Laiska laskenta, korekursio ja äärettömyys. TIEA341 Funktio ohjelmointi Syksy 2005

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Laiska laskenta, korekursio ja äärettömyys. TIEA341 Funktio ohjelmointi Syksy 2005"

Transkriptio

1 Laiska laskenta, korekursio ja äärettömyys TIEA341 Funktio ohjelmointi Syksy 2005

2 Muistatko graafinsievennyksen?

3 DAG esitys ja graafinsievennys DAG esitys Lausekkeen rakennepuu, jossa yhteiset alilausekkeet on samastettu x = 2 * 2 * + Graafinsievennys Sievennetään DAG esitystä tavalliseen tapaan, mutta korvataan lopuksi DAG:ssa sievennetyn alilausekkeen juurisolmu vastauksen juurisolmulla x * (2 + x) * 2

4 x = 2 * 2 * x * (2 + x) + * 2 Redeksi

5 4 * (2 + 4) * Redeksi

6 4 * 6 * 6 4 Redeksi

7 24 24

8 Laiska laskenta Laiska laskenta on toinen nimitys graafinsievennykselle Ytimekkäästi: mitään ei lasketa ennen kuin on pakko, ja mitään ei lasketa kahdesti mutta tämä on yksinkertaistus Mitään ei lasketa ennen kuin on pakko normaalijärjestys Mitään ei lasketa kahdesti viittaa DAG esityksen ominaisuuteen, jossa yhteiset alilausekkeet samastetaan ei pidä ottaa liian kirjaimellisesti

9 Tarvevälitys Toinen näkökulma laiskaan laskentaan Arvovälitys (call by value, innokas laskenta): funktion argumentit lasketaan ennen funktiokutsua parametrit saavat laskennan tulokset arvoikseen Nimivälitys (call by name): funktion argumentti lasketaan joka kerta, kun vastaavaa parametria käytetään funktion sisällä Tarvevälitys (call by need, laiska laskenta): kuten nimivälitys, paitsi että argumentin arvo muistetaan, kun se on kerran laskettu

10 Äärettömät listat succ n = n + 1 map f li = case li of Nil -> Nil Cons x xs -> Cons (f x) (map f xs) nats = Cons 0 (map succ nats) nats Cons 0 map succ

11 succ n = n + 1 map f li = case li of Nil -> Nil Cons x xs -> Cons (f x) (map f xs) nats = Cons 0 (Cons (succ 0) (map succ )) nats Cons 0 succ Cons map 0 succ

12 succ n = n + 1 map f li = case li of Nil -> Nil Cons x xs -> Cons (f x) (map f xs) nats = Cons 0 (Cons 1 (map succ )) nats Cons 0 1 Cons map succ

13 Äärettömät listat Lista, joka ei koskaan pääty: Cons _ (Cons _ (... ei Niliä missään Haskellissa _ : _ : _ :..., ei [] missään Listaa avataan vain sen verran kuin sitä tarvitaan muistissa on yleensä vain koko listan likiarvo likiarvon lopussa on Nilin ([]) tilalla ohje siitä, miten lisää alkioita voidaan laskea thunk tai lupaus

14 Solmun solmiminen Tietyt äärettömät tietorakenteet on mahdollista kirjoittaa niin, että ne vievät aina vain vakiomäärän muistia Idea: väärinkäytetään DAG esityksen ominaisuutta, jossa samastetaan yhteiset alilausekkeet lausekkeesta tulee oma alilausekkeensa ei ole enää syklitön ( DAG ) graafinsievennys toimii silti Esim. ones = 1 : ones

15 Eräs Haskellin kirjastofunktio Tehtoton! Ei solmun solmintaa! ( Naivi toteutus ) cycle li = li ++ cycle li cycle li = xs where xs = li ++ xs Solmu solmittu: tehokas! (Näin se toteutetaan oikeasti.)

16 Solmun solminnasta Solmu solmiutuu, jos: tietorakenteen itseviittaus kulkee vakiomäärittelyn kautta voi olla paikallinenkin vakio Funktio voi palauttaa solmun, jos se solmii sen paikallisella määrittelyllä joko where tai let

17 Kaksisuuntaisesti linkitty syklinen lista data DList a = DNode (DList a) a (DList a) fromlist :: [a] -> DList a fromlist li = let (f, l) = go l li f in f where go prev [] next = (next, prev) go prev (x:xs) next = let this = DLNode prev x rest (rest,last) = go this xs next in (this, last)

18 Tuottaja ja kuluttaja 1 Välitietorakenteena lista Laiskuuden ansiosta lista on aina lyhyt (kuluttajan syötyä alkion se tuhoutuu roskienkeruussa) tuottaja kuluttaja tuottaja :: [a] kuluttaja :: [a] -> b

19 Tuottaja ja kuluttaja 2 tuottaja suodatin kuluttaja tuottaja :: [a] suodatin :: [a] -> [b] kuluttaja :: [b] -> c

20 Tuottajia repeat x = xs where xs = x : xs iterate f x = xs where xs = x : map f xs randoms seed = iterate f seed where f n = (25173 * n ) `mod` iterate ja repeat kuuluvat preludiin

21 Eratostheneen seula Suodatin Tuottaja primes = sieve [2..] where sieve (x:xs) = x : sieve (filter f xs) where f y = y `mod` x /= 0 Myös tuottaja [n..] = iterate (+1) n [n..m] = takewhile (<= m) [n..]

