Talousmatematiikan perusteet: Luento 18. Kertaus luennoista 11-17

Koko: px
Aloita esitys sivulta:

Download "Talousmatematiikan perusteet: Luento 18. Kertaus luennoista 11-17"

Transkriptio

1 Talousmatematiikan perusteet: Luento 18 Kertaus luennoista 11-17

2 Luennon sisältö Kertausluennolla käydään lyhyesti läpi kunkin 2. välikoealueeseen kuuluvan luennon ydinsisältö Täydellinen valmistautuminen välikokeeseen edellyttää kuitenkin koko materiaalin hallintaa luentojen ja kotitehtävien 7-12 osalta. Kyselyn perusteella keskitytään erityisesti integrointiin Osittaisintegrointi Yhdistetyn funktion derivointisäännön käänteinen käyttö ja sijoitusmenettely Epäoleellinen integraali Lisäksi käydään läpi harjoitustehtävät 9.1, 9.2, 11.4, 11.5, 11.6, 12.4 Eeva Vilkkumaa 2

3 Luento 11: Lineaarinen optimointi Lineaarisessa optimointitehtävässä kohdefunktio ja rajoitteet ovat päätösmuuttujien suhteen lineaariset, esim. max 2x 1 +3x 2 s.e. 0.1x x x x x x x 1, x 2 0 Kohdefunktio Rajoitteet Lineaarisen optimointitehtävän ratkaisu löytyy aina käyvän alueen kulmapisteestä Eeva Vilkkumaa 3

4 Luento 11: Lineaarinen optimointi Kahden muuttujan tehtävän ratkaisu graafisesti 1. Piirrä rajoitteiden määrittämä käypä alue 2. Määritä kohdefunktion tasa-arvosuora 3. Liu uta tasa-arvosuoraa kohdefunktion a) Kasvusuunnassa, jos kyseessä on maksimointitehtävä b) Vähenemissuunnassa, jos kyseessä on minimointitehtävä 4. Optimipiste löytyy kohdasta, jossa tasaarvosuora viimeisen kerran leikkaa käypää aluetta. 5. Huom! Vaihtoehtona kohdille 2-4 voit laskea kohdefunktion arvon kaikissa käyvän alueen kulmapisteissä ja valita niistä parhaan. Käypä alue Tasa-arvosuora 6000 = 2x 1 + 3x 2 Tasa-arvosuora = 2x 1 + 3x 2 Eeva Vilkkumaa 4

5 Luento 12: Usean muuttujan funktioiden derivointi Monen muuttujan funktion f(x 1,, x n ) muutosnopeudesta muuttujan x i suhteen kertoo osittaisderivaatta f(x 1,,x n ) x i f(x 1,,x n ) x i f(x 1,,x n ) x i > 0: funktio kasvaa muuttujan x i suhteen < 0: funktio vähenee muuttujan x i suhteen Osittaisderivaatta lasketaan 1. Mieltämällä kaikki muut muuttujat vakioiksi 2. Soveltamalla yhden muuttujan funktion derviointisääntöjä Esim. Tarkastellaan funktiota f x, y = 3xy 2 2y 2 + 4x 5y + 1. Määritä D x f x, y ja D y f x, y D x 3xy 2 2y 2 + 4x 5y + 1 = y 2 D x 3x + D x 4x = 3y D y 3xy 2 2y 2 + 4x 5y + 1 = 3xD y y 2 + D y 2y 2 5y = 6xy 4y 5 Eeva Vilkkumaa 5

6 Luento 12: Usean muuttujan derivointi Funktion gradientti f x 1,, x n on vektori, jonka i. komponentti on osittaisderivaatta D i f(x 1,, x n ) Gradientti kertoo funktion nopeimman kasvun suunnan Esim. Tuotantofunktio on f x 1, x 2 = 3x x Miten 10 M lisäinvestointi kannattaisi jakaa työvoiman (x 1 ) ja pääoman (x 2 ) välillä, kun investointitaso tällä hetkellä on 20 M työvoimaan ja 10 M pääomaan? Kuinka paljon tuotannon arvo tällöin kasvaa? Ratkaisu: Gradientti f x 1, x 2 = 1.2x x x ; f 20, 10 =. Jaetaan lisäpanos gradientin suhteessa, 1 x eli x 1 = = 2.5 M, x = = 7.5 M. Tuotannon arvo kasvaa likimäärin f 20, x = = 19.8 M Suhteellinen muutosnopeus muuttujan x i suunnassa: D i (ln f x 1,, x n ) = D if(x 1,,x n ) f x 1,,x n Osittaisjousto muuttujan x i suunnassa: D i (ln f x 1,, x n ) x i = D if(x 1,,x n ) f x 1,,x n x i 6

