1.4 Funktioiden kertaluokat
|
|
- Pasi Kokkonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 1.4 Funktioiden kertaluokat f on kertaluokkaa O(g), merk. f = O(g), jos joillain c > 0, m N pätee f(n) cg(n) aina kun n m f on samaa kertaluokkaa kuin g, merk. f = Θ(g), jos joillain a, b > 0, m N pätee ag(n) f(n) bg(n) aina kun n m f on alempaa kertaluokkaa kuin g, merk. f = o(g), jos kaikilla c > 0 on olemassa m N jolle f(n) < cg(n) aina kun n m g on alaraja funktiolle f, merk. f = Ω(g), jos jollain c > 0 pätee f(n) cg(n) äärettömän monella n f ja g ovat asymptoottisesti samat, merk.f g, jos f(n) lim n g(n) = 1. Usein käytetään hieman epätäsmällisiä merkintöjä tyyliin f(n) = O(g(n)), esim. n 2 = O(n 3 ) 32
2 Esimerkkejä 2n 4 + 6n 8 = Θ(n 8 ) n log n = o(n 1+ɛ ) kaikilla ɛ > 0 n log n = Ω(n) log a n = Θ(log b n) kaikilla a, b > 1 5n n log n + 7n 5n 2 Potenssi vastaan eksponenttifuntio: kaikilla α > 0 ja β > 1 pätee n α = o(β n ). Logaritmi vstaan potenssi: kaikilla α, β > 0 pätee (log n) α = o(n β ). Nämä seuraavat suoraan tuloksista (esim. Diff. int. I) log n lim n lim n = 0 kaikilla α > 0 n α n β = 0 kaikilla β > 1 n Muita hyödyllisiä logaritmin ominaisuuksia: = x log a (xy) = log a x + log a y log a (x y ) = y log a x log a x = log b log a log a x a log a x Jatkossa merkitään log kun kantaluku on 2 tai kantaluvulla ei ole väliä. Luonnollista logaritmia merkitään ln. 33
3 Kertaluokkien yleisiä ominaisuuksia Jos f = O(g) ja g = O(h) niin f = O(h). Kaikilla c > 0 pätee f(n) = O(g(n)) jos ja vain jos f(n) = O(cg(n)). Aina f(n) + g(n) = Θ(max { f(n), g(n) }). Lause Olkoot f, g: N R +. Jos niin f(n) = o(g(n)). f(n) lim n g(n) = 0 Jos jollain 0 < c < pätee niin f(n) = Θ(g(n)). Jos niin f(n) = Ω(g(n)). f(n) lim n g(n) = c f(n) lim n g(n) = 34
4 Algoritmilla on polynominen aikavaativuus jos sen aikavaativuus T (n) = O(n k ) jollain vakiolla k. (Vastaavasti tilavaativuus jne.) Esimerkkejä Seuraavassa n on syötteen koko, T (n) aikavaativuus ilmoitettuna tiettyjen alkeisoperaatioiden lukumääränä, ja koneen oletetaan suorittavan 10 6 alkeisoperaatiota sekunnissa. Laskenta-aika on taulukossa. n T (n) pol.? 1000n log n 0,1 s 0,3 s 0,6 s 1,5 s on 10n 3 n 0,02 s 1 s 10 s 1 min on n log n 0,4 s 1,1 h 220 vrk v ei 2 n 1 s 35 v ei Sama tilanne mutta taulukoidaan suurin mahdollinen käsiteltävä syöte kun aikaraja on annettu. T (n) 1 s 10 4 s (= 2,7 h) 10 8 s (= 3 v) 1000n log n n 3 n n log n n
5 Tarkastellaan samaa asiaa graafisesti. Ohessa arvoilla n = 1,..., 120 kuvaajat funktioille n/ n 0,7 ln n 10 5 n 3 0, 1 n ln n (Vakiokertoimet valittu siten että funktiot suunnilleen sopivat samaan kuvaan.) 36
6 Kun jatketaan arvoihin n = 100,..., 500, nähdään miten ei-polynomiset funktiot räjähtävät käsistä. 37