22 Striktit ja nonstriktit funktiot Yksiparametrisen funktion sanotaan olevan strikti, jos f e sievenee pohjaksi aina, kun e sievenee pohjaksi lyhyesti. f = Muuten se on nonstrikti Moniparametriset funktiot tarkastellaan parametri kerrallaan pitäen muut vakioina f a c d = Esim. && x = mutta False && = False Nonstriktit funktiot eivät ole mahdollisia applikatiivista järjestystä (arvovälitys) käytettäessä

23 Striktiyden aiheuttajia Jos funktio on määritelty jonkin parametrin osalta (innokkaalla) hahmontunnistuksella, se on strikti siinä parametrissaan Innokkaita hahmoja ovat kaikki konstruktorihahmot kaikki vakiohahmot Laiskoja hahmoja ovat muuttujat jokerihahmo (_) tilde hahmot (~...)

24 Tilde hahmoista Ns. kiistämätön hahmo ~p, missä p on toinen hahmo esim. ~(x,y) sovitus onnistuu aina tutkittavaa lauseketta ei tarvitse sieventää WHNF:ään jos ei sovitus onnistukaan, hahmon määrittelemien muuttujien arvo on pohja let lausekkeessa hahmot ovat implisiittisesti tildehahmoja let (x,y) =... in... on sama kuin let ~(x,y) =... in...

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA34 Funktio-ohjelmointi, kevät 2008 Luento 3 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 2. tammikuuta 2008 Ydin-Haskell: Syntaksi Lausekkeita (e) ovat: nimettömät funktiot: \x

Lisätiedot

Lisää laskentoa. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Lisää laskentoa. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Lisää laskentoa TIEA341 Funktio ohjelmointi 1 Syksy 2005 Kertausta: Laajennettu aritmetiikka Lasketaan rationaaliluvuilla vakiot yhteen, vähennys, kerto ja jakolasku Laajennetaan sitä määrittelyillä: vakio

Lisätiedot

Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Tällä luennolla Algebralliset tietotyypit Hahmonsovitus (pattern matching) Primitiivirekursio Esimerkkinä binäärinen hakupuu Muistattehan...

Lisätiedot

Uusi näkökulma. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Uusi näkökulma. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Uusi näkökulma TIEA341 Funktio ohjelmointi 1 Syksy 2005 Aloitetaan alusta... Otetaan uusi näkökulma Haskelliin ohjelmointi laskentana kertausta toisaalta, uusia käsitteitä toisaalta helpottanee sitten

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 10 Todistamisesta Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 Samuuden todistaminen usein onnistuu ihan laskemalla

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 5 Ympärysmitta. Puut. Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 CASE: YMPÄRYSMITTA Lasketaan kuvioiden ympärysmittoja

Lisätiedot

815338A Ohjelmointikielten periaatteet 2014-2015. Harjoitus 7 Vastaukset

815338A Ohjelmointikielten periaatteet 2014-2015. Harjoitus 7 Vastaukset 815338A Ohjelmointikielten periaatteet 2014-2015. Harjoitus 7 Vastaukset Harjoituksen aiheena on funktionaalinen ohjelmointi Scheme- ja Haskell-kielillä. Voit suorittaa ohjelmat osoitteessa https://ideone.com/

Lisätiedot

tään painetussa ja käsin kirjoitetussa materiaalissa usein pienillä kreikkalaisilla

tään painetussa ja käsin kirjoitetussa materiaalissa usein pienillä kreikkalaisilla 2.5. YDIN-HASKELL 19 tään painetussa ja käsin kirjoitetussa materiaalissa usein pienillä kreikkalaisilla kirjaimilla. Jos Γ ja ovat tyyppilausekkeita, niin Γ on tyyppilauseke. Nuoli kirjoitetaan koneella

Lisätiedot

Demo 7 ( ) Antti-Juhani Kaijanaho. 9. joulukuuta 2005

Demo 7 ( ) Antti-Juhani Kaijanaho. 9. joulukuuta 2005 Demo 7 (14.12.2005) Antti-Juhani Kaijanaho 9. joulukuuta 2005 Liitteenä muutama esimerkki Ydin-Haskell-laskuista. Seuraavassa on enemmän kuin 12 nimellistä tehtävää; ylimääräiset ovat bonustehtäviä, joilla

