Koko: px
Aloita esitys sivulta:

Download ""

Transkriptio

1 Ž

2 ý

3

4 ú Í É

5 ÍÍ Í ý

6 í ž Í ž ř

7 í ď

8 í Í ú ň

9 Í ý

10 é ň í ř í ó ň í

11

12 Í Í Í Í Ď ÍÍ

13 Í

14 Á ý ý

15 Í Á í Á

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( ) Kertaus K1. a) OA =- i + j + k K. b) B = (, 0, 5) K. a) AB = (6 -(- )) i + ( - ) j + (- -(- 7)) k = 8i - j + 4k AB = 8 + (- 1) + 4 = 64+ 1+ 16 = 81= 9 b) 1 1 ( ) AB = (--(- 1)) i + - - 1 j =-i - 4j AB

Lisätiedot

JULKISEN HALLINNON DIGITAALISEN TURVALLISUUDEN JOHTORYHMÄN SIHTEERISTÖN (VAHTI-sihteeristö) JA ASIANTUNTIJAJAOSTON ASETTAMINEN

JULKISEN HALLINNON DIGITAALISEN TURVALLISUUDEN JOHTORYHMÄN SIHTEERISTÖN (VAHTI-sihteeristö) JA ASIANTUNTIJAJAOSTON ASETTAMINEN Asettamispäätös ÊÓñîïëëñððòðïòððòðïñîðïê Ö«µ ÝÌó± ± ïòíòîðïé Ö«µ ²»² JULKISEN HALLINNON DIGITAALISEN TURVALLISUUDEN JOHTORYHMÄN SIHTEERISTÖN (VAHTI-sihteeristö) JA ASIANTUNTIJAJAOSTON ASETTAMINEN Ê ±ª

Lisätiedot

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v. Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾. 24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ

Lisätiedot

L mm. Levyhylly 22mm. Lasihylly 8mm. värivaihtoehdot valkoinen harmaa erikoisvärit D

L mm. Levyhylly 22mm. Lasihylly 8mm. värivaihtoehdot valkoinen harmaa erikoisvärit D evyhylly 22mm värivaihtoehdot valkoinen harmaa erikoisvärit 22 mm 300 400 450 353 321 353 326 353 331 353 322 353 327 353 332 353 323 353 3 353 333 353 324 353 329 353 334 asihylly 8mm 8 materiaalina tavallinen

Lisätiedot

Liity mukaan. Liity siis mukaan! EU:n laajuiseen WeDOkumppanuusohjelmaan!

Liity mukaan. Liity siis mukaan! EU:n laajuiseen WeDOkumppanuusohjelmaan! Liity mukaan EU:n laajuiseen WeDOkumppanuusohjelmaan! Hyödy yhteisöstä, joka on sitoutunut hoidon, hoivan ja avun tarpeessa olevien ikäihmisten hyvinvoinnin ja arvokkuuden edistämiseen Yhdessä voimme saavuttaa

Lisätiedot

3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p.

3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p. Viiden oheisen 3D-kappaleen kuvannot kolmesta suunnasta katsottuna on esitetty seuraavalla sivulla. Merkitse oheiseen

Lisätiedot

YHDESSÄOLOA, TUKEA JA VIRKISTYSTÄ AVOIMIA JA MAKSUTTOMIA

YHDESSÄOLOA, TUKEA JA VIRKISTYSTÄ AVOIMIA JA MAKSUTTOMIA ASUKASTUVAT YHDESSÄOLOA, TUKEA JA VIRKISTYSTÄ A sukastuvat ovat kaikille avoimia ja maksuttomia oleskelu-, kokoontumis- ja harrastepaikkoja. Asukastuvat sijaitsevat lähiöissä, kävelymatkan päässä kodeista.

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 5.6 Alternanttikoodin dekoodaus, kun esiintyy pyyhkiytymiä ja virheitä Joissakin tilanteissa vastaanotetun sanan kirjainta ei saa tulkittua

Lisätiedot

1.6. Yhteen- ja vähennyslaskukaavat

1.6. Yhteen- ja vähennyslaskukaavat Yhteen- ja vähennyslaskukaavoiksi sanotaan trigonometriassa niitä kaavoja, jotka sisältävät kehitelmät kahden reaaliluvun summan tai erotuksen trigonometriselle funktiolle, kuten sin( + y) sin cos y +

Lisätiedot

Viikon aiheet. Funktion lineaarinen approksimointi

Viikon aiheet. Funktion lineaarinen approksimointi Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen

Lisätiedot

FYSI1162 Sähkö / Piirianalyysi syksy kevät /7 Laskuharjoitus 6: Vaihtovirta-analyysin perusteet

FYSI1162 Sähkö / Piirianalyysi syksy kevät /7 Laskuharjoitus 6: Vaihtovirta-analyysin perusteet FYSI116 Sähkö / Pranalyy yky 14 - kevät 15 1 /7 akharjot 6: ahtovrta-analyyn perteet Tehtävä 1. Olkoon nmotonen jännte (t) = 8 co(1t 6º). Tehtävä 1 / 1 8 6 4 - -4-6 -8-1,,4,6,8 1 1, 1,4 1,6 1,8,,4,6,8