7 Luento 13: Matriisin ominaisarvot Matriisin ominaisarvot lasketaan ratkaisemalla yhtälö det(a λi) = 0 Esim. Määritä matriisin A = ominaisarvot Ratkaisu: det(a λi) = 2 λ λ = 2 λ 3 λ 1 = λ2 5λ + 5 = 0 Toisen asteen yhtälön ratkaisukaavasta saadaan λ = 5 ± λ 1 = 3.62, λ 2 =

8 Luento 13: Rajoittamaton optimointi Rajoittamaton optimointitehtävä: max/ min f(x 1,, x n ) Kahden muuttujan tehtävän max/min f x, y ratkaisu: 1. Määritä gradientin nollakohta (x 0, y 0 ): f x 0, y 0 = 0 2. Muodosta Hessen matriisi H x, y = 2 f x 2 2 f y x 2 f x y 2 f y 2 3. Määritä Hessen matriisi gradientin nollakohdassa (x 0, y 0 ) o Jos det H x 0, y 0 > 0 ja 2 f x 2 > 0, pisteessä x 0, y 0 o Jos det H x 0, y 0 > 0 ja 2 f x 2 < 0, pisteessä x 0, y 0 TAI: on funktion lokaali minimi on funktion lokaali maksimi o Jos H x 0, y 0 :n kumpikin ominaisarvo on positiivinen, pisteessä x 0, y 0 on funktion lokaali minimi o Jos H x 0, y 0 :n kumpikin ominaisarvo on negatiivinen, pisteessä x 0, y 0 on funktion lokaali maksimi Eeva Vilkkumaa 8

9 Luento 13: Rajoittamaton optimointi Esim. Ratkaise min f x, y 1. Gradientin nollakohta: f x, y = 2. Hessen matriisi: H x, y = = x 2 + 2y 2 2xy + y 3. Hessen matriisi on vakio, eli H x 0, y 0 = TAI: 2x 2y 4y 2x + 1 = 0 0 x 0 y 0 = D x (2x 2y) D y (2x 2y) D x (4y 2x + 1) D y (4y 2x + 1) = det H x 0, y 0 = 8 4 = 4 > 0 ja 2 f = 2 > 0 x 2 funktio saavuttaa gradientin nollakohdassa miniminsä f 0.5,0.5 H x 0, y 0 :n ominaisarvot λ 1 = 5.24, λ 2 = 0.76 ovat positiiviset funktio saavuttaa gradientin nollakohdassa miniminsä f 0.5,0.5 = = Tehtävät 9.1 ja 9.2 9

10 Luento 14: Rajoitettu optimointi Yhtälörajoitettu optimointitehtävä: max/ min f(x 1,, x n ) siten, että g 1 x 1,, x n = = g m x 1,, x n = 0 Kahden muuttujan ja yhden yhtälörajoitteen optimointitehtävän max/ min f(x, y) s.e. g x, y = 0 ratkaisu: 1. Muodosta Lagrangen funktio L x, y, v = f x, y + vg x, y 2. Määritä Lagrangen funktion gradientin nollakohta x, y, v : L x, y, v = 0 3. Muodosta reunustettu Hessen matriisi ഥH v, x, y = 4. Laske reunustetun Hessen matriisin determinantti det ഥH v, x, y gradientin nollakohdassa (välikokeessa ei tarvitse osata laskea 3x3-matriisin determinanttia, mutta ao. sääntö pitää tietää) o Jos det ഥH v, x, y < 0, pisteessä x, y on funktion f lokaali minimi o Jos det ഥH v, x, y > 0, pisteessä x, y on funktion f lokaali maksimi 0 g x g y g x 2 L x 2 2 L y x g y 2 L x y 2 L y 2 Eeva Vilkkumaa 10

11 Luento 14: Rajoitettu optimointi Esim. Ratkaise min f x, y = x 2 + 2y 2 2xy + y s.e. x + y = 2 1. Lagrangen funktio: L x, y, v = x 2 + 2y 2 2xy + y + v(x + y 2) 2. Gradientin nollakohta: L x, y, v = 2x 2y + v 4y 2x v x + y 2 = x y v = Reunustettu Hessen matriisi ഥH v, x, y = Det( ഥH v, x, y )=-10<0 pisteessä x, y on funktion f lokaali minimi