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 6 Vastaukset Harjoituksen aiheena on funktionaalinen ohjelmointi Scheme- ja Haskell-kielillä. Voit suorittaa ohjelmat osoitteessa https://ideone.com/

Lisätiedot

Jatkeet. TIES341 Funktio ohjelmointi 2 Kevät 2006

Jatkeet. TIES341 Funktio ohjelmointi 2 Kevät 2006 Jatkeet TIES341 Funktio ohjelmointi 2 Kevät 2006 Havainto: häntäkutsu (1) Funktiokutsun yleinen toimintaperiaate: (koskee vain täysiä kutsuja, ts. jotka eivät palauta funktiota) kutsuja kirjaa pinoon paluuosoitteen

Lisätiedot

Geneeriset tyypit. TIES542 Ohjelmointikielten periaatteet, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos

Geneeriset tyypit. TIES542 Ohjelmointikielten periaatteet, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos Geneeriset tyypit TIES542 Ohjelmointikielten periaatteet, kevät 2007 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 6. maaliskuuta 2007 Kysymys Mitä yhteistä on seuraavilla funktioilla?

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 2: SICP kohdat 22.2.3 Riku Saikkonen 2. 11. 2010 Sisältö 1 Linkitetyt listat 2 Listaoperaatioita 3 Listarakenteet 4 Gambit-C:n Scheme-debuggeri Linkitetyt

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 7: Funktionaalista ohjelmointia (mm. SICP 3.5) Riku Saikkonen 13. 11. 2012 Sisältö 1 Laiskaa laskentaa: delay ja force 2 Funktionaalinen I/O 3 Funktionaalista

Lisätiedot

Luku 3. Listankäsittelyä. 3.1 Listat

Luku 3. Listankäsittelyä. 3.1 Listat Luku 3 Listankäsittelyä Funktio-ohjelmoinnin tärkein yksittäinen tietorakenne on lista. Listankäsittely on paitsi käytännöllisesti oleellinen aihe, se myös valaisee funktio-ohjelmoinnin ideaa. 3.1 Listat

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 9 Kombinaattoreista Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 Currying Haskell-funktio ottaa aina vain yhden

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 14: Monadit Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 Tyyppien tyypit eli luonteet engl. kind tyyppinimet, kuten

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 6: Rajoite-esimerkki, funktionaalista ohjelmointia (mm. SICP 3.3.5, 3.5) Riku Saikkonen 8. 11. 2012 Sisältö 1 SICP 3.3.5 esimerkki: rajoitteiden vyörytysjärjestelmä

Lisätiedot

2.4 Normaalimuoto, pohja ja laskentajärjestys 2.4. NORMAALIMUOTO, POHJA JA LASKENTAJÄRJESTYS 13

2.4 Normaalimuoto, pohja ja laskentajärjestys 2.4. NORMAALIMUOTO, POHJA JA LASKENTAJÄRJESTYS 13 2.4. NORMAALIMUOTO, POHJA JA LASKENTAJÄRJESTYS 13 Toisinaan voi olla syytä kirjoittaa α- tai β-kirjain yhtäsuuruusmerkin yläpuolelle kertomaan, mitä muunnosta käytetään. Esimerkki 4 1. (λx.x)y β = y 2.

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 6: Funktionaalista ohjelmointia: todistamisesta, virrat ja I/O, hahmonsovitus (mm. SICP 3.5) Riku Saikkonen 8. 11. 2011 Sisältö 1 Vähän funktionaalisten

Lisätiedot

Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A.

Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A. Tehtävä. Tämä tehtävä on aineistotehtävä, jossa esitetään ensin tehtävän teoria. Sen jälkeen esitetään neljä kysymystä, joissa tätä teoriaa pitää soveltaa. Mitään aikaisempaa tehtävän aihepiirin tuntemusta

Lisätiedot

Ydin-Haskell Tiivismoniste

Ydin-Haskell Tiivismoniste Ydin-Haskell Tiivismoniste Antti-Juhani Kaijanaho 8. joulukuuta 2005 1 Abstrakti syntaksi Päätesymbolit: Muuttujat a, b, c,..., x, y, z,... Tyyppimuuttujat α, β, γ,... Koostimet (data- ja tyyppi-) C, D,...,

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 4: SICP kohta 3.3.5 ja funktionaalista ohjelmointia Riku Saikkonen 15. 11. 2010 Sisältö 1 Ensimmäisen kierroksen tehtävistä 2 SICP 3.3.5: rajoitteiden

Lisätiedot

Tyyppejä ja vähän muutakin. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Tyyppejä ja vähän muutakin. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Tyyppejä ja vähän muutakin TIEA341 Funktio ohjelmointi 1 Syksy 2005 Viime luennolla... Haskellin alkeita pääasiassa Hello World!... ja muita tutunoloisia ohjelmia Haskellilla Haskellin voima on kuitenkin

Lisätiedot

Tämän vuoksi kannattaa ottaa käytännöksi aina kirjoittaa uuden funktion tyyppi näkyviin, ennen kuin alkaa sen määritemää kirjoittamaan.

Tämän vuoksi kannattaa ottaa käytännöksi aina kirjoittaa uuden funktion tyyppi näkyviin, ennen kuin alkaa sen määritemää kirjoittamaan. 3.1. LISTAT 35 destaan pisteittäisesti: init :: [α] [α] init (x : []) = [] init (x : xs) = x : init xs Varuskirjastoon kuuluu myös funktiot take ja drop, jotka ottavat tai tiputtavat pois, funktiosta riippuen,

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 10. tammikuuta 2008 Arvot... ovat laskutoimituksen lopputuloksia... ovat lausekkeita, joihin

Lisätiedot

Tyyppiluokat II konstruktoriluokat, funktionaaliset riippuvuudet. TIES341 Funktio-ohjelmointi 2 Kevät 2006

Tyyppiluokat II konstruktoriluokat, funktionaaliset riippuvuudet. TIES341 Funktio-ohjelmointi 2 Kevät 2006 Tyyppiluokat II konstruktoriluokat, funktionaaliset riippuvuudet TIES341 Funktio-ohjelmointi 2 Kevät 2006 Alkuperäislähteitä Philip Wadler & Stephen Blott: How to make ad-hoc polymorphism less ad-hoc,

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 11 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 Listakomprehensio Uusi tapa luoda (ja muokata) listoja: [ lauseke

Lisätiedot

Laajennetaan vielä Ydin-Haskellia ymmärtämään vakiomäärittelyt. Määrittely on muotoa

Laajennetaan vielä Ydin-Haskellia ymmärtämään vakiomäärittelyt. Määrittely on muotoa 2.6. TIETOKONE LASKIMENA 23 Edellä esitetty Ydin-Haskell on hyvin lähellä sitä kieltä, jota GHCi (Glasgow Haskell Compiler, Interactive) sekä muut Haskell-järjestelmät suostuvat ymmärtämään. Esimerkiksi:

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Keskeneräinen luento 3: Listat (mm. SICP 22.2.3) Riku Saikkonen 31. 10. 2011 Sisältö 1 Linkitetyt listat 2 Linkitetyt listat (SICP 2.1.1, 2.2.1) funktionaalinen

Lisätiedot

Taas laskin. TIES341 Funktio ohjelmointi 2 Kevät 2006

Taas laskin. TIES341 Funktio ohjelmointi 2 Kevät 2006 Taas laskin TIES341 Funktio ohjelmointi 2 Kevät 2006 Rakennepuutyyppi data Term = C Rational T F V String Term :+: Term Term : : Term Term :*: Term Term :/: Term Term :==: Term Term :/=: Term Term :

Lisätiedot

815338A Ohjelmointikielten periaatteet

815338A Ohjelmointikielten periaatteet 815338A Ohjelmointikielten periaatteet 2015-2016 VI Funktionaalinen ohjelmointi Sisältö 1. Johdanto ja peruskäsitteitä 2. LISP- ja Scheme-kielet 3. Haskell 4. IO funktionaalisissa kielissä 5. Muita funktionaalisia

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 4 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 17. tammikuuta 2008 Modulin viimeistelyä module Shape ( Shape ( Rectangle, E l l i p

Lisätiedot

Esimerkki: Laskin (alkua) TIEA341 Funktio ohjelmointi 1 Syksy 2005

Esimerkki: Laskin (alkua) TIEA341 Funktio ohjelmointi 1 Syksy 2005 Esimerkki: Laskin (alkua) TIEA341 Funktio ohjelmointi 1 Syksy 2005 Esimerkki: Laskin Liukulukulaskentaa Yhteen, vähennys, kerto ja jakolaskut Syötteenä laskutehtävä, tulosteena tulos tai virheilmoitus

Lisätiedot

Abstraktit tietotyypit. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Abstraktit tietotyypit. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Abstraktit tietotyypit TIEA341 Funktio ohjelmointi 1 Syksy 2005 Data abstraktio Abstraktio on ohjelmoinnin tärkein väline Data abstraktio abstrahoi dataa Abstrakti tietotyyppi Koostuu kolmesta asiasta:

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 3: Funktionaalinen listankäsittely ja listankäsittelyoperaatiot (mm. SICP 22.2.3) Riku Saikkonen 31. 10. 2011 Sisältö 1 Linkitetyt listat 2 Listarakenteet

Lisätiedot

Funktionimien kuormitus. TIES341 Funktio ohjelmointi 2 Kevät 2006

Funktionimien kuormitus. TIES341 Funktio ohjelmointi 2 Kevät 2006 Funktionimien kuormitus TIES341 Funktio ohjelmointi 2 Kevät 2006 Kertausta ongelma Mikä on (+) operaattorin tyyppi? Num a => a -> a -> a Mikä on (==) operaattorin tyyppi? Eq a => a -> a -> a Mikä on show

Lisätiedot

Jäsennys. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Jäsennys. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Jäsennys TIEA341 Funktio ohjelmointi 1 Syksy 2005 Muistutus: Laskutehtävä ja tulos data Laskutehtava = Luku Double Yhteen Laskutehtava Laskutehtava Vahennys Laskutehtava Laskutehtava Tulo Laskutehtava

Lisätiedot

Kaksiloppuinen jono D on abstrakti tietotyyppi, jolla on ainakin seuraavat 4 perusmetodia... PushFront(x): lisää tietoalkion x jonon eteen

Kaksiloppuinen jono D on abstrakti tietotyyppi, jolla on ainakin seuraavat 4 perusmetodia... PushFront(x): lisää tietoalkion x jonon eteen Viimeksi käsiteltiin pino: lisäys ja poisto lopusta jono: lisäys loppuun, poisto alusta Pinon ja jonon yleistävä tietorakenne: kaksiloppuinen jono alkion lisäys/poisto voidaan kohdistaa jonon alkuun tai

Lisätiedot

Luku 4. Tietorakenteet funktio-ohjelmoinnissa. 4.1 Äärelliset kuvaukset

Luku 4. Tietorakenteet funktio-ohjelmoinnissa. 4.1 Äärelliset kuvaukset Luku 4 Tietorakenteet funktio-ohjelmoinnissa Koska funktio-ohjelmoinnissa ei käytetä tuhoavaa päivitystä (sijoituslausetta ja sen johdannaisia), eivät läheskään kaikki valtavirtaohjelmoinnista tutut tietorakenteet

Lisätiedot

Mitä funktionaalinen ohjelmointi on

Mitä funktionaalinen ohjelmointi on Funktionaalinen ohjelmointi Mitä funktionaalinen ohjelmointi on - Funktionaalisessa ohjelmoinnissa mallinnus keskittyy löytämään ongelmasta sellaisia tiedon muunnoksia, jotka voidaan esittää matemaattisina

Lisätiedot

5.5 Jäsenninkombinaattoreista

5.5 Jäsenninkombinaattoreista 5.5. JÄSENNINKOMBINAATTOREISTA 67 type Env α = FiniteMap String α data EnvT m α = MkE (Env Integer m (Env Integer, α)) instance Transformer EnvT where promote mp = MkE $ λenv mp λr return $(env, r) instance

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

Algoritmit 1. Luento 6 Ke Timo Männikkö

Algoritmit 1. Luento 6 Ke Timo Männikkö Algoritmit 1 Luento 6 Ke 25.1.2017 Timo Männikkö Luento 6 Järjestetty lista Listan toteutus dynaamisesti Linkitetyn listan operaatiot Vaihtoehtoisia listarakenteita Puurakenteet Binääripuu Järjestetty

Lisätiedot

Haskell 98. Puhdasta funktionalismia nonstriktissä paketissa. Antti-Juhani Kaijanaho

Haskell 98. Puhdasta funktionalismia nonstriktissä paketissa. Antti-Juhani Kaijanaho Haskell 98 Puhdasta funktionalismia nonstriktissä paketissa Antti-Juhani Kaijanaho Haskell 98: Puhdasta funktionalismia nonstriktissä paketissa Antti-Juhani Kaijanaho Copyright 1999 Antti-Juhani Kaijanaho

Lisätiedot

14.1 Rekursio tyypitetyssä lambda-kielessä

14.1 Rekursio tyypitetyssä lambda-kielessä Luku 14 Rekursiiviset tyypit Edellisessä luvussa esitetyt tietue- ja varianttityypit eivät yksinään riitä kovin mielenkiintoisten tietorakenteiden toteuttamiseen. Useimmissa ohjelmissa tarvitaan erilaisia

Lisätiedot

2) Aliohjelma, jonka toiminta perustuu sivuvaikutuksiin: aliohjelma muuttaa parametrejaan tai globaaleja muuttujia, tulostaa jotakin jne.

2) Aliohjelma, jonka toiminta perustuu sivuvaikutuksiin: aliohjelma muuttaa parametrejaan tai globaaleja muuttujia, tulostaa jotakin jne. Proseduurit Proseduuri voi olla 1) Funktio, joka palauttaa jonkin arvon: real function sinc(x) real x sinc = sin(x)/x... y = sinc(1.5) 2) Aliohjelma, jonka toiminta perustuu sivuvaikutuksiin: aliohjelma

Lisätiedot

fix e e (fix e). fix = λf.(λx.f (x x)) (λx.f (x x)) (9)

fix e e (fix e). fix = λf.(λx.f (x x)) (λx.f (x x)) (9) Käytännön funktionaaliset ohjelmointikielet esittävät rekursion tällä tavalla. Teorian näkökulmasta olisi kuitenkin eleganttia, jos oikean puolen Termissä ei tarvittaisi vasemman puolen Muuttujannimeä,

