan 80 120 vestnnän, tedottamsen
b 4i j k ovat yhdensuuntaiset.
MAA5. 1 Koe 29.9.2012 Jussi Tyni Valitse 6 tehtävää! Muista tehdä pisteytysruuduo ensimmäisen onseptin yläreunaan! Perustele vastausesi välivaiheilla! 1. Oloon vetorit a 2i 6 j 3 ja b i 4 j 3 a) Määritä
AINEIDEN OMINAISUUKSIIN PERUSTUVA SEOSTEN LUOKITUS JA VAARAA OSOITTAVAT LAUSEKKEET
N:o 979 3731 te 2 AINEIDEN OMINAISUUKSIIN ERUSTUVA SEOSTEN UOKITUS JA VAARAA OSOITTAVAT AUSEKKEET JOHDANTO Vaarallsa aneta ssältävä seoksa luokteltaessa ja merkntöjä valttaessa aneden ptosuuksen perusteella
Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t.
DEE- Piirianalyysi Harjoitus / viikko 4 Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä jännitteen ja virran arvot ovat t Kun t, v te t 5t 8 V, i te t 5t 5 A, a) Määritä
Uuden eläkelaitoslain vaikutus allokaatiovalintaan
TEKNILLINEN KORKEAKOULU Systeemanalyysn laboratoro Mat-2.108 Sovelletun matematkan erkostyö Uuden eläkelatoslan vakutus allokaatovalntaan Tmo Salmnen 58100V Espoo, 14. Toukokuuta 2007 Ssällysluettelo Johdanto...
Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä
Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste
Talousmatematiikan perusteet, ORMS1030
Vaaan yliopito, kvät 06 Taloumatmatiikan prutt, ORMS030 4. arjoitu, viikko 6 (8...06) Malliratkaiut. Erään kappaltavaratuottn varaton ykikköylläpitokutannukt ovat 4,00 kappaltta ja vuotta koti. Tilaukutannukt
l, ; i.'s ä E.ä E o gäästaefiiä,ggäeäeää;äggtää EI ;äe E H * eaä* E E 8EP.E .e= äe eääege F EEE;säääg lee sa 8NY ExE öe äec E= : ;H ä a(ü
,. 8\ ( P ;! l, ;.'s ä.ä >. u.a ä q x ö ä : ; ä ;äe * eä* 8P. ee s $e ää ä F äsä ff ääsfä,ääää;äää ä eääe F ;säää le sa r T e q ( r "j (,{,!. r JJ fl *r ( + T r {rl J Y '( S YC T 8Y C0 ( (f J, r, C,9 l
HINNASTO KENKÄTEHTAITTEN KANSANHUOLTOMINISTERIÖN NAHKA- JA JALKINETEOLLISUUSTOIMISTO. hyväksymä Jakaja: Tulee voimaan 1. 4.
KENKÄTEHTAITTEN HINNASTO KANSANHUOLTOMINISTERIÖN hyväksymä 16. 3. 1942 Tulee vomaan 1. 4. 1942 Jakaja: KANSANHUOLTOMINISTERIÖN NAHKA JA JALKINETEOLLISUUSTOIMISTO TAMPERE 5.000 kpl. 16.3.1942. 2 1 ämä hnnasto
Suomen metsäkeskus. Zonation ja luonnonhoidon alueellinen suunnittelu yksityismetsissä
Suomen metsäkeskus Zonton j luonnonhodon lueellnen suunnttelu ykstysmetsssä Johtv luonnonhodon sntuntj Mtt Seppälä METSO j Zonton semnr Ksvu j vkuttvuutt METSO luonnonhotoon 2014-2016 Zonton kehttämsen
Soile Kulmala. Yksikkökohtaiset kalastuskiintiöt Selkämeren silakan kalastuksessa: bioekonominen analyysi
Sole Kulmala Ykskkökohtaset kalastuskntöt Selkämeren slakan kalastuksessa: boekonomnen analyys Helsngn Ylopsto Talousteteen latos Selvtyksä nro 29 Ympärstöekonoma Helsnk 2005 Ssällys 1 Johdanto... 1 1.1
Toiminta- ja taloussuunnitelma 2010-2012 sekä talousarvio vuodelle 2010 KHALL 532
V 167 02122009 K 532 07122009 V 193 16122009 T- 2010-2012 2010 KHALL 532 V 02122009 168, 169, 170 171 : YLEISHALLINTO /, (H 2122009 /ö 168 ) V *,, * - S * ö, öö 2010 *, ö, * M ö * L- L T Höö M K L ; -
Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:
Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa
b) '5555z-?:lo -1:7 ' 5 ',r+i (i-å) n- r*or i+i- sl4-4 s-5-''- (å) 2:+ 2 r t I 3-3 a)23+42 Ð'+., (, -:), u)j++ b)2-1 "i
Tampereen kesäyliopisto, kevät 20 1 5 Thlousmatematiikan perusteet, orrr s ro30 L. harjoitus, (la 12.11.2015) 1. Laske seuraavat laskut. Laske kukin lasku ensin käsin þnää ja paperia käyttäen. Anna vastaukset
T p = 0. λ n i T i B = Käytetään kohdan (i) identiteetin todistamiseen induktiotodistusta. : Oletetaan, että väite on totta, kun n = k.
Olkoot A R n n ja T R n n sten, että on olemassa ndeks p N jolle T p = Tällästä matrsa kutsutaa nlpotentks Näytä, että () () () Olkoot Määrtä matrs B n (λi + A) n = (λi + T ) n = B = n mn n,p ( ) n λ n
3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =
BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot
Talousmatematiikan perusteet, ORMS1030
Tamprn ksäyliopisto, syksy 2016 Talousmatmatiikan prustt, ORMS1030 2. harjoitus, (p 4.11.2016) 1. Yritys valmistaa kappaltavaraa kappaltta viikossa. Yhdn kappaln matriaali- ja palkkakustannus on 7, jotn
Käytetään säteille kompleksiesitystä. Tuleva säde on Ee 0 iw t ja peräkkäisiä heijastuneita säteitä kuvaaviksi esityksiksi saadaan kuvasta: 3 ( 2 )
58 Yhtälön (0.4.) mukaan peräkkästen hejastuneen säteen optnen matkaero on D= n tcosqt ja vahe-eroks tulee (kun r = 0) p = kd= D. (.3.) l ässä on huomattava, että hejastuksssa tapahtuvat mahollset p :
Voitonmaksimointi, L5
, L5 Seuraavassa tullaan systemaattisesti käyttämään seuraavia merkintöjä q = tuotannon määrä (quantity) (kpl/kk) p = tuotteen hinta (price) (e/kpl) R(q) = tuotto (revenue) R(q) = pq MR(q) = rajatuotto
Epätäydelliset sopimukset
Eätäydellset somukset Matt Rantanen 15.4.008 ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008 Estelmän ssältö Eätäydellset somukset ja omstusokeus alanén
-Jotta maailma olisi parempi paikka wappuna. RAKENNUSINSINÖÖRIKILLAN VIRALLINEN KILTALEHTI JO VUODESTA 1963 2/2012
-J w. RAKENNUSINSINÖÖRIKILLAN VIRALLINEN KILTALEHTI JO VUODESTA 1963 2/2012 JOS ET NÄE LUKEA ALLAOLEVAA PIILOTETTUA TEKSTIÄ, JUO LISÄÄ SKUMPPAA, SILLÄ STEREOGRAMMIEN NÄKEMINEN ONNISTUU VAIN SILMÄT KILLISSÄ.
VERKKOJEN MITOITUKSESTA
J. Vrtamo 38.3141 Telelkenneteora / Verkon mtotus 1 VERKKOJEN MITOITUKSESTA 1. Prkytkentäset verkot Lnkken kapasteetten (johtoja/lnkk) määräämnen sten, että verkon kokonaskustannukset mnmotuvat, kun päästä-päähän
ole vastaanottotiloja.
Kiinteistd Oy Kalajoen Keidas Karhuojantie 2 90460 Oulunsalo TOIMINTAKERTOMUS TILIKAUDELTA 1.1.-3122009 1 Yleistai yhtidstii Yhtion omistamissa rakennuksissa huoneistot varattu osakkeenomistajille lomaasunnoiksi.
ler-modern isaatio * d *r n ax* *neäemw & rffi rffi # Sch ind Schindler {4ssxisä tu\*vmisu a**r3 \mj**nt rei
ler-modern saato {4ssxsä tu\*vmsu a**r3 \mj**nt Sch nd re * d *r n ax* *neäemw & rff rff # - " Schndler e,}:r:?tr,::.}a:::.?r!=+,t:",:2-:r?:.+rp;,,..*,. 21/:4?:&rä1 1tt''f &t!:/t F:*?: Haluatko hssstäs
Matemaattinen Analyysi
Vaasan yliopisto, kevät 2015 / ORMS1010 Matemaattinen Analyysi 7. harjoitus, viikko 17 R1 ma 16 18 D115 (20.4.) R2 ke 12 14 B209 (22.4.) 1. Määritä funktiolle f (x) 1 + 0,1x Taylorin sarja kehityskeskuksena
Talousmatematiikan perusteet
kevät 2019 / orms.1030 Talousmatematiikan perusteet 7. harjoitus, viikko 7 1. Oheisessa taulukossa on erään tuotteen hintaindeksejä. Laske hinnan keskimääräinen kasvuvauhti vuosina 2000-2005 vuosi indeksi
ääexgäl*ääääe ääg I ä*fre3 I äee iäa ää-äälgü il leääö ää; i ääs äei:ä ä+ i* äfä g u ;; + EF'Hi: 2 ä ; s i r E:;g 8ää-i iää: Ffärg',
!P9) (?trtrr('l rl 9< l ( r,r^iüfl.l ltrt ;ä r!! (r, t 6 t, rti 'le )( ö O RRZöF;ä x öö 1 74ö 9 jii\rtr lrl l jipäp. ldrrr_.^!. 9r. i P.^vä P. t!! v 7 ' '.ä e.q i >6l( t (p C ] ä il; ', +t n l ( e iei
Pienimmän Neliösumman menetelmä (PNS)
neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1
Matematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin)
Matematan ja tlastoteteen latos Johdatus dsreettn matemataan (Sysy 28 4. harjotus Ratasuja (Juss Martn 1. Kertomus Hotell Kosmosesta jatuu: Hotellyhtymän johdolta tul määräys laata luettelo asta mahdollssta
Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.
24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ
Täydelliset ja yksityiskohtaiset tiedot evästeistä
Dgtal Control Room Lmted Apex Plaza, Forbury Road, Readng, RG1 1AX Unted Kngdom t: +44 20 7129 8113 www.dgtalcontorlroom.com Täydellset ja ykstyskohtaset tedot evästestä Verkkosvusto tarkastettu: Pävämäärä:
Täydelliset ja yksityiskohtaiset tiedot evästeistä
Dgtal Control Room Lmted Apex Plaza, Forbury Road, Readng, RG1 1AX Unted Kngdom t: +44 20 7129 8113 www.dgtalcontorlroom.com Täydellset ja ykstyskohtaset tedot evästestä Verkkosvusto tarkastettu: Pävämäärä:
Autoalan Suhdannebarometri Kevät Automotive
Autoalan Suhdannebarometri 20 20 2 Tämänkertaiseen suhdannebarometriin vastasi 129 autoliikettä. Kysely tehtiin 16-18.3 välisenä aikana. Keväällä 20 autokauppiaat arvioivat kuluvan vuoden kaupan määräksi.3
Mat Lineaarinen ohjelmointi
Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot
Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt
FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-
Kertausta Talousmatematiikan perusteista Toinen välikoe
Kertausta Talousmatematiikan perusteista Toinen välikoe 1 Parametrit D Kysyntä (kpl/vuosi) h Yksikköylläpito-kustannus (euro/kpl/vuosi) K Tilauskustannus (euro) Tarkista aina yksiköiden yhteensopiminen
Huom 4 Jaksollisten suoritusten periaate soveltuu luonnollisesti laina- ja luottolaskelmiin. Lähtökohtaisena yhtälönä on yhtälö (14).
Auiteettiperiaate Huom 4 Jaksolliste suorituste periaate soveltuu luoollisesti laia- ja luottolaskelmii. Lähtökohtaisea yhtälöä o yhtälö (14). Auiteetti Nimellisarvoltaa K 0 suuruise laia maksuerä k, joka
r\rvio metsd maa n a rvosta
r\rv metsd maa n a rvsta Omstaja Skalatva 8B,B3ha Kunta l(yl Tla Rn: Ala, ha 791 t\32. Rahkla B:2 88,8 Laatjan allekrjtus TSPOO 25.8.219 Teemu Saarnen KTM,LKV Pertt Saarnen Lsdtetja MTT-I I(V Arv phjautuu
Turingin kone on kuin äärellinen automaatti, jolla on käytössään
4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa
Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut
Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss
Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen
Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen
REILUUS, SOSIAALISET PREFERENSSIT JA PELITEORIA
TAMPEREEN YLIOPISTO Talousteteden latos REILUUS, SOSIAALISET PREFERENSSIT JA PELITEORIA Kansantaloustede Pro gradu -tutkelma Marraskuu 2009 Ohaaat: Snkka Hämälänen Matt Tuomala Lsa Ekman TIIVISTELMÄ Tampereen
DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi
DEE-4000 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen ratkaisuiksi Yleistä asiaa lämmönjohtumisen yleiseen osittaisdifferentiaaliyhtälöön liittyen Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälön
2.7.4 Numeerinen esimerkki
2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun
Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C
Tehtävä a) sähkövirta = varausta per sekunti, I = dq dt =, 5 0 3 =, 5 0 3 C s protonin varaus on, 6 0 9 C Jaetaan koko virta yksittäisille varauksille:, 5 0 3 C s kpl = 9 05, 6 0 9 s b) di = Jd = J2πrdr,
Talousmatematiikan perusteet
Talousmatematiikan perusteet Mallintamisesta, esimerkkinä varastomallit Professori Ilkka Virtanen 10.4.001 1 Sisällysluettelo Varastomallit esimerkkinä mallintamisesta 1.Peruskäsitteet.Perusmalli (EOQ
BL20A0600 Sähkönsiirtotekniikka
BLA6 Sähkönsrtoteknkka Tehonaon laskenta Jarmo Partanen LT Energy Electrcty Energy Envronment Srtoverkkoen laskenta Verkon tehonaon laskemnen srron hävöt ännteolosuhteet ohtoen kuormttumnen verkon käyttäytymnen
SUOMEN MATKAILIJAYHDISTYS MATKAILUMAJAT TALVELLA
SUOMEN MATKAILIJAYHDISTYS MATKAILUMAJAT TALVELLA 1938 HIIHTOKURSSIT JA -NEUVONTA. HIIHDON OPETUSTA järjestetään Suomen Matkaljayhdstyksen tomesta Koln, Inarn ja Pallastunturn matkalumajolla sekä Pohjanhovssa
KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset
KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun
Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)
J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät
Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt
FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-
LVI-KOODI PIKAKOODI TUOTENUMERO TUOTENIMI LUJUUSLUOKKA STANDARDI
KANSISTOT BETONIKAIVON KANSISTOT AQUATOP Ø 600 mm 33 251 10 UN73 F60 D100 KEHYS, SÄÄDETTÄVÄ h= 190mm D 400 EN124 33 251 12 SK33 F60 D100H KEHYS, SÄÄDETTÄVÄ h= 270mm D 400 EN124 33 251 20 LU23 F60 D802L
Säilörehun korjuuajan vaikutus maitotilan talouteen -lyhyen aikavälin näkökulma
Sälörehun korjuuajan vakutus matotlan talouteen -lyhyen akaväln näkökulma Elna Vauhkonen Mastern tutkelma Helsngn Ylopsto Helsnk 13.5.2011 Tedekunta/Osasto Fakultet/Sekton Faculty Latos Insttuton Department
Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta
MAA5.2 Loppukoe 26.9.2012 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Olkoon vektorit
Tilinpäätöksen rekisteröinti Registrering av bokslut
PATENTTI- JA REKITERIALLITU PATENT- OC REGITERTYRELEN Tilinpäätöksen rekisteröinti Registrering av bkslut Kaupparekisteri andelsregistret Verhallinnsta saapuneet tiedt Uppgifter inkmna från skatteförvaltningen
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Montavoteoptmont ja teollsten prosessen hallnta Ylassstentt Juss Hakanen juss.hakanen@jyu.f syksy 2010 Interaktvset menetelmät Idea: päätöksentekjää hyödynnetään aktvsest ratkasuprosessn akana
Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko
ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen
Osaamistarpeiden muutos koulutuksen haasteena Kommentti työn, tuottavuuden ja kilpailukyvyn näkökulmasta
Osaamistarpeiden muutos koulutuksen haasteena Kommentti työn, tuottavuuden ja kilpailukyvyn näkökulmasta Matti Pohjola Aalto-yliopiston kauppakorkeakoulu Julkinen keskustelu työn murroksesta ja suuri osa
IrUl. L(r. \a,u j l,/"å"? i\, -à (*rl. rj -t. ehdoinx+y:40. xrj > v. XV ky. \ì i. ' -?"{ '?ç;: l+ r t {À- U i. 3,t (.", ) .1CI= \ i.
\u /"Å"? d--- ( + r À- ru v. V ky ç. Vsn Rmpuu Oy myy shuksen svuueen synyvän purun rk-neeks kheen ksus-kheeseen. ( Oss puru ehdään ämmykseen käyeävää peeä (2 s purus käyeään muvkmps-evyen vmsukseen. Vkss
Viime kerralta: Puheentuotto (vokaalit)
Vme elt: Puheetuotto volt Solle glottheäte Äätöväylä Suodtue tuloe ytyvä ää Vme elt: Kelly-Lochbum yhtälöt Mllet äätöväylää tuje ute vull: 3 Vme elt: Rtooetee ll ole -uod Kelly-Lochbum yhtälöde mue toetee
5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = =
TEHTÄVIEN RATKAISUT 5-1. a) A. Valitaan suunta vasemmalle positiiviseksi. Alustan suuntainen kokonaisvoima on ΣF = 19 N + 17 N -- 16 N = 0 N vasemmalle. B. Valitaan suunta oikealle positiiviseksi. Alustan
Harjoitukset (KOMPRIMOINTI)
Kmrmntharjtuksa (7) Harjtukset (KOMPRIMOINI) Kmressreja käytetään esmerkks seuraavssa svelluksssa: kaasujen srt, neumaattnen kuljetus anelmahult rsesstellsuudessa kaasureaktden, kaasujen nesteyttämsen
Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat:
Mat-.36 Tlastollnen päättely 7. harjotukset Mat-.36 Tlastollnen päättely 7. harjotukset / Tehtävät Aheet: Avansanat: ypoteesen testaus. lajn vrhe,. lajn vrhe, arhaton test, ylkäysalue, ylkäysvrhe, ypotees,
atr E e, öp = J';i i o bi O() 8.;.E ä '=OOtr 3:E B TJJ I.U EEäH ir> cö
o O() N r r F F TJJ.U e, P J' o b tr 8.. ä 'OOtr B äh r> c ...\ 'ffuä ut\'o' " "\.\ ' FF rl,c # _ xl r äää1 r *..s5 +_.P eä
Lineaarialgebra MATH.1040 / trigonometriaa
Lineaarialgebra MATH.1040 / trigonometriaa 1 Aste, 1 (engl. degree) Täsi kierros on 360 (360 astetta). Yksi aste jaetaan 60 kulmaminuuttiin (1 = 60 ) ja ksi kulmaminuutti jaetaan 60 kulmasekuntiin (1 =
OLMALAN KAAVA-ALUE, YLIVIESKA
L Vj Ylv p Pävämäää.. OLMALAN KAAVA-ALUE, YLIVIESKA LISÄSELVITYS RAKENNETTAVUUDESTA RAMB LL Pävämäää.. Lj M Sv Tj Vp K, P S-Pälä, K N Hyväyjä K Kl, Ylv p V LIITTEET L L Slm L . JOHDANTO Tämä lvy äydää