12 Luento 15: Integrointisääntöjä Perussäännöt af x dx = a f x dx (vakiokertoimen voi ottaa ulos integraalista) f x + g(x) dx = f x dx + g x dx (summan integraali = integraalien summa) Potenssifunktio: x n dx = xn+1 n+1 Esim. x 2 dx = x3, 3 x1.5 dx = x HUOM! Erikoistapaus: 1 dx = ln x x Eksponenttifunktio: a x dx = ax Esim. 3 x dx = 3x ln 3 Erityisesti: e x dx = e x Derivaatan integraali: f x dx = F x + c, missä f(x) = F (x) ln a Esim. 3x 2 dx = x 3 + c D x 3 + c = 3x 2 Integrointivakio c merkitään vain, jos sitä tarvitaan jatkolaskuissa Tehtävä 11.4 Eeva Vilkkumaa 12

13 Luento 15: Integrointisääntöjä Osittaisintegrointi: f x g x dx = f x g x g(x)f x dx Esim. Määritä x ln x dx. Valitaan f x = ln x ja g x = x f x = 1 x Siispä: ja g(x) = x2 2 න x ln x dx = ln x x2 2 න x2 2 1 x dx = x2 ln x x2 2 4 Kuinka valita, kumpi funktioista on f ja kumpi g? Valitse g :ksi funktio, jonka osaat integroida. Esim. edellä g x = x g(x) = x2 2, mutta g x = ln x g(x) =?? Muista, että tavoitteenasi on sellainen g(x)f x, jonka osaat integroida. Esim. tehtävässä x2 x dx saat valinnalla f x = x ja g x = 2 x integoitavaksi funktioksi eksponenttifunktion g x f x = 2x, kun taas valinta f x = 2 x ja g x = x johtaa ojasta allikkoon: g x f x = x2 2 2x ln 2 Yrityksen ja erehdyksen kautta! ln 2 Tehtävä

14 Luento 15: Integrointisääntöjä Yhdistetyn funktion derivointisäännön käänteinen käyttö: f x g (f x )dx = g(f x ) Esim. e 2x dx = 1 2 2e2x dx = 1 2 e2x, sillä yhdistetyn funktion g f x = e 2x derivaatta on f x g f x = 2 e 2x. Jos et suoraan hahmota integroitavasta funktiosta ulko- ja sisäfunktion derivaattoja, voit käyttää sijoitusmenettelyä: 1. Korvaa sisäfunktioksi hahmotettu f(x) apumuuttujalla y. Edellä f x = 2x = y x = y Määritä sisäfunktion derivaatta: f x = dy dx = dy. Edellä dx f x f x = 2 = dy dx = dy. dx 2 3. Korvaa integroitavassa funktiossa kaikki x-termit vastaavilla y-termeillä, integroi, ja palaa takaisin x- termeihin. Edellä e 2x dx = e y dy 2 = 1 2 ey dy = 1 2 ey = 1 2 e2x. Tehtävä

15 Luento 15: Integrointisääntöjä Jos integroitava funktio on eksponentti- tai potenssifunktio (tai vakioilla kerrottujen eksponentti- ja potenssifunktioiden summa), käytä tavallisia integrointisääntöjä Esim. 2x ) x )dx, 2 ) x + e x )dx Ratkaisut: 2 5 x5 + 3x ln 3, 4 3 x3 2 + e x Jos integroitavassa funktiossa näkyy yhdistetty funktio kerrottuna (mahdollista vakiokerrointa lukuun ottamatta) sisäfunktionsa derivaatalla, käytä sijoitusmenettelyä Esim. x3 x2 dx, x x 2 + 5dx, e 0.5x dx Ratkaisut: 3x2 2 ln 3, 1 3 x , 2e 0.5x Jos integroitava funktio on kahden funktion tulo siten, ettei kumpikaan tulon tekijöistä ole (mahdollista vakiokerrointa lukuun ottamatta) toisen tekijän sisäfunktion derivaatta, käytä osittaisintegrointia Esim. x2 x dx, x 2 ln x dx, xe 2x dx. Ratkaisut: 2x ln 2 (x 1 ln 2 x3 ), 9 e2x (3 ln x 1), (2x 1) 4 Huom! Viimeisessä esimerkissä toinen tulon tekijä on yhdistetty funktio e 2x, jonka integroinnissa joudut hyödyntämään myös yhdistetyn funktion derivointisäännön käänteistä käyttöä / sijoitusmenettelyä. 15