7 Miksi polynomisuus on tärkeää polynominen algoritmi: laskenta-ajan (tai -tehon) kasvattaminen vakiokertoimella kasvattaa myös mahdollisten ongelmien kokoa vakiokertoimella eksponentiaalinen algoritmi: ongelmien koko kasvaa vain vakiotermillä Polynomiset algoritmit käyvät asteittain hitaammiksi ja hitaammiksi. Eksponentiaaliset algoritmit törmäävät jossain vaiheessa kuin seinään, minkä jälkeen laskentatehon lisäys ei juuri hyödytä. (Poikkeus: korkean kertaluvun polynomit; näitä ei kuitenkaan käytännössä juuri esiinny.) teoreettiset ominaisuudet: polynominen aikavaativuus sama kaikissa laskennan malleissa sulkeumaominaisuudet: kun aikavaativuudeltaan polynomisia algoritmeja yhdistellään esim. for-lauseisiin, aikavaatimus säilyy polynomisena. 38
8 Kuitenkin otettava huomioon pahin tapaus ei välttämättä tyypillinen toisinaan tarkastellaan pieniä syötteitä kertakäyttösovellukset: koodauksen helppous käytännössä suoritusaikaa voi dominoida I/O, haut hitaasta muistista tms. numeeriset algoritmit: stabiilius, aritmetiikan tarkkuus 39
9 2. Algoritmien analyysitekniikoita Kerrataan kurssilta Tietorakenteet tutut perustekniikat ja opitaan uusia erityisesti rekursiivisten algoritmien ja keskimääräisen analyysin tarpeisiin. Tämän luvun jälkeen opiskelija osaa kuvata rekursiivisen algoritmin aika- ja tilavaativuuden rekursioyhtälöllä osaa soveltaa tärkeimpiä rekursioyhtälöiden ratkaisumenetelmiä, etenkin generoivia funktioita ja ns. master-teoreemaa osaa mallintaa satunnaisilmiötä Markovin ketjulla ja tarkastella sen tasapainojakaumaa osaa analysoida tasoitettua aikavaatimusta potentiaalimenetelmän avulla 40
10 2.1 Iteratiivisen algoritmin aikavaativuus Tämä on tuttua kurssilta Tietorakenteet. Käydään kertausesimerkkinä läpi lisäysjärjestämisalgoritmi. insert-sort(a[1... n]): 1. for j := 2 to n do 2. x := A[j] 3. i := j 1 4. while i > 0 and A[i] > x do 5. A[i + 1] := A[i] 6. i := i 1 end while 7. A[i + 1] := x end for Millä tahansa n, i ja j rivit 5 ja 6 vievät vakioajan. Merkitään tätä T (n, i, j) = c 1. while-silmukka kullakin j korkeintaan j kertaa: T (n, j) c 2 + (j 1)(c 1 + c 3 ) missä c 1 tulee siis riveistä 5 ja 6, c 3 vastaa ehtotestin suoritusta ja c 2 silmukan alustusta. 41
11 Samoin rivit 2, 3 ja 7 menevät vakioajassa joten T (n, j) c 2 + c 4 + (j 1)(c 1 + c 3 ). Lopulta (kun c 5 esittää for-silmukan alustamista) saadaan T (n) = c 5 + n T (n, j) j=2 c 5 + (n 1)(c 2 + c 4 ) + (c 1 + c 3 ) n (j 1) j=2 = c 5 + (n 1)(c 2 + c 4 ) + (c 1 + c 3 ) 1 n(n 1) 2 joten T (n) = O(n 2 ). 42
12 Yleisiä periaatteita T ( x := e ), T ( read x ), T ( write e ) vakioita (poikkeuksia: funktiokutsut, tarkka aritmetiikka, taulukon indeksointi) T ( P 1 ; P 2 ;... ; P k ) = T (P 1 ) + T (P 2 ) T ( P k ) = Θ(max { T (P 1 ),..., T (P k ) }) T ( if e then P 1 else P 2 ) = Θ(max { T (e), T (P 1 ), T (P 2 ) }) T ( while e do P ) = (suorituskertojen lkm) Θ(1 + T (e) + T (P )) 43