Lisätiedot

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.3 SÄHKÖTKNIIKK.5. Kimmo Silvonen Tentti: tehtävät,3,5,7,8. välikoe: tehtävät,,3,4,5. välikoe: tehtävät,7,8,9, Oletko muistanut vastata palautekyselyyn Voit täyttää lomakkeen nyt.. aske jännite U. =Ω,

Lisätiedot

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA

KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA Aloita kertaamalla hilan indeksointi niin, että osaat kuutiollisen kiteen tasojen ja suuntien Miller-indeksit. Vektorit määritellään yleisessä muodossa r

Lisätiedot

gallup gallup potentiaali ja voima potentiaali ja voima potentiaali ja voima potentiaali ja voima

gallup gallup potentiaali ja voima potentiaali ja voima potentiaali ja voima potentiaali ja voima aup Kuinka pajon käytät kurikirjaa (tai jotain muuta oppikirjaa)? a) Tututun aiheeeen ennen uentoja b) Luen kirjaa uentojen jäkeen c) Luen oppikirjaa ähinnä akareita tehdeä d) n koke oppikirjaan aup Kappae

Lisätiedot

Nostokorkeus: 0,22 mm/k

Nostokorkeus: 0,22 mm/k TOUR & ANDERSSON HYDRONICS AB TERMORETT TRV 300 1-10-5 FI ostaatit 2000.04 Certification of Registration Number 2125 and 2125 M Certified by SP QUALITY AND ENVIRONMENT SYSTEM Tekninen kuvaus Käyttöalue:

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

Metsä Tissue Oyj ı 10/2014 ı 1

Metsä Tissue Oyj ı 10/2014 ı 1 Metsä Tissue Oyj ı 10/2014 ı 1 SAGA ja Metsä Tissue Yksi maailman johtavista tiivispaperin valmistajista SAGA-valikoimaan kuuluvat korkealaatuiset leivin- ja ruoanlaittopaperit koti- ja ammattikeittiöihin

Lisätiedot

ÍÑÐ ÓËÍÔËÑÒÒÑÍ ÔËÑÒÒÑÍóïðîîîï

ÍÑÐ ÓËÍÔËÑÒÒÑÍ ÔËÑÒÒÑÍóïðîîîï ï ß ÕßÌßËÔËÔ ÌÛ ÍÑÐ ÓËÍÔËÑÒÒÑÍ ÔËÑÒÒÑÍóïðîîîï ÕÑØÜÛ ïð ÖÑÛÒÍËËóÐÑÔÊ Ö\ÎÊ óõßßê ÎÛ ÌÌ ÖÑÛÒÍËËóÍÑÌÕËÓßóØËØÓßÎ óõëñîûêßßîßóðñôê Ö\ÎÊ ðïòðéòîðïì ó õõõ µ³ ÕÑËÔÐ ï ÓóÐ ÓóÐ ð ÖÑÛÒÍËË Ô ÒÖßóßËÌÑßÍÛÓß ðéæìë ðéæìë

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

Sinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla

Sinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla LIITE I Vaihtosähkön perusteet Vaihtojännitteeksi kutsutaan jännitettä, jonka suunta vaihtelee. Vaihtojännite on valittuun suuntaan nähden vuorotellen positiivinen ja negatiivinen. Samalla tavalla määritellään

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Luento 7. DEE Piirianalyysi Risto Mikkonen

Luento 7. DEE Piirianalyysi Risto Mikkonen DEE- Pranalyys Luento 7 Luento 6 - Recap Johdatus vahtosähköön snmuotoset suureet Tehollsarvo Passvset prkomponentt mpedanss Laskenta hetkellsarvolla Luento 7 - ssältö Osotnlaskenta Knteä tehollsarvon

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.3 SÄHKÖTKNIIKK..999 Kimmo Silvonen Tentti: tehtävät,3,4,8,. välikoe: tehtävät,,3,4,5. välikoe: tehtävät,7,8,9, Oletko muistanut vastata palautekyselyyn Voit täyttää lomakkeen nyt.. aske virta I. =Ω,

Lisätiedot

p q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2. x 1 y 1 z 1 x 2 y 2 z 2

p q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2. x 1 y 1 z 1 x 2 y 2 z 2 º ÅÓÒ ÙÐÓØØ Ø Ö ÒØ Ð Ð ÒØ º½ Â Ø ÙÚÙÙ Ó ØØ Ö Ú Ø Ø Ù Ò ÑÙÙØØÙ Ò ÙÒ Ø Ó Ò Ö ÒØ Ð Ð ÒØ ÐÑÔ Ø Ð ÓÒ Ò Ô Ò ÙÒ Ø Ó T(x, y, z.t) ÄÑÔ Ø Ð Ö ÒØØ ÐÑÓ ØØ Ñ Ò ÙÙÒØ Ò ÐÑÔ Ø Ð Ú ÚÓ Ñ ÑÑ Ò Ù Ò Ð ÐÑÔ Ø Ð Ö ÒØØ ½½ ÃÓÓÖ