16 Luento 16: Differentiaaliyhtälöt 1. kertaluvun separoituvassa differentiaaliyhtälössä x- ja y-termit saadaan muokattua yhtälömerkin eri puolille g y y = t(x) Perusperiaate 1. kertaluvun separoituvien differentiaaliyhtälöiden ratkaisuun: g y dy = t x g y dy = t x dx න g y dy = න t x dx dx Esim. Tuotteen kysynnän f x suhteellinen muutosnopeus kappalehinnan x suhteen on Kappalehinnan ollessa 0 kysyntä on 100 kpl. Määritä kysyntäfunktio f x. Suhteellinen muutosnopeus f (x) f(x) dy dx y = 0.2. Merkitään f x = y, jolloin dy = 0.2 = 0.2dx y 1 dy = y 0.2dx ln y = 0.2x + c y = f(x) = e0.2x+c = be 0.2x, missä b = e c. Alkuehdosta f 0 = be 0 = b = 100 f(x) = 100e 0.2x. Eeva Vilkkumaa 16

17 Luento 16: Määrätty integraali Määrätty integraali vastaa funktion kuvaajan ja xakselin väliin jäävää pinta-ala välillä x a, b, kun x-akselin alapuolinen pinta-ala mielletään negatiiviseksi: 12 3 = 9 12 Määrätty integraali a b f x dx lasketaan siis Määrittämällä f(x):n integraalifunktio F x = f x dx Laskemalla integraalifunktion arvojen erotus integrointirajoilla: F b F(a) 3 Esim. 17

18 Luento 16: Epäoleellinen integraali Määrätyn integraalin raja-arvoa, jossa yläraja b ja/tai alaraja a, kutsutaan epäoleelliseksi integraaliksi. න a f x dx, න b f x dx, න f x dx Esim. Kalastuskunta on investoinut kalavesien tuoton parantamiseen. Oletetaan, että 1. Investointi alkaa tuottaa heti nopeudella /v 2. Tuottonopeus vähenee ajan suhteen jatkuvasti 20 % vuodessa Mikä on investoinnin kokonaistuotto, jos tuoton oletetaan jatkuvan ikuisesti? b Tuotto ajankohtaan b asti: x dx = ln 0.8 (0.8b 1) Aikarajan b lähestyessä ääretöntä: lim b ln 0.8 (0.8b 1) = ln

19 Luento 17: Integraalin sovelluksia kassavirta-analyysiin Esim. Opiskelija lainaa rahaa jatkuvasti 6000 vuosivauhdilla. Nimellinen vuosikorko on 4% ja sitä kerrytetään jatkuvasti. Opiskelija maksaa koko summan korkoineen takaisin seitsemän vuoden opintojen päätyttyä. Kuinka paljon maksettavaa kertyy kaiken kaikkiaan? Esim. Terttu maksaa 10 vuoden annuiteettilainaansa takaisin jatkuvasti :n vuosivauhtia. Korkokanta on 5%, ja sitä kerrytetään niin ikään jatkuvasti. Mikä on lainan nykyarvo? Tehtävä 12.4 Eeva Vilkkumaa 19

20 Luento 17: Integraalin sovelluksia todennäköisyyslaskentaan Satunnaismuuttujan X jakaumaa kuvaa tiheysfunktio f X x Teihysfunktiosta saadaan satunnaismuuttujan x Kertymäfunktio: F X x = fx t dt (Mikä on todennäköisyys, että X:n arvo on korkeintaan x?) Odotusarvo: E X = xfx x dx (Mikä on X:n odotettavissa oleva arvo?) Kertymäfunktion avulla voidaan laskea tapahtumatodennäköisyydet P X x = F X x P X > x = 1 F X x 20

21 Luento 17: Integraalin sovelluksia todennäköisyyslaskentaan Tasajakautunut satunnaismuuttuja X~Uni(a, b ): Tiheysfunktio f X : R R +, f X x = ቐ 1, ba Kertymäfunktio F X : R R +, F X x = Odotusarvo E X = a+b 2 kun x [a, b] 0, muualla xa, ba 0, kun x < a kun x [a, b] 1, kun x > b Esim. Jäätelön päiväkysyntä on tasajakautunut välillä [50,100] litraa. Mikä on kysynnän odotusarvo? Entä todennäköisyys, että kysyntä on yli 85 litraa? E X = = 75 Suoraan kertymäfunktiosta: P X > 85 = 1 F X 85 = = Tiheysfunktiota integroimalla: P X > 85 = 85 dx = =

22 Luento 17: Integraalin sovelluksia todennäköisyyslaskentaan Eksponenttijakautunut satunnaismuuttuja X~Exp(λ) Tiheysfunktio f X : R R +, f X x = ቊ λeλx, kun x 0 0, kun x < 0 Kertymäfunktio F X : R R +, F X x = ቊ 1 eλx, kun x 0 0, kun x < 0 Odotusarvo E X = 1 λ Esim. Teknisen systeemin komponentti vikaantuu keskimäärin 2 kertaa vuodessa, jolloin vikaantumisten välinen aika X~Exp(2). Kuinka pitkään komponentti keskimäärin kestää vikaantumatta? E X = 1 =0.5 vuotta 2 Mikä on todennäköisyys sille, että komponentti kestää vikaantumatta yli vuoden? Suoraan kertymäfunktiosta: P X > 1 = 1 F X 1 = 1 (1 e 2 1 ) = e % Tiheysfunktiota integroimalla: P X > 1 = 1 2e 2x dx = lim b (e 2b e 2 1 ) = e % Entä alle kuukauden? Suoraan kertymäfunktiosta: P X 1 12 = F X 1 = e % Tiheysfunktiota integroimalla: P X 1 = e 2x dx = e e 2 0 = 1 e % 0 22

23 Lisää matematiikan / matemaattisen mallinnuksen kursseja? Liiketoiminnan teknologian kandidaattikursseja (Business) Mathematics II syventävä matematiikan kurssi erityisesti optimointiin keskittyen (lineaarinen, epälineaarinen, stokastinen) Business Decisions 1 (matemaattisten mallien rakentaminen, simulointi ja ratkaiseminen liiketoiminnallisen päätöksenteon tukemisessa) Information and service management maisterikursseja Business Decisions 2 (syventävä kurssi matemaattisten päätöstukimallien rakentamisessa ja ratkaisemisessa) Models in marketing (matemaattisten/tilastollisten mallien käyttö markkinoinnissa) Lisäksi rutkasti analytiikkaan ja tilastollisiin malleihin keskittyviä kursseja (mm. Data Science for Business I, Multivariate Statistical Analysis) Uusi kurssi data-analytiikan ja optimointimallien yhdistämiseksi v. 2018: Data Science for Business II 23

24 Matemaattisten päätösmallintajien koti = FORS Suomen operaatiotutkimusseura FORS: o o o Ilmainen opiskelijajäsenyys! Opiskelijajäsenille maksuttomia seminaareja matemaattisen mallinnuksen hyödyntämisestä liike-elämän ja julkisen toiminnan eri osaalueilla 2017: OR liikuttaa ihmistä (mm. VR, Kone, MaaS) 2016: Security in the digital age (mm. PV, Supo, DefSec) 2015: Data-analytiikka kasvun ja kannattavuuden moottorina (mm. Futurice, SAS Institute, SportIQ) Koulutusta, jäsenlehti, verkostoja matemaattisen mallinnuksen ammattilaisiin jne 24

Talousmatematiikan perusteet: Luento 19

Talousmatematiikan perusteet: Luento 19 Talousmatematiikan perusteet: Luento 19 Integraalin sovelluksia kassavirtaanalyysiin Differentiaaliyhtälöt Motivointi Edellisillä luennolla olemme oppineet integrointisääntöjä Tällä luennolla tarkastelemme

Lisätiedot

Talousmatematiikan perusteet: Luento 18. Määrätty integraali Epäoleellinen integraali

Talousmatematiikan perusteet: Luento 18. Määrätty integraali Epäoleellinen integraali Talousmatematiikan perusteet: Luento 18 Määrätty integraali Epäoleellinen integraali Motivointi Viime luennoilla opimme integrointisääntöjä: Tavalliset funktiotyypit (potenssi-, polynomi- ja eksponenttifunktiot)

Lisätiedot

Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa

Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Talousmatematiikan perusteet: Luento 17 Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Motivointi Kahdella edellisellä luennolla olemme oppineet integrointisääntöjä

Lisätiedot

Talousmatematiikan perusteet: Luento 17. Osittaisintegrointi Sijoitusmenettely

Talousmatematiikan perusteet: Luento 17. Osittaisintegrointi Sijoitusmenettely Talousmatematiikan perusteet: Luento 17 Osittaisintegrointi Sijoitusmenettely Motivointi Viime luennolla käsittelimme integroinnin perussääntöjä: Vakiolla kerrotun funktion integrointi: af x dx = a f x

Lisätiedot

Talousmatematiikan perusteet: Johdanto. Kurssin tavoitteet Käytännön järjestelyt Suosituksia suorittamiseen

Talousmatematiikan perusteet: Johdanto. Kurssin tavoitteet Käytännön järjestelyt Suosituksia suorittamiseen Talousmatematiikan perusteet: Johdanto Kurssin tavoitteet Käytännön järjestelyt Suosituksia suorittamiseen Kurssin tavoitteet Matematiikkaa hyödynnetään monilla kauppa- ja taloustieteen osaalueilla Esim.

Lisätiedot

Talousmatematiikan perusteet: Luento 16. Integraalin käsite Integraalifunktio Integrointisääntöjä

Talousmatematiikan perusteet: Luento 16. Integraalin käsite Integraalifunktio Integrointisääntöjä Talousmatematiikan perusteet: Luento 16 Integraalin käsite Integraalifunktio Integrointisääntöjä Integraalin käsite Tarkastellaan auton nopeusmittarilukemaa v(t) ajan t funktiona aikavälillä klo 12.00-17.00

Lisätiedot

Talousmatematiikan perusteet: Luento 15. Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta

Talousmatematiikan perusteet: Luento 15. Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta Talousmatematiikan perusteet: Luento 15 Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta Viime luennolla Tarkastelimme usean muuttujan funktioiden rajoittamatonta optimointia:

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden

Lisätiedot

Talousmatematiikan perusteet: Luento 12. Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto

Talousmatematiikan perusteet: Luento 12. Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto Talousmatematiikan perusteet: Luento 12 Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto Aiemmilla luennoilla Tähän mennessä olemme tarkastelleet Erilaisia

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto

Talousmatematiikan perusteet: Luento 13. Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto Talousmatematiikan perusteet: Luento 13 Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto Aiemmilla luennoilla Tähän mennessä olemme tarkastelleet Erilaisia

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet ifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A27 Hakula/Vuojamo Kurssitentti, 2.2, 28, arvosteluperusteet T Moniosaisten tehtävien osien painoarvo on sama ellei muuta ole erikseen osoitettu. Kokeessa

Lisätiedot

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion

Lisätiedot

Talousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto

Talousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Talousmatematiikan perusteet: Luento 7 Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Viime luennolla Funktion Derivaatta f (x) kuvaa funktion

Lisätiedot

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion

Lisätiedot

5 Usean muuttujan differentiaalilaskentaa

5 Usean muuttujan differentiaalilaskentaa 5 Usean muuttujan differentiaalilaskentaa Edellä on jo käsitelty monia funktioita, joissa lähtö- (ja/tai) maalijoukko on useampi- kuin 1-ulotteinen: Esim. A-, B- ja C-raaka-ainemäärien yhdistelmien x =

Lisätiedot

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0. HARJOITUS 1, RATKAISUEHDOTUKSET, YLE11 2017. 1. Ratkaise (a.) 2x 2 16x 40 = 0 (b.) 4x 2 2x+2 = 0 (c.) x 2 (1 x 2 )(1+x 2 ) = 0 (d.) lnx a = b. (a.) Toisen asteen yhtälön ratkaisukaavalla: x = ( 16)± (

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Piiri K 1 K 2 K 3 K 4 R R

Piiri K 1 K 2 K 3 K 4 R R Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä

Lisätiedot

Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

1 Di erentiaaliyhtälöt

1 Di erentiaaliyhtälöt Taloustieteen mat.menetelmät syksy 2017 materiaali II-5 1 Di erentiaaliyhtälöt 1.1 Skalaariyhtälöt Määritelmä: ensimmäisen kertaluvun di erentiaaliyhtälö on muotoa _y = F (y; t) oleva yhtälö, missä _y

Lisätiedot

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),

Lisätiedot

Talousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion derivointi

Talousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion derivointi Talousmatematiikan perusteet: Luento 7 Derivointisääntöjä Yhdistetyn funktion derivointi Viime luennolla Funktion Derivaatta f (x) kuvaa funktion muutosnopeutta Toinen derivaatta f x = D f x kuvaa muutosnopeuden

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A

Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 28 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 a) A + B b) AB BA d) A 2 e) A T f) A T B g) 3A ja B = 2 1 6 3 1 2. Laske seuraavat determinantit

Lisätiedot

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) A =

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) A = Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 211 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 ja B = 2 1 6 3 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A. 2. Laske seuraavat determinantit

Lisätiedot

Luento 2: Liikkeen kuvausta

Luento 2: Liikkeen kuvausta Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä

Lisätiedot

1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100

1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100 HARJOITUS, RATKAISUEHDOTUKSET, YLE 07.. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 0x +0xy +5y (b.) f(x,y) = 4x y xy +x+y +00 (a.) Funktion kriittiset pisteet ratkaisevat

Lisätiedot

Talousmatematiikan perusteet: Luento 8. Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto

Talousmatematiikan perusteet: Luento 8. Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Talousmatematiikan perusteet: Luento 8 Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Viime luennoilla Derivointisääntöjä eri funktiotyypeille: Polynomifunktio Potenssifunktio Eksponenttifunktio

Lisätiedot

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e)

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 214 1. Tutki seuraavia jonoja a) (a n )=(3n 1) ( ) 2 b) (a n )= 3 n ( ) 1 c) (a n )= (n + 1)(n +2) 2. Tutki seuraavia sarjoja a) (3k 1)

Lisätiedot

BM20A0300, Matematiikka KoTiB1

BM20A0300, Matematiikka KoTiB1 BM20A0300, Matematiikka KoTiB1 Luennot: Heikki Pitkänen 1 Oppikirja: Robert A. Adams: Calculus, A Complete Course Luku 12 Luku 13 Luku 14.1 Tarvittava materiaali (luentokalvot, laskuharjoitustehtävät ja

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Alkuviikolla harjoitustehtäviä lasketaan harjoitustilaisuudessa. Loppuviikolla näiden harjoitustehtävien tulee olla ratkaistuina harjoituksiin

Lisätiedot

1 Rajoittamaton optimointi

1 Rajoittamaton optimointi Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y

Lisätiedot

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

Matematiikka B1 - avoin yliopisto

Matematiikka B1 - avoin yliopisto 28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan

Lisätiedot

Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus

Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Talousmatematiikan perusteet: Luento 5 Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Tähän mennessä Funktiolla f: A B, y = f x kuvataan muuttujan y B riippuvuutta muuttujasta x A Jotta funktio

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2 HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, syksy 2016 / ORMS1010 Matemaattinen Analyysi 8. harjoitus, viikko 49 R1 to 12 14 F453 (8.12.) R2 to 14 16 F345 (8.12.) R3 ke 8 10 F345 (7.11.) 1. Määritä funktion f (x) = 1 Taylorin sarja

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot

1 Rajoitettu optimointi I

1 Rajoitettu optimointi I Taloustieteen mat.menetelmät 2017 materiaali II-1 1 Rajoitettu optimointi I 1.1 Tarvittavaa osaamista Matriisit ja vektorit, matriisien de niittisyys Derivointi (mm. ketjusääntö, Taylorin kehitelmä) Implisiittifunktiolause

Lisätiedot

1 Rajoitettu optimointi III - epäyhtälörajoitteet, teoriaa

1 Rajoitettu optimointi III - epäyhtälörajoitteet, teoriaa Taloustieteen mat.menetelmät syksy27 materiaali II-3 Rajoitettu optimointi III - epäyhtälörajoitteet, teoriaa. Perustehtävä Maksimoi f(x) ehdoilla g i (x), i = ; : : : ; k tässä f; g i : R n 7! R, i =

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

Matematiikka B3 - Avoin yliopisto

Matematiikka B3 - Avoin yliopisto 2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli

Lisätiedot

Luento 11: Rajoitusehdot. Ulkopistemenetelmät

Luento 11: Rajoitusehdot. Ulkopistemenetelmät Luento 11: Rajoitusehdot. Ulkopistemenetelmät ja sisäpistemenetelmät Lagrangen välttämättömien ehtojen ratkaiseminen Newtonin menetelmällä Jos tehtävässä on vain yhtälörajoituksia, voidaan minimipistekandidaatteja

Lisätiedot

f(x) f(y) x y f f(x) f(y) (x) = lim

f(x) f(y) x y f f(x) f(y) (x) = lim Y1 (Matematiikka I) Haastavampia lisätehtäviä Syksy 1 1. Funktio h määritellään seuraavasti. Kuvan astiaan lasketaan vettä tasaisella nopeudella 1 l/min. Astia on muodoltaan katkaistu suora ympyräkartio,

Lisätiedot

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

x 4 e 2x dx Γ(r) = x r 1 e x dx (1) HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia. HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

1 Peruskäsitteet. Dierentiaaliyhtälöt

1 Peruskäsitteet. Dierentiaaliyhtälöt Teknillinen korkeakoulu Matematiikka Dierentiaaliyhtälöt Alestalo Tässä monisteessa käydään läpi tavallisiin dierentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Esimerkkejä luennoilla

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa

Lisätiedot

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi Sivu 1 / 8 A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste Olli Kauppi Monisteen ensimmäinen luku käsittelee derivointia hieman yleisemmästä näkökulmasta. Monisteen lopussa on kurssilla

Lisätiedot

Matematiikan perusteet taloustieteilij oille I

Matematiikan perusteet taloustieteilij oille I Matematiikan perusteet taloustieteilijöille I Harjoitukset syksy 2006 1. Laskeskele ja sieventele a) 3 27 b) 27 2 3 c) 27 1 3 d) x 2 4 (x 8 3 ) 3 y 8 e) (x 3) 2 f) (x 3)(x +3) g) 3 3 (2x i + 1) kun, x

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

Matematiikan peruskurssi (MATY020) Harjoitus 10 to Matematiikan peruskurssi (MATY00) Harjoitus 10 to 6.3.009 1. Määrää funktion f(x, y) = x 3 y (x + 1) kaikki ensimmäisen ja toisen kertaluvun osittaisderivaatat. Ratkaisu. Koska f(x, y) = x 3 y x x 1, niin

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy

Lisätiedot

Integroimistekniikkaa Integraalifunktio

Integroimistekniikkaa Integraalifunktio . Integroimistekniikkaa.. Integraalifunktio 388. Vertaa funktioiden ln ja ln, b) arctan ja arctan + k k, c) ln( + 2 ja ln( 2, missä a >, derivaattoja toisiinsa. Tutki funktioiden erotusta muuttujan eri

Lisätiedot

MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit

MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit MS-A22 i erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit Antti Rasila Aalto-yliopisto Syksy 25 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 25 / 8 Tasointegraali Olkoon R

Lisätiedot

Vektorilaskenta, tentti

Vektorilaskenta, tentti Vektorilaskenta, tentti 27102017 Tentin kesto n 3 tuntia Vastaa NELJÄÄN tehtävään Jos vastaat kaikkiin, niin neljä PARASTA otetaan huomioon Kuvat vievät tilaa, joten muista kurkistaa paperin toiselle puolelle

Lisätiedot

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7, HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä

Lisätiedot

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n. TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot

Lisätiedot

1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.

1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4. HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille

Lisätiedot

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen 4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

Talousmatematiikan perusteet: Luento 4. Potenssifunktio Eksponenttifunktio Logaritmifunktio

Talousmatematiikan perusteet: Luento 4. Potenssifunktio Eksponenttifunktio Logaritmifunktio Talousmatematiikan perusteet: Luento 4 Potenssifunktio Eksponenttifunktio Logaritmifunktio Viime luennolla Funktiolla f: A B kuvataan muuttujan y B riippuvuutta muuttujasta x A A on lähtö- tai määrittelyjoukko

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta

Lisätiedot

5 Differentiaaliyhtälöryhmät

5 Differentiaaliyhtälöryhmät 5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =

Lisätiedot

k S P[ X µ kσ] 1 k 2.

k S P[ X µ kσ] 1 k 2. HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 28 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan

Lisätiedot

12. Differentiaaliyhtälöt

12. Differentiaaliyhtälöt 1. Differentiaaliyhtälöt 1.1 Johdanto Differentiaaliyhtälöitä voidaan käyttää monilla alueilla esimerkiksi tarkasteltaessa jonkin kohteen lämpötilan vaihtelua, eksponentiaalista kasvua, sähkölatauksen

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) vasemman puolen

Lisätiedot

4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt

4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4.1 Homogeeniset lineaariset differentiaaliyhtälöt Homogeeninen yhtälö on muotoa F(x, y,, y (n) ) = 0. (1) Yhtälö on lineaarinen, jos se voidaan

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, kevät 01 / ORMS1010 Matemaattinen Analyysi. harjoitus, viikko 1 R1 ke 1 16 D11 (..) R to 10 1 D11 (..) 1. Määritä funktion y(x) MacLaurinin sarjan kertoimet, kun y(0) = ja y (x) = (x

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

a 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0

a 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0 6. Lineaariset toisen kertaluvun yhtälöt Toisen kertaluvun differentiaaliyhtälöt ovat tuntuvasti hankalampia ratkaista kuin ensimmäinen. Käsittelemmekin tässä vain tärkeintä erikoistapausta, toisen kertaluvun

Lisätiedot

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa Matlab-esittelyä 1 / 20 Luennon sisältö Digress: vakio-

Lisätiedot

1.7 Gradientti ja suunnatut derivaatat

1.7 Gradientti ja suunnatut derivaatat 1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset

Lisätiedot

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x

Lisätiedot