13 Hyödyllisiä summakaavoja n n(n + 1) i = = Θ(n 2 ) 2 i=0 (1) n i 2 n(n + 1)(2n + 1) = = Θ(n 3 ) 6 i=0 (2) n 2 i = 2 n+1 1 (3) i=0 n a i = an+1 1 kun a 1 (4) a 1 i=0 n ia i = nan+2 (n + 1)a n+1 + a kun a 1(5) (a 1) 2 a i 1 = kun a < 1 (6) 1 a i=0 ia i a = kun a < 1 (7) (1 a) 2 n 1 = ln n + γ + O(1/n) (8) i i=0 i=0 i=1 missä γ 0, 577 (Eulerin vakio) Näistä on syytä muistaa (tai osata johtaa) ainakin (1), (4) ja (6) tarkalleen ja loput kertaluokaltaan. 44
14 2.2 Rekursioyhtälöt Tunnetaan myös nimillä differenssiyhtälöt ja palautuskaavat; keskeinen väline rekursiivisten algoritmien analysoimisessa Motivoiva esimerkki: lomitusjärjestäminen Olkoon T (n) seuraavan proseduurin mergesort(a, p, q) aikavaatimus kun q p + 1 = n. Tässä A on järjestettävä taulukko ja merge(a, p, r, q) lomittaa osataulukot A[p... r] ja A[r q] lineaarisessa ajassa. merge-sort(a, p, q): 1. if p < q then Θ(1) 2. r := (p + q)/2 Θ(1) 3. merge-sort(a, p, r) Θ(T ( n/2 )) 4. merge-sort(a, r + 1, q) Θ(T ( n/2 )) 5. merge(a, p, r, q) Θ(n) end if Saadaan siis joillain vakioilla c 1, c 2 ja c 3 T (1) = c 1 T (n) = T ( n/2 ) + T ( n/2 ) + c 2 n + c 3 (9) kun n 2 45
15 Yksinkertaistetaan yhtälöä jättämällä pois alemman kertaluvun termit ja olettamalla että pyöristyksiä ei tarvita: T (1) = c 1 T (n) = 2T (n/2) + c 2 n kun n = 2 k, k 1 (10) Ratkaistaan ensin tämä yksinkertaisempi yhtälö (10) ja osoitetaan sitten, että sama ratkaisu toteuttaa myös alkuperäisen yhtälön (9). Ratkaistaan (10) arvausta sovittamalla: 1. arvataan ratkaisun kertaluokka T (n) = Θ(n log n) 2. sovitetaan vakiokertoimet niin että yhtälö toteutuu Lause Olkoon T yhtälön (10) ratkaisu, kun rajoitutaan muotoa n = 2 k oleviin argumentteihin. Nyt T (n) = Θ(n log n). 46
16 Todistus Osoitetaan ensin yläraja T (n) = O(n log n). Tämän kanssa on yhtäpitävää että joillain a, b > 0 pätee kaikilla n. T (n) an log n + b (11) Todistus tapahtuu induktiolla. Todetaan ensin, että (11) pätee arvolla n = 1 jos valitaan b c 1. Oletetaan nyt, että jollain m 2 yhtälö (11) pätee kun n < m. Soveltamalla yhtälöä (10) ja induktio-oletusta saadaan nyt T (m) = 2T (m/2) + c 2 m 2(a m 2 log m 2 + b) + c 2m = am log m + m(c 2 + a log(1/2)) + 2b = am log m + b + (b + m(c 2 a)) am log m + b jos lisäksi b + m(c 2 a) 0. Koska m 2, kumpikin ehto toteutuu esim. valinnalla b = c 1 ja a = c 2 + c 1 /2. Tällä valinnalla siis myös (11) toteutuu, eli kaikilla n. T (n) (c 2 + c 1 /2)n log n + c 1 47
17 Lauseen toinen puoli eli alaraja T (n) = Ω(n log n) todistetaan suoraviivaisella induktiolla. Väite: T (n) c 2 n log n kaikilla n Perustapaus: T (1) = c 1 0 = c 2 1 log 1 Induktioaskel: Induktio-oletuksesta saadaan T (n) = 2T (n/2) + c 2 n n 2c 2 2 log n 2 + c 2n = c 2 n log n + c 2 n log(1/2) + c 2 n = c 2 n log n. Siis T (n) = Θ(n log n). 48