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 8: Pienen ohjelmointikielen tulkki (ohjelmoitava laskin) (mm. SICP 4-4.1.5 osin) Riku Saikkonen 15. 11. 2012 Sisältö 1 Nelilaskintulkki, globaalit muuttujat

Lisätiedot

Kompleksilukujen kunnan konstruointi

Kompleksilukujen kunnan konstruointi Kompleksilukujen kunnan konstruointi Seuraava esitys osoittaa, miten kompleksilukujoukko voidaan määritellä tunnetuista reaalisista käsitteistä lähtien. Määrittelyjen jälkeen on helppoa osoittaa Mathematican

Lisätiedot

Jakso 4 Aliohjelmien toteutus

Jakso 4 Aliohjelmien toteutus Jakso 4 Aliohjelmien toteutus Tyypit Parametrit Aktivointitietue (AT) AT-pino Rekursio 1 Aliohjelmatyypit (2) Korkean tason ohjelmointikielen käsitteet: aliohjelma, proseduuri parametrit funktio parametrit,

Lisätiedot

Algoritmit 2. Luento 4 Ke Timo Männikkö

Algoritmit 2. Luento 4 Ke Timo Männikkö Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 3: SICP kohdat 2.22.3, 33.1 ja 3.33.3.2 Riku Saikkonen 8. 11. 2010 Sisältö 1 Lisää listoista 2 Symbolit ja sulkulausekkeet 3 Derivoijaesimerkki 4 Muuttujan

Lisätiedot

Monadeja siellä, monadeja täällä... monadeja kaikkialla? TIES341 Funktio ohjelmointi 2 Kevät 2006

Monadeja siellä, monadeja täällä... monadeja kaikkialla? TIES341 Funktio ohjelmointi 2 Kevät 2006 Monadeja siellä, monadeja täällä... monadeja kaikkialla? TIES341 Funktio ohjelmointi 2 Kevät 2006 Materiaalia Paras verkkomatsku: http://www.nomaware.com/monads/html/ Komentoanalogiasta vielä Monadityypin

Lisätiedot

Itsestabilointi: perusmääritelmiä ja klassisia tuloksia

Itsestabilointi: perusmääritelmiä ja klassisia tuloksia Itsestabilointi: perusmääritelmiä ja klassisia tuloksia Jukka Suomela Hajautettujen algoritmien seminaari 12.10.2007 Hajautetut järjestelmät Ei enää voida lähteä oletuksesta, että kaikki toimii ja mikään

Lisätiedot

Tämä tarina on Fibonaccin lukujen ongelman alkuperäinen muotoilu.

Tämä tarina on Fibonaccin lukujen ongelman alkuperäinen muotoilu. Rekursiosta ja iteraatiosta Oletetaan että meillä on aluksi yksi vastasyntynyt kanipari, joista toinen on uros ja toinen naaras. Kanit saavuttavat sukukypsyyden yhden kuukauden ikäisinä. Kaninaaraan raskaus

Lisätiedot

815338A Ohjelmointikielten periaatteet 2014-2015

815338A Ohjelmointikielten periaatteet 2014-2015 815338A Ohjelmointikielten periaatteet 2014-2015 X Skriptiohjelmointi Sisältö 1. Johdanto 2. Skriptikielten yleispiirteitä 3. Python 815338A Ohjelmointikielten periaatteet, Skriptiohjelmointi 2 X.1 Johdanto

Lisätiedot

Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset

Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset 2000-08-03T10:30/12:00 Huomaa, että joihinkin kysymyksiin on useampia oikeita vastauksia, joten nämä ovat todellakin vain mallivastaukset. 1 Logiikkaa

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 11: Tulkin muokkaaminen, sisäiset määrittelyt, makrot (mm. SICP 3.2.4, 4-4.1.6) Riku Saikkonen 29. 11. 2012 Sisältö 1 Kirjan tulkin muokkaaminen 2 Yksityiskohta:

Lisätiedot

Aliohjelmatyypit (2) Jakso 4 Aliohjelmien toteutus

Aliohjelmatyypit (2) Jakso 4 Aliohjelmien toteutus Jakso 4 Aliohjelmien toteutus Tyypit Parametrit Aktivointitietue (AT) AT-pino Rekursio Aliohjelmatyypit (2) Korkean tason ohjelmointikielen käsitteet: aliohjelma, proseduuri parametrit funktio parametrit,

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 2.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 2.2.2009 1 / 43 Funktiot Tähän asti esitetyt ohjelmat ovat oleet hyvin lyhyitä. Todellisessa elämässä tarvitaan kuitenkin

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

Scheme-kesäkurssi luento 3

Scheme-kesäkurssi luento 3 Scheme-kesäkurssi luento 3 Riku Saikkonen 6. 7. 2009 Sisältö 1 Nelilaskin 2 Muuttujat 3 Ympäristöt 4 Scheme-tulkki 5 Kontinuaatiot 6 CPS Miksi SICP-kirjassa on Scheme-tulkkeja? tulkin näkeminen auttaa

Lisätiedot

811312A Tietorakenteet ja algoritmit II Perustietorakenteet

811312A Tietorakenteet ja algoritmit II Perustietorakenteet 811312A Tietorakenteet ja algoritmit 2017-2018 II Perustietorakenteet Sisältö 1. Johdanto 2. Pino 3. Jono 4. Lista 811312A TRA, Perustietorakenteet 2 II.1. Johdanto Tietorakenne on tapa, jolla algoritmi

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

4.2. ALIOHJELMAT 71. Tulosvälitteisyys (call by result) Tulosvälitteinen parametri kopioidaan lopuksi

4.2. ALIOHJELMAT 71. Tulosvälitteisyys (call by result) Tulosvälitteinen parametri kopioidaan lopuksi 4.2. ALIOHJELMAT 71 sisältyä kaikki tarvittavat kontrollia ohjaavat rakenteet. Jos se on lause (yleensä lohko), niin on ratkaistava, miten paluuarvo ilmaistaan. Joissakin kielissä (esimerkiksi Pascal)

Lisätiedot

Luku 2. Ohjelmointi laskentana. 2.1 Laskento

Luku 2. Ohjelmointi laskentana. 2.1 Laskento Luku 2 Ohjelmointi laskentana Funktio-ohjelmoinnin, olio-ohjelmoinnin ja käskyohjelmoinnin ero on löydettävissä niiden pohjalla olevista laskennan mallista. Automaattisen tietojenkäsittelyn yksi historiallinen

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 1.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 1.2.2010 1 / 47 Sijoituksen arvokehitys, koodi def main(): print "Ohjelma laskee sijoituksen arvon kehittymisen."

Lisätiedot

8.5 Takarekursiosta. Sanoimme luvun 8.3 foldl -esimerkissämme että

8.5 Takarekursiosta. Sanoimme luvun 8.3 foldl -esimerkissämme että 85 Takarekursiosta Sanoimme luvun 83 foldl -esimerkissämme että foldl :: (a -> b -> a) -> a -> [b] -> a foldl f z [] = z foldl f z (x:xs) = foldl f (f z x) xs olisi pelkkä silmukka Tämä johtuu siitä, että

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

Olio-ohjelmointi Syntaksikokoelma

Olio-ohjelmointi Syntaksikokoelma C++-kielen uusia ominaisuuksia Olio-ohjelmointi Syntaksikokoelma 31.10.2008 Bool-tietotyyppi: Totuusarvo true (1), jos ehto on tosi ja false (0) jos ehto epätosi. Dynaaminen muistinvaraus: Yhden muuttuja

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 2: Funktioiden käyttöä, lisää Schemestä, listat (mm. SICP 1.31.3.4, osin 22.2.3) Riku Saikkonen 17. 10. 2011 Sisältö 1 Scheme-ohjelmointikäytäntöjä 2 Funktiot

Lisätiedot

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 10: Tulkin muokkaus, makrot, ohjelmia muokkaavat ohjelmat (mm. SICP 3.2.4, 4-4.1.6) Riku Saikkonen 22. 11. 2011 Sisältö 1 Kirjan tulkin muokkaaminen 2

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 31.1.2011 T-106.1208 Ohjelmoinnin perusteet Y 31.1.2011 1 / 41 Luentopalaute kännykällä käynnissä! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti Vast

Lisätiedot

ETL-DEMO. Esimerkki ETL-kuvauskielen käyttöstä

ETL-DEMO. Esimerkki ETL-kuvauskielen käyttöstä ETL-DEMO Esimerkki ETL-kuvauskielen käyttöstä Lähtötilanne Organisaation operatiivisessa kannassa dataa, jota halutaan varastoida ja jalostaa Päätetään mihin muotoon jalostettu data halutaan tietovarastossa

Lisätiedot

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa) Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten

Lisätiedot

Scheme-kesäkurssi luento 2

Scheme-kesäkurssi luento 2 Scheme-kesäkurssi luento 2 Timo Lilja 1. 7. 2009 Sisältö 1 SICP luku 3 2 Makrot 3 Gambit Sijoitus ja tila SICP 3.1 olioilla on paikallinen tila, jota mallinnetaan tilamuuttujilla Scheme-kielessä on sijoitusoperaattori

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet ) T-79144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet 11-22) 26 29102004 1 Ilmaise seuraavat lauseet predikaattilogiikalla: a) Jokin porteista on viallinen

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 27.1.2010 T-106.1208 Ohjelmoinnin perusteet Y 27.1.2010 1 / 37 If-käsky toistokäskyn sisällä def main(): HELLERAJA = 25.0 print "Anna lampotiloja, lopeta -300:lla."

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 5: Sijoituslause, SICP-oliot, tietorakenteen muuttaminen (mm. SICP 33.1.3, 3.33.3.2) Riku Saikkonen 6. 11. 2012 Sisältö 1 Muuttujan arvon muuttaminen:

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 5: Sijoituslause, SICP-oliot, todistamisesta (mm. SICP 33.1.3, 3.33.3.2) Riku Saikkonen 7. 11. 2011 Sisältö 1 Muuttujan arvon muuttaminen: set! 2 SICP-oliot

Lisätiedot

Jakso 4 Aliohjelmien toteutus

Jakso 4 Aliohjelmien toteutus Jakso 4 Aliohjelmien toteutus Tyypit Parametrit Aktivointitietue (AT) AT-pino Rekursio 1 Aliohjelmatyypit (2) Korkean tason ohjelmointikielen käsitteet: aliohjelma, proseduuri parametrit funktio parametrit,

Lisätiedot

Luento 4 Aliohjelmien toteutus

Luento 4 Aliohjelmien toteutus Luento 4 Aliohjelmien toteutus Tyypit Parametrit Aktivointitietue (AT) AT-pino Rekursio 1 Aliohjelmatyypit (2) Korkean tason ohjelmointikielen käsitteet: aliohjelma, proseduuri parametrit funktio parametrit,

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 4: Symbolit, derivojaesimerkki, kierroksen 1 ratkaisut (mm. SICP 2.32.3.2) Riku Saikkonen 1. 11. 2011 Sisältö 1 Symbolit ja sulkulausekkeet 2 Lisää Schemestä:

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 2.3.2009 T-106.1208 Ohjelmoinnin perusteet Y 2.3.2009 1 / 28 Puhelinluettelo, koodi def lue_puhelinnumerot(): print "Anna lisattavat nimet ja numerot." print

Lisätiedot

Racket ohjelmointia osa 1. Tiina Partanen Lielahden koulu 2014

Racket ohjelmointia osa 1. Tiina Partanen Lielahden koulu 2014 Racket ohjelmointia osa 1 Tiina Partanen Lielahden koulu 2014 Sisältö 1) Peruslaskutoimitukset 2) Peruskuvioiden piirtäminen 3) Määrittelyt (define) 4) Yhdistettyjen kuvien piirtäminen 5) Muuttujat ja

Lisätiedot

Osoitin ja viittaus C++:ssa

Osoitin ja viittaus C++:ssa Osoitin ja viittaus C++:ssa Osoitin yksinkertaiseen tietotyyppiin Osoitin on muuttuja, joka sisältää jonkin toisen samantyyppisen muuttujan osoitteen. Ohessa on esimerkkiohjelma, jossa määritellään kokonaislukumuuttuja

Lisätiedot

TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 27. lokakuuta 2009

TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 27. lokakuuta 2009 TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 27. lokakuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe D tiistai 10.11. klo 10 välikielen generointi Kääntäjän rakenne

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Rekursio Rekursion käyttötapauksia Rekursio määritelmissä Rekursio ongelmanratkaisussa ja ohjelmointitekniikkana Esimerkkejä taulukolla Esimerkkejä linkatulla listalla Hanoin

Lisätiedot

Tietueet. Tietueiden määrittely

Tietueet. Tietueiden määrittely Tietueet Tietueiden määrittely Tietue on tietorakenne, joka kokoaa yhteen eri tyyppistä tietoa yhdeksi asiakokonaisuudeksi. Tähän kokonaisuuteen voidaan viitata yhteisellä nimellä. Auttaa ohjelmoijaa järjestelemään

Lisätiedot

plot(f(x), x=-5..5, y=-10..10)

plot(f(x), x=-5..5, y=-10..10) [] Jokaisen suoritettavan rivin loppuun ; [] Desimaalierotin Maplessa on piste. [] Kommentteja koodin sekaan voi laittaa # -merkin avulla. Esim. #kommentti tähän [] Edelliseen tulokseen voi viitata merkillä

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 1. Avaimet 1, 2, 3 ja 4 mahtuvat samaan lehtisolmuun. Tässä tapauksessa puussa on vain yksi solmu, joka on samaan aikaan juurisolmu

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot Lukujonon raja-arvo 1/7 Sisältö Esimerkki lukujonon raja-arvosta Lukujonossa a 1,a 2,a 3,... (jossa on äärettömän monta termiä) voivat luvut lähestyä jotakin arvoa, kun jonossa edetään yhä pidemmälle.

Lisätiedot

Bootstrap / HTDP2 / Realm of Racket. Vertailu

Bootstrap / HTDP2 / Realm of Racket. Vertailu Bootstrap / HTDP2 / Realm of Racket Vertailu Bootstrap http://www.bootstrapworld.org/ Tarkoitettu yläkoululaisille (12-15v) Ohjelmointi on integroitu matematiikan opetukseen Materiaalina tuntisuunnitelmat

Lisätiedot