Lisätiedot

Kul Aircraft Structural Design (4 cr) Assignment 3 EVALUATION - Arviointi

Kul Aircraft Structural Design (4 cr) Assignment 3 EVALUATION - Arviointi Kul-34.4300 Aircraft Structural Design (4 cr) Assignment 3 EVALUATION - Arviointi 2016 Page 2 Harjoitustyön 3 opiskelijaorganisaation Autorating Harjoitustyön 3 opiskelijaorganisaation raportin arviointi

Lisätiedot

Käyttöoppaasi. KONICA MINOLTA CF9001

Käyttöoppaasi. KONICA MINOLTA CF9001 Voit lukea suosituksia käyttäjän oppaista, teknisistä ohjeista tai asennusohjeista tuotteelle KONICA MINOLTA CF9001. Löydät kysymyksiisi vastaukset KONICA MINOLTA CF9001 käyttöoppaasta ( tiedot, ohjearvot,

Lisätiedot

OSALLISTUMIS- JA ARVIOINTISUUNNITELMA (MRL 63 )

OSALLISTUMIS- JA ARVIOINTISUUNNITELMA (MRL 63 ) OSALLISTUMIS- JA ARVIOINTISUUNNITELMA (MRL 63 ) Ak 5186 KANKAANPÄÄN KAUPUNKI 16.8.2016 ASEMAKAAVA JA ASEMAKAAVAN MUUTOS Kankaanpään kaupungin 1. kaupunginosan (Keskus) korttelin 26 osaa koskeva asemakaavan

Lisätiedot

À Ö Ö Ð Ù Ø ÅÖ Ø ÐÑ ÙÒ Ø Ó : Æ Æ Ñ (Ò) = O(ÐÓ Ò) ÓÒ Ø Ð ÓÒ ØÖÙÓ ØÙÚ Ó ÐÐ Ò Ò ÙÒ Ø Ó Ó ÙÚ Ñ Ö ÓÒÓÒ ½ Ò (Ò) Ò ÒÖ ØÝ ÐÐ ÓÒ Ð ØØ Ú Ø Ð O( (Ò))º Ä Ù Å Ø Ø

À Ö Ö Ð Ù Ø ÅÖ Ø ÐÑ ÙÒ Ø Ó : Æ Æ Ñ (Ò) = O(ÐÓ Ò) ÓÒ Ø Ð ÓÒ ØÖÙÓ ØÙÚ Ó ÐÐ Ò Ò ÙÒ Ø Ó Ó ÙÚ Ñ Ö ÓÒÓÒ ½ Ò (Ò) Ò ÒÖ ØÝ ÐÐ ÓÒ Ð ØØ Ú Ø Ð O( (Ò))º Ä Ù Å Ø Ø Ì ÔÙÑ ØØÓÑÙÙ Ì Ó Ø ÐÐÒ ÓÒ ÐÑ ÓØ ÓÚ Ø Ô Ö ØØ Ö Ø Ú ÑÙØØ Ó Ò Ö Ø Ù Ú Ø Ò Ò Ô Ð ÓÒ Ø Ø Ð ØØ Ö Ø Ù ÓÐ ÝØÒÒ ÐÚÓÐÐ Ò Òº Í ÑÑ Ø ÓÐ ØØ Ú Ø ØØ ÆȹØÝ ÐÐ Ø ÔÖÓ Ð Ñ Ø ÓÚ Ø Ø ÔÙÑ ØØÓÑ ÒØÖ Ø Ð µ ÑÙØØ ØØ ÓÐ ØÓ Ø ØØÙº

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi. 10.11.2006 1. Pituushyppääjä on edellisenä vuonna hypännyt keskimäärin tuloksen. Valmentaja poimii tämän vuoden harjoitusten yhteydessä tehdyistä muistiinpanoista satunnaisesti kymmenen harjoitushypyn

Lisätiedot

Ennen Roihua Kipinöi, leirin jälkeen nautitaan Hiilloksista

Ennen Roihua Kipinöi, leirin jälkeen nautitaan Hiilloksista Ennen Roihua Kipinöi, leirin jälkeen nautitaan Hiilloksista Kuva: Antti Kurkinen Ei-Vielä-Partiolaiset mukaan Roihuamaan! Lippukunnat saavat Sp:n lippukuntapostin mukana materiaalia Roihun ja partion markkinointitapahtuman

Lisätiedot

OSALLISTUMIS- JA ARVIOINTISUUNNITELMA (MRL 63 )

OSALLISTUMIS- JA ARVIOINTISUUNNITELMA (MRL 63 ) OSALLISTUMIS- JA ARVIOINTISUUNNITELMA (MRL 63 ) Ak 5185 KANKAANPÄÄN KAUPUNKI 16.8.2016 ASEMAKAAVA JA ASEMAKAAVAN MUUTOS Kankaanpään kaupungin 1. kaupunginosan (Keskus) korttelia 47 sekä katualuetta ja

Lisätiedot

"h 'ffi: ,t^-? ùf 'J. x*r:l-1. ri ri L2-14. a)5-x:8-7x b) 3(2x+ l) :6x+ 1 c) +* +5 * I : 0. Talousmatematiikan perusteet, onus to o.

h 'ffi: ,t^-? ùf 'J. x*r:l-1. ri ri L2-14. a)5-x:8-7x b) 3(2x+ l) :6x+ 1 c) +* +5 * I : 0. Talousmatematiikan perusteet, onus to o. 1 Vaasan yopso, kev a 0 7 Taousmaemakan perusee, onus o o R1 R R3 R ma 1-1 ma 1-1 r 08-10 r -1 vkko 3 F9 F53 F5 F53 1.-0..01 R5 R o R7 pe R8 pe - r-1 08-10 10-1 F53 F10 F5 F9 1. Sevennä seuraava ausekkee.

Lisätiedot

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014 763333A KIINTEÄN AINEEN FYSIIKKA Rtkisut 1 Kevät 014 1. Tehtävä: Lske, kuink mont hilpistettä on yksikkökopiss ) yksinkertisess kuutiollisess, b) tkk:ss j c) pkk:ss. (Ot huomioon, että esimerkiksi yksikkökopin

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

Osatentti

Osatentti Osatentti 2.8.205 Nimi: Opiskelijanumero: Ohjeet: Vastaa kysymyspaperiin ja kysymyksille varattuun tilaan. Laskin ei ole sallittu. Tenttikaavasto jaetaan. Kaavastoon EI merkintöjä. Palauta kaavasto tämän

Lisätiedot

HELIA 1 (11) Outi Virkki Käyttöliittymät ja ohjelmiston suunnittelu

HELIA 1 (11) Outi Virkki Käyttöliittymät ja ohjelmiston suunnittelu HELIA 1 (11) Luento 4 Käytettävyyden tuottaminen... 2 Käytettävyys ja systeemityöprosessi... 3 Määrittely... 3 Suunnittelu... 3 Toteutus ja testaus... 3 Seuranta... 3 Kriittiset tekijät käytettävyyden

Lisätiedot

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia 1 / 22 Luennon sisältö Potentiaalienergia Konservatiiviset voimat

Lisätiedot

Thlousmatematiikan perusteet, orvrs ro:o

Thlousmatematiikan perusteet, orvrs ro:o Tampereen kesäylopsto, kevät 2015 Thlousmatematkan perusteet, orvrs ro:o 3. harjotus, (la 28.11.2015) 1. Tehdas valmstaa vkossa tuotetta määrän q jamyy sen hntaan p (euroa/tuote). Kysyntäfunkto on p(q):

Lisätiedot

TOT%13 ALLE/YLI TOT EUR 86,7 % 257,2% 100,0 % 100,3 o/o ,1% 92,4% 37,0 % 89,8 %

TOT%13 ALLE/YLI TOT EUR 86,7 % 257,2% 100,0 % 100,3 o/o ,1% 92,4% 37,0 % 89,8 % RAPORTTI TALOUDEN TOTEUTUMASTA ajalla 1.1.-31.12.213 29.4.214 TA YHT 213 TOT 213 1.1-31.12.213 1.1.-31.'t2.212 212t213 HALLINTOPALVELUT VALMISTUS OMAAN KAYTTOON 656 6 57 54 5 768 1 1 7 29 8 27 9 46 3 1

Lisätiedot

Mapu 1. Laskuharjoitus 3, Tehtävä 1

Mapu 1. Laskuharjoitus 3, Tehtävä 1 Mapu. Laskuharjoitus 3, Tehtävä Lineaarisessa approksimaatiossa funktion arvoa lähtöpisteen x 0 ympäristössä arvioidaan liikkumalla lähtöpisteeseen sovitetun tangentin kulmakertoimen mukaisesti: f(x 0

Lisätiedot

1. Kaikki kaatuu, sortuu August Forsman (Koskimies)

1. Kaikki kaatuu, sortuu August Forsman (Koskimies) olo q» date reliioso olo 7 K (2003) KE2a7 1. Kaikki kaatuu, sortuu uust Forsma (Koskimies) olo 14 olo 21 3 3 3 3 3 3 3 3 Ÿ ~~~~~~~~~~~ π K (2003) KE2a7 uhlakataatti (kuoro) - 2 - Kuula: - 3 - uhlakataatti

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat

Lisätiedot

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1 Epäyhtälötehtävie ratkaisuja. osa, ks. Solmu 2/200. Kahde positiivise luvu harmoie, geometrie, aritmeettie ja kotraharmoie keskiarvo määritellää yhtälöillä H = 2 +, G = uv, A = u + v 2 u v ja C = u2 +

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

Puzzle-SM Karsintakierros. 11. huhtikuuta 7. toukokuuta

Puzzle-SM Karsintakierros. 11. huhtikuuta 7. toukokuuta Puzzle-SM Karsintakierros. huhtikuuta 7. toukokuuta Karsintatehtäviä on viisitoista, joista uutaassa on a- ja b-kohta. Nää puzzlet ovat työlääpiä kuin loppukilpailutehtävät, koska ratkonta-aikaa on oninkertaisesti.

Lisätiedot

Visuaalinen ilme (luonnos)

Visuaalinen ilme (luonnos) Työterveys Helsinki Visuaalinen ilme (luonnos) 24.11.2015 1 Työterveys Helsingin ilmeessä sovelletaan Helsingin kaupungille luotuja visuaalisen ilmeen elementtejä uudella kuosilla, tunnuksella ja väripaletilla

Lisätiedot

TI TestGuard. Pikaopas

TI TestGuard. Pikaopas TI TestGuard Pikaopas Ennen TI TestGuarden käyttöä TI TestGuard poistaa tiedot oppilaan laskimesta täydellisesti, se ei vain kytke niitä pois käytöstä. Kehota oppilaitasi tekemään sovelluksista ja RAM-muistin

Lisätiedot

Luento 9: Potentiaalienergia

Luento 9: Potentiaalienergia Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä Luennon sisältö Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Elektroniikan ja nanotekniikan laitos (ELE) Syksy 2017 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

1. Osoita, että annetut funktiot ovat seuraavien differentiaaliyhtälöiden ratkaisufunktioita:

1. Osoita, että annetut funktiot ovat seuraavien differentiaaliyhtälöiden ratkaisufunktioita: 760P FYSIIKAN MATEMATIIKKAA Krtausthtäviä välikoksn, sl 008 Näitä laskuja i laskta laskupäivissä ikä näistä saa laskuharjoituspistitä Laskut on tarkoitttu laskttaviksi itsksn, kavriporukalla tai Fsiikan

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

NAANTALIN KAUPUNKI Myytävä lomarakennuspaikka Pakinaisten saaressa

NAANTALIN KAUPUNKI Myytävä lomarakennuspaikka Pakinaisten saaressa Pakinaisen luovutettava lomarakennuspaikka . Kiinteistö 529-528-1-102 Piippumäki, Pakinainen NAANTALIN KAUPUNKI Myytävä lomarakennuspaikka Pakinaisten saaressa NAANTALIN KAUPUNKI Myytävä lomarakennuspaikka

Lisätiedot

TI -grafiikkalaskinten ohjelmistot ja kieliversiot

TI -grafiikkalaskinten ohjelmistot ja kieliversiot TI -grafiikkalaskinten ohjelmistot ja kieliversiot TI-grafiikkalaskinten ohjelmistot TI-grafiikkalaskinten ohjelmistojen asennusohjeet Kieliversioiden asennusohjeet TI-83 Plus- ja TI-83 Plus Silver Edition

Lisätiedot

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi DEE-4000 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen ratkaisuiksi Yleistä asiaa lämmönjohtumisen yleiseen osittaisdifferentiaaliyhtälöön liittyen Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälön

Lisätiedot

el. konsentraatio p puolella : n p = N c e (E cp E F ) el. konsentraatio n puolella : n n = N c e (E cn E F ) n n n p = e (Ecp Ecn) V 0 = kt q ln (

el. konsentraatio p puolella : n p = N c e (E cp E F ) el. konsentraatio n puolella : n n = N c e (E cn E F ) n n n p = e (Ecp Ecn) V 0 = kt q ln ( ÈÙÓÐ Ó ÓÑÔÓÒ ÒØØ Ò Ô ÖÙ Ø Ø À Ì Øº ½º È ÖÖ ÔÒ¹ÔÙÓÐ Ó Ð ØÓ Ò Ò Ö ÚÝ Ñ ÐÐ ÙÒ ÙÐ Ó Ò Ò ÒØØ ÓÒ ÒÓÐÐ º ÂÓ ÓÒØ Ø ÔÓØ ÒØ Ð Ò V 0 Ý ØÐ µ ÃÙÚ Ò ÚÙÐÐ µ Ù ÓÚ ÖØ Ý ØÐ Ø Ô¹ Ò¹ØÝÝÔ Ø Ò Ñ Ø Ö Ð Ò Ò Ö Ø ÓØ Ô¹ÔÙÓÐ ÐÐ ÙÙÖ

Lisätiedot

Matematiikka B1 - avoin yliopisto

Matematiikka B1 - avoin yliopisto 28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan

Lisätiedot

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Konseptitesti 1 Kysymys

Lisätiedot

Ratkaisut vuosien tehtäviin

Ratkaisut vuosien tehtäviin Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2

Lisätiedot

OA5 Yli esteiden Nimi

OA5 Yli esteiden Nimi O5 A Yli esteiden Nimi Kappale 1 1. Täydennä edeltävä ja seuraava luku. 3 999 9 499 5 729 4 001 9 501 5 731 4 000 9 500 5 730 44 999 17 559 20 998 45 001 17 561 21 000 45 000 17 560 20 999 2. Jatka lukujonoja.

Lisätiedot

MATEMATIIKAN PERUSKURSSI II

MATEMATIIKAN PERUSKURSSI II MTEMTIIKN PERUKURI II Harjoitustehtäviä kevät 26. Tutki, suppenevatko seuraavat lukujonot: a) d) ( 9k 7 ) 3k + 2 4k 2, b) 5k + 7 k (4x + ) 3 dx, e) ( 2 ln(k 3 ) k 3e k ), c) cos(3πx) dx, f) k 3 9x 2 +

Lisätiedot

OSALLISTUMIS- JA ARVIOINTISUUNNITELMA (MRL 63 )

OSALLISTUMIS- JA ARVIOINTISUUNNITELMA (MRL 63 ) OSALLISTUMIS- JA ARVIOINTISUUNNITELMA (MRL 63 ) Ak 5190 KANKAANPÄÄN KAUPUNKI 22.11.2016 ASEMAKAAVA Halmeen teollisuusalueen laajennuksen eteläosa Kankaanpään kaupungin 4. kaupunginosaa (Tapala), tiloja

Lisätiedot

Sonaatti A- klarinetille ja pianolle. D- duuri

Sonaatti A- klarinetille ja pianolle. D- duuri Sonaatti A- klarinetille a ianolle D- duuri 1970-2014 aakko Tuomikoski Sonaatti A- klarinetille a ianolle D- duuri Tämän klarinettisonaatin ohana ovat vuosina 1970-2002 säveltämäni sonaatti huilulle a

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

POM-opinnot erityisopettajaopiskelijoille. Lisätietoja: Johanna Kainulainen p

POM-opinnot erityisopettajaopiskelijoille. Lisätietoja: Johanna Kainulainen p POM-opinnot erityisopettajaopiskelijoille Lisätietoja: Johanna Kainulainen johanna.kainulainen@jyu.fi p. 040 5233913 Perusopetuksessa opetettavien aineiden ja aihekokonaisuuksien monialaiset opinnot (POM)

Lisätiedot

7.4 PERUSPISTEIDEN SIJAINTI

7.4 PERUSPISTEIDEN SIJAINTI 67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli

Lisätiedot

Stabiloivat synkronoijat ja nimeäminen

Stabiloivat synkronoijat ja nimeäminen Stabiloivat synkronoijat ja nimeäminen Mikko Ajoviita 2.11.2007 Synkronoija Synkronoija on algoritmi, joka muuntaa synkronoidun algoritmin siten, että se voidaan suorittaa synkronoimattomassa järjestelmässä.

Lisätiedot

KYMENLAAKSON LIITTO. Regional Council of Kymenlaakso. Kotka Seurantatietoja Euroopan alukehitysrahoituksen (EAKR) käytöstä maakunnittain

KYMENLAAKSON LIITTO. Regional Council of Kymenlaakso. Kotka Seurantatietoja Euroopan alukehitysrahoituksen (EAKR) käytöstä maakunnittain KYMENLAAKSON LIITTO Regional Council of Kymenlaakso. "*.*'*. ' * *t,*. *', '*., '*. "., '1'. * *' *' Kotka 9.12.2011 Seurantatietoja Euroopan alukehitysrahoituksen (EAKR) käytöstä maakunnittain KymenlaaksC),on

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Ajankohtaista FuksiProffaBuffa Järjestetään

Lisätiedot

MATEMATIIKAN PERUSKURSSI II

MATEMATIIKAN PERUSKURSSI II MTEMTIIKN PERUKURI II Harjoitustehtäviä kevät 17 1. Tutki, suppenevatko seuraavat lukujonot: a) d) ( k ) + 5 k, b) k 1 x 5 dx, e) ( ln(k + 1) k ), c) k 1 cos(πx) dx, f) k e x dx, 1 k e k k kx dx.. Olkoon

Lisätiedot

Puzzle SM Loppukilpailu. Oulu Ratkonta-aika: 1 10: 1 tunti 11 20: 1 tunti. Kaikki tehtävät ovat 100 pisteen arvoisia

Puzzle SM Loppukilpailu. Oulu Ratkonta-aika: 1 10: 1 tunti 11 20: 1 tunti. Kaikki tehtävät ovat 100 pisteen arvoisia Puzzle SM 00 Loppukilpailu Oulu 7.6.00 Ratkonta-aika: 0: tunti 0: tunti Kaikki tehtävät ovat 00 pisteen arvoisia Suomen puzzle-harrastajat Juha Hyvšnen / RISTIKKOTUUMIN Puzzle SM 00 Loppukilpailu Varjokuva

Lisätiedot

Sumeri Aleksi Sahala

Sumeri Aleksi Sahala Sumeri 7.5.2013 Aleksi Sahala Verbit Yleistä Sanaluokkana suljettu Yhdeksän epäsäännöllistä verbiä Perfektiivi tunnusmerkitön Monipuolinen finiitti- ja infinitiivi/partisiippitaivutus Kieliopilliset taivutuskategoriat

Lisätiedot

ı ANsLıAToııvııı unta

ı ANsLıAToııvııı unta EDUSKUNTA ı ANsLıAToııvııı unta ı=öytäı ırja 9/zoıs Aika: Torstai 9.6.2016 Paikka: Läsnä: Puhemiesneuvoston kokoushuone Puhemies Maria Lohela I varapuhemies Mauri Pekkarinen II varapuhemies Paula Risikko,

Lisätiedot

Hannu Pohjannoro VALKOINEN HUONE. Kolme laulua Johanna Venhon teksteihin Three Songs to Texts by Johanna Venho

Hannu Pohjannoro VALKOINEN HUONE. Kolme laulua Johanna Venhon teksteihin Three Songs to Texts by Johanna Venho Hannu ohannoro VALKOINEN HONE Kolme laulua ohanna Venhon teksteihin Three Songs to Texts y ohanna Venho lauluäänelle a ianolle or voice and iano 200 ' (korkea versio / high version) OR ROMOTION ONLY Valkoinen

Lisätiedot

Espoon kunnan matkustussääntö

Espoon kunnan matkustussääntö N:o 10 Espoon kunnan matkustussääntö Espoon kunnanvaltuuston hyväksymä kesäkuun 26 päivänä 1962. YLEISET MÄÄRÄYKSET 1 Kunnan luottamusmiehille sekä viranhaltijoille ja muille palkansaajille, joita tässä

Lisätiedot

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218 Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

Kera osayleiskaava, luonnos

Kera osayleiskaava, luonnos Kera osayleiskaava, luonnos LIITTEET Liite 1 Ortokuva v.2011 Liite 2 Opaskartta v.2013 Liite 3 Liite 4 Liite 5 Espoon kaupungin maanomistus Rakennuskieltoalue Kiinteistörajat Liite 6 Pyöräilyn tavoiteverkko

Lisätiedot

Sähkötekniikka ja elektroniikka

Sähkötekniikka ja elektroniikka Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Vaihtovirta ja osoitinlaskenta Luento Sinimuotoinen virta ja jännite Tehollisarvo, huippuarvo, vaihekulma Ajan vai taajuuden funktiona? Viime viikon kytkentäilmiöt

Lisätiedot

TA3a Makrotalousteoria, kevät 2017 Harjoitus 1

TA3a Makrotalousteoria, kevät 2017 Harjoitus 1 TA3a Makrotalousteoria, kevät 2017 Harjoitus 1 Heikki Korpela 2. huhtikuuta 2017 Tehtävä 1. Mihin menojen kategoriaan (yksityinen kulutus, investoinnit, julkiset menot, vienti tai tuonti) seuraavat tapahtumat

Lisätiedot

Componenta Oyj:n välitilinpäätös

Componenta Oyj:n välitilinpäätös Componenta Oyj:n välitilinpäätös 1.1. - 30.6.2003 jé Tuloslaskelma OMMP N=J=S OMMO N=J=S OMMO N=JNO iááâéî~áüíç VPIR VTIO NUMIU iááâéî~áüççå=ãììíçëi=b JPIU JVIO JSIT iááâéíçáãáåå~å=ãììí=íìçíçí MIQ MIR

Lisätiedot

ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø º Ñ Ö ÒÖ ÔÙÙÒ ÑÖ Ø ÐÑ Ú ØØ Ø Ò ÒÖ ÔÙÙ ÓÒ Ó Ó ØÝ Ø ÓÐÑÙ Ó ÓÒ Ð Ó ÓÒ Ú Ò Ó Ð ÔÙÙ ÓÚ Ø ÑÝ ÒÖ ÔÙ Ø º Ë ÚÓ Ò Ö Ó ØØ ÙÓÖ Ò Ø Ò ÖÝÌÖ ÑÔØÝ Æ

ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø º Ñ Ö ÒÖ ÔÙÙÒ ÑÖ Ø ÐÑ Ú ØØ Ø Ò ÒÖ ÔÙÙ ÓÒ Ó Ó ØÝ Ø ÓÐÑÙ Ó ÓÒ Ð Ó ÓÒ Ú Ò Ó Ð ÔÙÙ ÓÚ Ø ÑÝ ÒÖ ÔÙ Ø º Ë ÚÓ Ò Ö Ó ØØ ÙÓÖ Ò Ø Ò ÖÝÌÖ ÑÔØÝ Æ ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø º º ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø Ø ¹ÑÖ ØØ ÐÝ º¾µ ÚÓ Ú Ø Ø ÑÝ Ø Ò ÑÖ Ø ÐØÚ Æ Ñ ÒØÝ ÑÝ ³ ³¹Ñ Ö Ò Ó ÐÐ ÔÙÓÐ ÐÐ º Ë Ò ÓÐ ÐÐ ØØÝ ØÝÔ ¹ÐÝ ÒØ º½µº ¾ ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø º Ñ Ö ÒÖ ÔÙÙÒ ÑÖ Ø ÐÑ Ú ØØ Ø Ò ÒÖ

Lisätiedot

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195 Johdatus yliopistomatematiikkaan JYM, Syksy2015 1/195 Joukko ja alkio Määritelmä Joukko tarkoittaa kokoelmaa olioita, joita sanotaan joukon alkioiksi. Lisäksi vaaditaan, että jokaisesta oliosta on voitava

Lisätiedot

HELIA 1 (13) Outi Virkki Tietokantasuunnittelu

HELIA 1 (13) Outi Virkki Tietokantasuunnittelu HELIA 1 (13) Luento 2.9 Tietohakemistot 2 2 Coddin 12 säännöstä RDBMS:lle... 3 Oraclen tietohakemistonäkymät (osa) 4 Yleiset 4 Taulut 4 Säännöt 4 Näkymät 4 Synonyymit 5 Talletetut rutiinit 5 Käyttöoikeudet

Lisätiedot

Componenta Oyj:n osavuosikatsaus

Componenta Oyj:n osavuosikatsaus Componenta Oyj:n osavuosikatsaus 1.1. - 30.9.2003 jé Tuloslaskelma OMMP N=J=V OMMO N=J=V OMMO N=J=NO iááâéî~áüíç NPNIT NPSIP NUMIU ==iááâéî~áüççå=ãììíçëi=b JPIQ JTIT JSIT iááâéíçáãáåå~å=ãììí=íìçíçí MIS

Lisätiedot

J 2 = J 2 x + J 2 y + J 2 z.

J 2 = J 2 x + J 2 y + J 2 z. FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,

Lisätiedot

b) '5555z-?:lo -1:7 ' 5 ',r+i (i-å) n- r*or i+i- sl4-4 s-5-''- (å) 2:+ 2 r t I 3-3 a)23+42 Ð'+., (, -:), u)j++ b)2-1 "i

b) '5555z-?:lo -1:7 ' 5 ',r+i (i-å) n- r*or i+i- sl4-4 s-5-''- (å) 2:+ 2 r t I 3-3 a)23+42 Ð'+., (, -:), u)j++ b)2-1 i Tampereen kesäyliopisto, kevät 20 1 5 Thlousmatematiikan perusteet, orrr s ro30 L. harjoitus, (la 12.11.2015) 1. Laske seuraavat laskut. Laske kukin lasku ensin käsin þnää ja paperia käyttäen. Anna vastaukset

Lisätiedot

È Ú Ö Ù ÆÈ ÁÁ Ë ÑÓ Ò Ó Ò Ý ÝÑÝ ÚÙØ ØØ Ò ØÝ Ø ÙÒ ËØ Ô Ò ÓÓ Ä ÓÒ Ä Ú Ò ØØ Ð ÚØ ÆȹØÝ ÐÐ ÝÝ Ò ØØ Òº µ º Ù Ø ÙÙØ ¾¼¼ ¾»

È Ú Ö Ù ÆÈ ÁÁ Ë ÑÓ Ò Ó Ò Ý ÝÑÝ ÚÙØ ØØ Ò ØÝ Ø ÙÒ ËØ Ô Ò ÓÓ Ä ÓÒ Ä Ú Ò ØØ Ð ÚØ ÆȹØÝ ÐÐ ÝÝ Ò ØØ Òº µ º Ù Ø ÙÙØ ¾¼¼ ¾» È Ú Ö Ù ÆÈ Á à РÐÙÓ Ø È ÆÈ ÒÝØØÚØ ØÝ Ò Ö Ð ÐØ Ë ÐÚ Ø È ÆȺ µ È ÓÒ Ð ÐÙÓ Ó Ð ÓÒ ÙÙÐÙÑ Ò Ò Ð Ò ÚÓ Ò Ö Ø Ø ÔÓÐÝÒÓÑ Ø ÖÑ Ò Ø ÐÐ ÌÙÖ Ò Ò ÓÒ ÐÐ º µ ÆÈ ÓÒ Ð ÐÙÓ Ó Ð ÓÒ ÙÙÐÙÑ Ò Ò Ð Ò ÚÓ Ò Ú Ö Ó ÔÓÐÝÒÓÑ Ð Ð ÓÒ

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa

Lisätiedot

Ð ØÖÓÒ Ò Ú Ø Ò Ô ÓÒ Ö Ø Ð ØÖÓÒ Ò Ò Ú Ð ÙÒ ÝÐ ÓÔ ØÓ ÖÑ Ò ØÙØ ÑÙ ¹ Ð ØÓ ½ ¼¹ÐÙÚÙÐÐ Ù Ø Ó ÐÙ Ð ØÖÓÒ Ô Ð ºËº ÓÙ Ð Ø ½ ¾ Ñ Ö Ú Ø Ö Ò Ñ Ò ÓÒ Ò ÚÙÓÖÓÚ ÙØÙ Ø

Ð ØÖÓÒ Ò Ú Ø Ò Ô ÓÒ Ö Ø Ð ØÖÓÒ Ò Ò Ú Ð ÙÒ ÝÐ ÓÔ ØÓ ÖÑ Ò ØÙØ ÑÙ ¹ Ð ØÓ ½ ¼¹ÐÙÚÙÐÐ Ù Ø Ó ÐÙ Ð ØÖÓÒ Ô Ð ºËº ÓÙ Ð Ø ½ ¾ Ñ Ö Ú Ø Ö Ò Ñ Ò ÓÒ Ò ÚÙÓÖÓÚ ÙØÙ Ø ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ È Ð Ó ÐÑÓ ÒÒ Ò ØÓÖ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò Ð ØÖÓÒ Ò Ú Ø Ò Ô ÓÒ Ö Ø Ð ØÖÓÒ Ò Ò Ú Ð ÙÒ ÝÐ ÓÔ ØÓ ÖÑ Ò ØÙØ ÑÙ ¹ Ð ØÓ ½ ¼¹ÐÙÚÙÐÐ Ù Ø Ó ÐÙ Ð ØÖÓÒ Ô Ð ºËº ÓÙ Ð

Lisätiedot