18 Jotta nyt saataisiin lomitusjärjestämisen aikavaativuudeksi Θ(n log n), pitää vielä osoittaa, että yhtälöiden (9) ja (10) ratkaisut ovat samaa kertaluokkaa, ts. että 1. alemmanasteinen termi c 3 ei vaikuta tulokseen ja 2. tulos pätee myös kun n ei ole kakkosen potenssi. Olkoon T alkuperäisen yhtälön (9) ratkaisu. Kohtaa (i) varten määritellään kaikilla n = 2 k T 1 (1) = c 1 T 1 (n) = 2T (n/2) + c 2 n kun n = 2 k > 1ja T 2 (1) = c 1 T 2 (n) = 2T (n/2) + (c 2 + c 3 )n kun n = 2 k > 1 Koska edellisen lauseen nojalla sekä T 1 (n) että T 2 (n) ovat Θ(n log n) ja selvästi T 1 (n) T (n) T 2 (n), nähdään että T (n) = Θ(n log n) kun n = 2 k. 49
19 Siis on olemassa a, b > 0 ja n 0 > 0 joilla an log n T (n) bn log n kun n n 0 ja n = 2 k jollain k. Olkooon nyt n n 0 mielivaltainen ja k sellainen, että 2 k n < 2 k+1. Koska selvästi T on kasvava, saadaan ja a2 k k T (2 k ) T (n) T (n) < T (2 k+1 ) b2 k+1 (k + 1). Koska log n 1 < k log n, saadaan a n(log n 1) < T (n) 2bn(log n + 1) 2 mistä seuraa T (n) = Θ(n log n). Yllä on esimerkin vuoksi tarkasti näytetty miten yksinkertaistetun yhtälön (10) ratkaisusta päästään alkuperäisen yhtälön (9) ratkaisuun. Jatkossa ei enää kiinnitetä huomiota tähän suoraviivaiseen mutta kiusalliseen välivaiheeseen. Rajoitumme oleellisempaan ongelmaan eli tyyppiä (10) olevien yhtälöiden ratkaisemiseen. 50
f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))
Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia
3. Laskennan vaativuusteoriaa
3. Laskennan vaativuusteoriaa tähän asti puhuttu siitä, mitä on mahdollista laskea äärellisessä ajassa siirrytään tarkastelemaan laskemista kohtuullisessa ajassa vaihtoehtoisesti voidaan laskenta-ajan
Algoritmit 1. Luento 2 Ke Timo Männikkö
Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät
Algoritmit 2. Luento 1 Ti Timo Männikkö
Algoritmit 2 Luento 1 Ti 14.3.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin valinta Algoritmin analysointi Algoritmin suoritusaika Peruskertaluokkia Kertaluokkamerkinnät Kertaluokkien ominaisuuksia
2.2.1 Ratkaiseminen arvausta sovittamalla
2.2.1 Ratkaiseminen arvausta sovittamalla Esimerkki: lomitusjärjestäminen (edellä) Yleistys: Ratkaistava T (1) c T (n) g(t (1),..., T (n 1), n) missä g on n ensimmäisen parametrin suhteen kasvava. (Ratkaisu
58131 Tietorakenteet ja algoritmit (syksy 2015)
58131 Tietorakenteet ja algoritmit (syksy 2015) Harjoitus 2 (14. 18.9.2015) Huom. Sinun on tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. 1. Erään algoritmin suoritus vie 1 ms, kun syötteen
Algoritmit 2. Luento 8 To Timo Männikkö
Algoritmit 2 Luento 8 To 4.4.2019 Timo Männikkö Luento 8 Algoritmien analysointi Algoritmien suunnittelu Rekursio Osittaminen Rekursioyhtälöt Rekursioyhtälön ratkaiseminen Master-lause Algoritmit 2 Kevät
Olkoon S(n) kutsun merge-sort(a, p, q) tilavaativuus kun p q + 1 = n. Oletetaan merge toteutetuksi vakiotyötilassa (ei-triviaalia mutta mahdollista).
Esimerkki Lomitusjärjestäminen merge-sort(a, p, q): var k % paikallinen muuttuja, vakiotila 1. if p < q then 2. r := (p + q)/2 3. merge-sort(a, p, r) 4. merge-sort(a, r + 1, q) 5. merge(a, p, r, q) Olkoon
4 Tehokkuus ja algoritmien suunnittelu
TIE-20100 Tietorakenteet ja algoritmit 52 4 Tehokkuus ja algoritmien suunnittelu Tässä luvussa pohditaan tehokkuuden käsitettä ja esitellään kurssilla käytetty kertaluokkanotaatio, jolla kuvataan algoritmin
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli
(p j b (i, j) + p i b (j, i)) (p j b (i, j) + p i (1 b (i, j)) p i. tähän. Palaamme sanakirjaongelmaan vielä tasoitetun analyysin yhteydessä.
Loppu seuraa suoralla laskulla: n n Tave TR = p j (1 + b (i, j)) j=1 = 1 + 1 i
5 Kertaluokkamerkinnät
TIE-20100 Tietorakenteet ja algoritmit 75 5 Kertaluokkamerkinnät Tässä luvussa käsitellään asymptoottisessa analyysissa käytettyjä matemaattisia merkintätapoja Määritellään tarkemmin Θ, sekä kaksi muuta
Tietorakenteet, laskuharjoitus 1,
Tietorakenteet, laskuharjoitus 1, 19.-22.1 Huom: laskarit alkavat jo ensimmäisellä luentoviikolla 1. Taustaa http://wiki.helsinki.fi/display/mathstatkurssit/matukurssisivu Halutaan todistaa, että oletuksesta
On annettu jono lukuja tai muita alkioita, joiden välille on määritelty suuruusjärjestys. Tehtävänä on saattaa alkiot suuruusjärjestykseen.
6. Järjestäminen On annettu jono lukuja tai muita alkioita, joiden välille on määritelty suuruusjärjestys. Tehtävänä on saattaa alkiot suuruusjärjestykseen. Tämä on eräs klassisimpia tietojenkäsittelyongelmia,
A274101 TIETORAKENTEET JA ALGORITMIT
A274101 TIETORAKENTEET JA ALGORITMIT ALGORITMIEN ANALYYSISTÄ 1.ratkaisu Laskentaaika hakkeri - optimoitu ALGORITMIANALYYSIÄ hyvä algoritmi hakkeri -optimoitu hyvä algoritmi Tehtävän koko Kuva mukailtu
Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö
Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen
Algoritmit 2. Luento 14 Ke Timo Männikkö
Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan
Tietorakenteet, laskuharjoitus 2,
Tietorakenteet, laskuharjoitus, 6.-9.1 Muista TRAKLA-tehtävien deadline 31.1. 1. Tarkastellaan ensin tehtävää yleisellä tasolla. Jos funktion T vaativuusluokka on O(f), niin funktio T on muotoa T (n) =
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,
SAT-ongelman rajoitetut muodot
SAT-ongelman rajoitetut muodot olemme juuri osoittaneet että SAT on NP-täydellinen perusidea on nyt osoittaa joukolle kiinnostavia ongelmia A NP että SAT p m A, jolloin kyseiset A myös ovat NP-täydellisiä
Tutkimusmenetelmät-kurssi, s-2004
Algoritmitutkimuksen menetelmistä Tutkimusmenetelmät-kurssi, s-2004 Pekka Kilpeläinen Kuopion yliopisto Tietojenkäsittelytieteen laitos Algoritmitutkimuksen menetelmistä p.1/20 Sisällys Tänään Tietojenkäsittelytiede
Algoritmit 1. Luento 3 Ti Timo Männikkö
Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille
Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja
58053-7 Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja Malliratkaisut ja pisteytysohje: Jyrki Kivinen Tentin arvostelu: Jouni Siren (tehtävät 1 ja 2) ja Jyrki Kivinen (tehtävät
Algoritmi on periaatteellisella tasolla seuraava:
Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S
Nopea kertolasku, Karatsuban algoritmi
Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa
6.1 Rekursiiviset palautukset
6.1 Rekursiiviset palautukset Olk. = (Q, Σ, Γ, δ, q 0, q acc, q rej ) mv. standardimallinen Turingin kone ääritellään koneen laskema osittaisfunktio f : Σ Γ seur. u, jos q 0 w u q av, f (w) = q { q acc,
Esimerkkejä polynomisista ja ei-polynomisista ongelmista
Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 31.1.-1.2.2018 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka tutkii onko kokonaisluku tasan jaollinen jollain toisella kokonaisluvulla siten, että ei käytetä lainkaan jakolaskuja Jaettava
Tietorakenteet, laskuharjoitus 3, ratkaisuja
Tietorakenteet, laskuharjoitus 3, ratkaisuja 1. (a) Toistolauseen runko-osassa tehdään yksi laskuoperaatio, runko on siis vakioaikainen. Jos syöte on n, suoritetaan runko n kertaa, eli aikavaativuus kokonaisuudessaan
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 8.5.2018 Timo Männikkö Luento 13 Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys Kertaus ja tenttivinkit Algoritmit 2 Kevät
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku
Tarkennamme geneeristä painamiskorotusalgoritmia
Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi
Algoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 1 27.-28.3.2019 Timo Männikkö Tehtävä 1 (a) 4n 2 + n + 4 = O(n 2 ) c, n 0 > 0 : 0 4n 2 + n + 4 cn 2 n n 0 Vasen aina tosi Oikea tosi, jos (c 4)n 2 n 4 0, joten oltava c > 4 Kokeillaan
4. Joukkojen käsittely
4 Joukkojen käsittely Tämän luvun jälkeen opiskelija osaa soveltaa lomittuvien kasojen operaatioita tuntee lomittuvien kasojen toteutuksen binomi- ja Fibonacci-kasoina sekä näiden totetutusten analyysiperiaatteet
4. Algoritmien tehokkuus
4. Algoritmien tehokkuus (Harel luku 6) vastaa jo minulle! [Psalmi 69:18] Kuinka paljon suoritusaikaa tai -tilaa algoritmin suoritus vaatii? Keskitymme lähinnä aikavaativuuden tarkasteluun. Myös algoritmien
Algoritmit 2. Luento 14 To Timo Männikkö
Algoritmit 2 Luento 14 To 2.5.2019 Timo Männikkö Luento 14 Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydelliset ongelmat Kertaus ja tenttivinkit Algoritmit
811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta
811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen
Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...
Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P(n) on totta kaikille n = 0,1,2,.... Tässä väite P(n) riippuu n:n arvosta. Todistuksessa
C C. x 2. x 3 x 3. Lause 3SAT p m VC Todistus. Olk. φ = C 1 C 2 C m 3-cnf-kaava, jossa esiintyvät muuttujat. φ toteutuva:
Lause 3SAT p m VC Todistus. Olk. φ = C 1 C C m 3-cnf-kaava, jossa esiintyvät muuttujat x 1,..., x n. Vastaava solmupeiteongelman tapaus G, k muodostetaan seuraavasti. G:ssä on solmu kutakin literaalia
7. Aikavaativuus. Ohjelmistotekniikan laitos OHJ-2300 Johdatus tietojenkäsittelyteoriaan, syksy
212 7. Aikavaativuus Edellä tarkasteltiin ongelmien ratkeavuutta kiinnittämättä huomiota ongelman ratkaisun vaatimaan aikaan Nyt siirrytään tarkastelemaan ratkeavien ongelmien aikavaativuutta Periaatteessa
Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna
Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna. q 0 x solmuina laskennan mahdolliset tilanteet juurena alkutilanne lehtinä tilanteet joista ei siirtymää,
TIEA341 Funktio-ohjelmointi 1, kevät 2008
TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 10 Todistamisesta Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 Samuuden todistaminen usein onnistuu ihan laskemalla
811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta
811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden
Algoritmianalyysin perusteet
Tietorakenteet ja algoritmit Algoritmianalyysin perusteet Ari Korhonen 1 5. ALGORITMIANALYYSI 5.1 Johdanto 5.2 Tavoitteet 5.3 Algoritmien luokittelu 5.4 Kertaluokkamerkinnät (Big Oh Notation) 5.5 Kertaluokkamerkinnöillä
811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu
811312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 3, Ratkaisu Harjoituksessa käsitellään algoritmien aikakompleksisuutta. Tehtävä 3.1 Kuvitteelliset algoritmit A ja B lajittelevat syötteenään
Toispuoleiset raja-arvot
Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen
Miten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
Positiivitermisten sarjojen suppeneminen
Positiivitermisten sarjojen suppeneminen Jono (b n ) n= on kasvava, jos b n+ b n kaikilla n =, 2,... Lemma Jokainen ylhäältä rajoitettu kasvava jono (b n ) n= raja-arvo on lim n b n = sup n Z+ b n. suppenee
Kokonaislukuoptimointi
Kokonaislukuoptimointi Algebrallisen geometrian sovelluksia Sisältö Taustaa algebrallisesta geometriasta Gröbnerin kanta Buchbergerin algoritmi Kokonaislukuoptimointi Käypyysongelma Algoritmi ratkaisun
Algoritmit 1. Luento 11 Ti Timo Männikkö
Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017
Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus
NodeCount(v /* lskee solmun v lipuun solmujen lukumäärän */ if solmu v on null return 0 else return + NodeCount(v.left + NodeCount(v.right Rekursio: lgoritmi kutsuu itseään Usein hjot j hllitse -perite:
58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen)
58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 1. Lisäysjärjestämisessä järjestetään ensin taulukon kaksi ensimmäistä lukua, sitten kolme ensimmäistä lukua, sitten neljä ensimmäistä
Muita vaativuusluokkia
Muita vaativuusluokkia Käydään lyhyesti läpi tärkeimpiä vaativuusluokkiin liittyviä tuloksia. Monet tunnetuista tuloksista ovat vaikeita todistaa, ja monet kysymykset ovat vielä auki. Lause (Ladner 1975):
1. Esitä rekursiivinen määritelmä lukujonolle
Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)
TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen)
TKT0001 Tietorakenteet ja algoritmit Erilliskoe 5.1.01, malliratkaisut (Jyrki Kivinen) 1. [1 pistettä] (a) Esitä algoritmi, joka poistaa kahteen suuntaan linkitetystä järjestämättömästä tunnussolmullisesta
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,
7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi
7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).
Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö
Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
Lisää pysähtymisaiheisia ongelmia
Lisää pysähtymisaiheisia ongelmia Lause: Pysähtymättömyysongelma H missä H = { w111x w validi koodi, M w ei pysähdy syötteellä x } ei ole rekursiivisesti lueteltava. Todistus: Pysähtymisongelman komplementti
y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon
Fibonacci-kasoilla voidaan toteuttaa samat operaatiot kuin binomikasoilla.
4.2 Fibonacci-kasat Fibonacci-kasoilla voidaan toteuttaa samat operaatiot kuin binomikasoilla. Pääsiallinen ero on, että paljon Decrease-Key-operaatioita sisältävät jonot nopeutuvat. Primin algoritmi pienimmälle
Reaalifunktioista 1 / 17. Reaalifunktioista
säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,
Algoritmit 2. Luento 2 To Timo Männikkö
Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento
802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III
802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77 Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on
2. Johdanto tietorakenteisiin
2. Johdanto tietorakenteisiin Kaikki epätriviaalit ohjelmat joutuvat tallettamaan ja käsittelemään tietoa suoritusaikanaan Esim. "puhelinluettelo": numeron lisäys numeron poisto numeron muutos numeron
A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
Tietorakenteet ja algoritmit - syksy 2015 1
Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä
802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO
8038A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 016 Sisältö 1 Irrationaaliluvuista Antiikin lukuja 6.1 Kolmio- neliö- ja tetraedriluvut...................
ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2
Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,
Algoritmit 2. Luento 2 Ke Timo Männikkö
Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento
Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen
Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys
Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen
Algoritmit 1. Luento 13 Ma Timo Männikkö
Algoritmit 1 Luento 13 Ma 26.2.2018 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
Ellipsoidimenetelmä. Samuli Leppänen Kokonaislukuoptimointi. S ysteemianalyysin Laboratorio
Ellipsoidimenetelmä Kokonaislukuoptimointi Sovelletun matematiikan lisensiaattiseminaari Kevät 2008 / 1 Sisällys Ellipsoidimenetelmän geometrinen perusta ja menetelmän idea Formaali ellipsoidimenetelmä
3SAT-ongelman NP-täydellisyys [HMU ]
3SAT-ongelman NP-täydellisyys [HMU 10.3.4] erotukseksi yleisestä CNF-esityksestä, kaikilla kaavoilla ei ole 3-CNF-esitystä; esim. x 1 x 2 x 3 x 4 esitämme muunnoksen, jolla polynomisessa ajassa mielivaltaisesta
Ensimmäinen induktioperiaate
Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla
Ensimmäinen induktioperiaate
1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla
Eksponentti- ja logaritmifunktiot
Eksponentti- ja logaritmifunktiot Eksponentti- ja logaritmifunktiot liittyvät läheisesti toisiinsa. Eksponenttifunktio tulee vastaan ilmiöissä, joissa tarkasteltava suure kasvaa tai vähenee suhteessa senhetkiseen
Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen
Johdatus diskreettiin matematiikkaan (syksy 009) Harjoitus 3, ratkaisuja Janne Korhonen 1. Väite: Funktio f : [, ) [1, ), missä on bijektio. f(x) = x + 4x + 5, Todistus: Luentomateriaalissa todistettujen
Epäyhtälöt ovat yksi matemaatikon voimakkaimmista
6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida
a ord 13 (a)
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 4, MALLIRATKAISUT Tehtävä 1. Etsi asteet ord p (a) luvuille a 1, 2,..., p 1 kun p = 13 ja kun p = 17. (ii) Mitkä jäännösluokat ovat primitiivisiä juuria (mod
Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt
Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.
DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS
DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko
2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)
Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee
Matematiikan peruskurssi 2
Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat
14. Juurikunnat Määritelmä ja olemassaolo.
14. Juurikunnat Mielivaltaisella polynomilla ei välttämättä ole juuria tarkasteltavassa kunnassa. Tässä luvussa tutkitaan sellaisia algebrallisia laajennoksia, jotka saadaan lisäämällä polynomeille juuria.
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 4 Mikko Salo 4.9.2017 Sisältö 1. Rationaali ja irrationaaliluvut 2. Induktiotodistus Rationaaliluvut Määritelmä Reaaliluku x on rationaaliluku, jos x = m n kokonaisluvuille
Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.
Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],
58131 Tietorakenteet
58131 Tietorakenteet luennot keväällä 2008, periodit III IV Jyrki Kivinen tietojenkäsittelytieteen aineopintokurssi, 8 op, pääaineopiskelijoille pakollinen esitietoina Johdatus diskreettiin matematiikkaan
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
ImageRecognition toteutus
ImageRecognition toteutus Simo Korkolainen 27 kesäkuuta 2016 Projektin tarkoituksena on tehdä ohjelma, joka opettaa neuroverkon tunnistamaan kuvia backpropagation-algoritmin avulla Neuroverkon opetuksessa
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT Tehtävä 1. (i) Olkoot n, d 1 ja d n. Osoita, että (k, n) d jos ja vain jos k ad, missä (a, n/d) 1. (ii) Osoita, että jos (m j, m k ) 1 kun
Algoritminen matematiikka
Algoritminen matematiikka Luentomoniste Turun yliopisto Matematiikan laitos 20014 Turku 2011 i Alkusanat Kurssin tarkoituksena on algoritmisen ajattelun omaksuminen ja kehittäminen. Tavanomaisesti matematiikassa
Vaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot
Luku 2. Jatkuvien funktioiden ominaisuuksia.
1 MAT-1343 Laaja matematiikka 3 TTY 21 Risto Silvennoinen Luku 2. Jatkuvien funktioiden ominaisuuksia. Jatkossa väli I tarkoittaa jotakin seuraavista reaalilukuväleistä: ( ab, ) = { x a< x< b} = { x a
Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:
Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien