Luku 4. Tietorakenteet funktio-ohjelmoinnissa. 4.1 Äärelliset kuvaukset

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Luku 4. Tietorakenteet funktio-ohjelmoinnissa. 4.1 Äärelliset kuvaukset"

Transkriptio

1 Luku 4 Tietorakenteet funktio-ohjelmoinnissa Koska funktio-ohjelmoinnissa ei käytetä tuhoavaa päivitystä (sijoituslausetta ja sen johdannaisia), eivät läheskään kaikki valtavirtaohjelmoinnista tutut tietorakenteet toimi kuten voisi kuvitella. Chris Okasaki on kirjassaan Purely Functional Data Structures (Cambridge University Press, 1998) käsitellyt tätä ongelmaa, esittänyt tutuille tietorakenteille funktio-ohjelmointiin sopivia määritelmiä sekä uusia rakenteita, jotka ovat mahdollisia vain funktio-ohjelmoinnissa. Tämän luvun tarkoituksena on esitellä joitakin Okasakin tuloksia. 4.1 Äärelliset kuvaukset Sitä, mitä valtavirtaohjelmoijat sanovat assosiaatiotauluksi, funktio-ohjelmoijat kutsuvat äärelliseksi kuvaukseksi (finite map). Kyse on siis tietorakenteesta, johon voidaan tallettaa tietoa niin, että se on avaimella löydettävissä suhteellisen nopeasti. Valtavirtaohjelmoijan suosimia hajautustauluja ei funktioohjelmoinnissa voi käyttää; sen sijasta suosittuja ovat erilaiset hakupuuratkaisut. Äärellisen kuvauksen rajapinta sisältää funktiot tyhjän kuvauksen luomiseen, alkion etsimiseen avaimella ja avain-alkioparin lisäämiseen. Tämän voi toteut- 45

2 46 LUKU 4. TIETORAKENTEET FUNKTIO-OHJELMOINNISSA taa esimerkiksi binäärisellä hakupuulla: data BinaryTree key elt = BTNode (BinaryTree key elt) key elt (BinaryTree key elt) BTEmpty emptytree :: Ord key BinaryTree key elt emptytree = BTEmpty lookupintree :: Ord key BinaryTree key elt key Maybe elt lookupintree BTEmpty _ = Nothing lookupintree (BTNode lst key elt rst) key key < key = lookupintree lst key key == key = Just elt key > key = lookupintree rst key (Lisäys jätetään harjoitustehtäväksi.) Jos aineisto lisätään puuhun satunnaisessa järjestyksessä, on keskimääräinen haku- ja lisäysaika logaritminen (Θ(log n)). Pahimmassa tapauksessa kuitenkin tällainen naiivi binääripuu surkastuu linkitetyksi listaksi, esimerkiksi jos aineisto lisätään avaimen (<)-järjestyksessä. Parempi puurakenne saadaan, jos tietorakenteen operaatiot pitävät puun tasapainossa. Yksi tällainen tietorakenne on punamustat puut, joissa joka epätyhjällä solmulla on avain alkio-parin lisäksi väri, punainen tai musta. data Color = R B deriving Show data RBTree key elt = E N Color (RBTree key elt) (key, elt) (RBTree key elt) deriving Show Tässä määrittelyssä käytetään lyhyitä koostimien nimiä, koska se helpottaa operaatioiden määritelmien luettavuutta. Punamustalta puulta vaaditaan kaksi invarianttia (ominaisuutta, jotka pätevät rakenteen kaikilta ilmentymiltä): 1. Punaisella solmulla ei ole punaista lapsisolmua. 2. Jokainen polku juuresta tyhjään solmuun sisältää saman määrän mustia solmuja.

3 4.1. ÄÄRELLISET KUVAUKSET 47 Näiden invarianttien seurauksena puun syvin lehtisolmu on enintään kaksi kertaa niin syvällä kuin puun matalin lehtisolmu. Näin ollen n-solmuisen punamustan puun maksimisyvyys on 2 log(n + 1) eli Θ(log n). Tyhjän puun luontioperaatio emptyrbtree :: Ord key RBTree key elt ja puusta haku lookupinrbtree :: Ord key RBTree key elt key Maybe elt ovat samanlaisia kuin naiivissa binäärihakupuussa; hakuoperaatio jättää värin huomiotta. Koska puun maksimisyvyys on Θ(log n), on puusta haun asymptoottinen aikavaativuus logaritminen. Puuhun lisääminen on hieman mielenkiintoisempi tapaus: addtorbtree :: Ord key key elt RBTree key elt RBTree key elt addtorbtree key elt tree = N B left payload right where N _ left payload right = ins tree ins E = N R E (key, elt) E ins (N color l e) r) key < k = balance color (ins l)plr key > k = balance color rpl (ins r) otherwise = N color l (key, elt) r Lisäyksen tehtävänä on huolehtia siitä, että invariantit säilyvät. Uusi lehtisolmu väritetään punaiseksi, joten toinen invariantti (mustien määrä poluilla) pätee. Koska tämä saattaisi rikkoa ensimmäisen invariantin, täytyy sen ylisolmuja muokata niin, että ykkösinvariantti säilyy. Tämä tapahtuu siten, että tapauksissa key < k ja key > k koostin N korvataan funktiolla balance, jonka tehtävänä on korjata puu sellaiseksi, että ensimmäinenkin invariantti pätee. Huomautus 10 Hahmo missä x on muuttuja ja P on hahmo, tarkoittaa seuraavaa: Sovita P aivan kuin ei olisikaan. Jos se epäonnistuu, sovitus epäonnistuu yhtä lailla. Jos se onnistuu, sido P:n muuttujat tavalliseen tapaan ja lisäksi sido x siihen koko arvoon, johon P sopi. Esimerkiksi edellisen määrittelyn hahmo e) sopii mihin tahansa pariin; k tulee sidotuksi parin ensimmäiseen alkioon, e tulee sidotuksi parin jälkimmäiseen alkioon ja pl tulee sidotuksi koko pariin, joten pätee yhtälö pl = (k, e). Funktio balance tutkii puita, joiden juuri on musta ja joilla on kaksi (syvyyssuunnassa) perättäistä punaista alisolmua. Tällaisia epänormaaleita tilanteita on aina vain yhdellä polulla, koska tämä operaatio tehdään joka lisäyksen

4 48 LUKU 4. TIETORAKENTEET FUNKTIO-OHJELMOINNISSA jälkeen, joten vain viimeisin lisäys voi jättää puun tällä tavalla rikkinäiseen tilaan. Näissä tapauksessa se pyöräyttää puun sellaiseen muotoon, jossa syvyyssuunnassa keskellä ollut punainen solmu nostetaan juureksi ja sen ylä- ja alasolmu väritetään mustiksi ja sen kummankin alipuun juureksi. Muunlaiset puut se jättää rauhaan. balance :: Color RBTree key elt (key, elt) RBTree key elt RBTree key elt balance B (N R (N R a x b) y c) z d = N R (N B a x b) y (N B c z d) balance B (N R a x (N R b y c)) z d = N R (N B a x b) y (N B c z d) balance B a x (N R (N R b y c) z d) = N R (N B a x b) y (N B c z d) balance B a x (N R b y (N R c z d)) = N R (N B a x b) y (N B c z d) balance c a x b = N c a x b Huomaa, kuinka viimeistä tapausta lukuunottamatta tapaukset eroavat toisistaan vain parametriensa hahmoilla: =-merkin jäljessä tuleva määritelmä on kaikissa neljässä muussa tapauksessa sama! Kukin tapaus kannattaa piirtää kuvaksi, jotta balancen ymmärtäisi. Myös puille on mahdollista kehittää fold. Seuraava määritelmä käy listan läpi jälkijärjestyksessä: foldrbtree :: Ord key ((key, elt) β β) β RBTree key elt β foldrbtree _ e E = e foldrbtree f e (N _ lst pl rst) = foldrbtree f (f pl (foldrbtree f e rst)) lst Tämän avulla voidaan määritellä esimerkiksi funktio, joka muuttaa puun listaksi: convertrbtreetolist :: Ord key RBTree key elt [(key, elt)] convertrbtreetolist = foldrbtree (:) [] Myös map on mahdollinen: maprbtree :: Ord key (elt elt) RBTree key elt RBTree key elt maprbtree _ E = E maprbtree f (N c l (k, e) r) = N c (maprbtree f l)(k, f e) (maprbtree f r) 4.2 Abstraktit tietotyypit ja modulit Käytännön ohjelmoijaa harvemmin kiinnostaa se, miten jokin tietorakenne toimii pellin alla. Enemmän häntä kiinnostaa, mitä kaikkea sillä voi tehdä ja kuinka tehokkaasti. Abstrakti tietotyyppi (abstract datatype, ADT) on yleisnimitys tälle käytännön ohjelmoijan näkemykselle tietorakenteista.

5 4.2. ABSTRAKTIT TIETOTYYPIT JA MODULIT 49 Abstraktin tietotyypin arvot ovat mustia laatikoita. Tyypin yhteydessä määritellään joukko operaatioita, joiden välisestä yhteydestä voidaan sanoa jotain, sekä siitä, kuinka tehokas kukin operaatio on. Abstrakti tietotyyppi piilottaa tietotyypin rakenteen sekä operaatioiden toteutuksen sen käyttäjältä. Haskellissa abstrakti tietotyyppi saadaan aikaiseksi kirjoittamalla siitä moduli, joka julkistaa vain tyyppikoostimen ja joukon funktioita, mutta jättää piiloon tyypin (tieto)koostimet. Tämä tapahtuu kirjoittamalla moduli tiedostoon, jonka nimi alkaa isolla kirjaimella ja päättyy päätteeseen.hs. Tiedoston alkuun kirjoitetaan module Nimi (julkistuslista) where. Nimi on, kuten ennenkin on tullut mainittua, tiedoston nimi ilman.hs-päätettä. Suluissa oleva julkistuslista on luettelo pilkuilla toisistaan erotetuista koostin- ja vakionnimistä, jotka ko. moduli julkistaa. Kaikki muut nimet ovat modulin sisäisiä. Esimerkki 25 Edellä esitetty punamusta puu voidaan kirjoittaa seuraavaksi moduliksi: module RedBlackTree (RBTree, emptyrbtree, lookupinrbtree, addtorbtree, maprbtree, foldrbtree, convertrbtreetolist) where data Color = R B deriving (Show) data RBTree key elt = E N Color (RBTree key elt) (key, elt) (RBTree key elt) deriving (Show) emptyrbtree :: Ord key => RBTree key elt emptyrbtree = E lookupinrbtree :: Ord key => RBTree key elt -> key -> Maybe elt lookupinrbtree E _ = Nothing lookupinrbtree (N _ lst (key, elt) rst) key key < key = lookupinrbtree lst key key == key = Just elt key > key = lookupinrbtree rst key addtorbtree :: Ord key => key -> elt -> RBTree key elt -> RBTree key elt addtorbtree key elt tree = N B left payload right where N _ left payload right = ins tree ins E = N R E (key, elt) E ins (N color l e) r) key < k = balance color (ins l) pl r

6 50 LUKU 4. TIETORAKENTEET FUNKTIO-OHJELMOINNISSA key > k = balance color r pl (ins r) otherwise = N color l (key, elt) r balance :: Color -> RBTree key elt -> (key, elt) -> RBTree key elt -> RBTree key elt balance B (N R (N R a x b) y c) z d = N R (N B a x b) y (N B c z d) balance B (N R a x (N R b y c)) z d = N R (N B a x b) y (N B c z d) balance B a x (N R (N R b y c) z d) = N R (N B a x b) y (N B c z d) balance B a x (N R b y (N R c z d)) = N R (N B a x b) y (N B c z d) balance c a x b = N c a x b maprbtree :: Ord key => (elt -> elt) -> RBTree key elt -> RBTree key elt maprbtree _ E = E maprbtree f (N c l (k, e) r) = N c (maprbtree f l) (k, f e) (maprbtree f r) foldrbtree :: Ord key => ((key, elt) -> b -> b) -> b -> RBTree key elt -> b foldrbtree _ e E = e foldrbtree f e (N _ lst pl rst) = foldrbtree f (f pl (foldrbtree f e rst)) lst convertrbtreetolist :: Ord key => RBTree key elt -> [(key, elt)] convertrbtreetolist = foldrbtree (:) [] testtree = addtorbtree "auto" 4 $ addtorbtree "liikennemerkki" 14 $ addtorbtree "televisio" 9 $ addtorbtree "yö" 2 $ addtorbtree "ääliö" 5 $ addtorbtree "öljy" 4 $ emptyrbtree Huomautus 11 Operaattori ($) kuuluu varuskirjastoon ja määritellään näin: ($) :: (α β) α β f $ x = f x Sen hyödyllisyys piilee siinä, että sillä on kaikista operaattoreista alhaisin predesenssi ja se assosioi oikealle: näin f $ g $ h x on sama kuin f (g (h x)). Sillä voi siten vähentää sulkeiden määrää lausekkeissa. Modulia päästään käyttämään toisessa modulissa kirjoittamalla tiedoston alkuun module where -rivin jälkeen yksi tai useampi import-rivi, joka on jo-

7 4.2. ABSTRAKTIT TIETOTYYPIT JA MODULIT 51 ko muotoa import ToinenModuli jolloin tämän modulin nimiavaruuteen lisätään kaikki ToinenModuli-modulin julkistamat nimet, tai muotoa import ToinenModuli (nimi, nomen) jolloin tämän modulin nimiavaruuteen lisätään ToinenModuli-modulin julkistamista nimistä nimet nimi ja nomen, tai muotoa import ToinenModuli hiding (nimi, nomen) jolloin tämän modulin nimiavaruuteen lisätään ToinenModuli-modulin julkistamista nimistä kaikki muut paitsi nimet nimi ja nomen. Jokaisessa näistä muodoista voidaan lisäksi kirjoittaa import-avainsanan jälkeen avainsana qualified, jolloin ne ToinenModuli-modulin nimet, jotka ylipäätään lisätään tämän modulin nimiavaruuteen, lisätään muodossa ToinenModuli.nimi. Huomautus 12 Jos modulissa ei ole eksplisiittistä import-riviä varuskirjastolle Prelude, käsitellään tämä kuin siinä olisi implisiittinen import Prelude. Esimerkki 26 Tyypillinen abstrakti tietotyyppi on esimerkiksi Set. Se voidaan toteuttaa punamustilla puilla seuraavasti: module Set (emptyset, inset, listtoset, settolist, setunion, setcomprehension, setintersection, subset) where import RedBlackTree newtype Set a = MkSet (RBTree a ()) deriving Show emptyset :: Ord a => Set a emptyset = MkSet $ emptyrbtree unitset :: Ord a => a -> Set a

8 52 LUKU 4. TIETORAKENTEET FUNKTIO-OHJELMOINNISSA unitset a = MkSet $ addtorbtree a () emptyrbtree inset :: Ord a => a -> Set a -> Bool x inset (MkSet s) = case lookupinrbtree s x of Just () -> True Nothing -> False listtoset :: Ord a => [a] -> Set a listtoset l = MkSet $ foldr (uncurry addtorbtree) emptyrbtree $ zip l $ repeat () settolist :: Ord a => Set a -> [a] settolist (MkSet s) = map fst $ convertrbtreetolist s setunion :: Ord a => Set a -> Set a -> Set a (MkSet s) setunion (MkSet t) = MkSet $ foldrbtree (uncurry addtorbtree) s t setcomprehension :: Ord a => (a -> Bool) -> Set a -> Set a setcomprehension f = listtoset. filter f. settolist setintersection :: Ord a => Set a -> Set a -> Set a setintersection s t = setcomprehension ( inset s) t subset :: Ord a => Set a -> Set a -> Bool s subset t = and $ map ( inset t) $ settolist s Tehtävä 1 Määrittele FiniteMap.hs-moduli RedBlackTree.hs-modulin pohjalta. Määrittele sitten Set2.hs-moduli FiniteMap.hs-modulin pohjalta.

Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Tällä luennolla Algebralliset tietotyypit Hahmonsovitus (pattern matching) Primitiivirekursio Esimerkkinä binäärinen hakupuu Muistattehan...

Lisätiedot

Abstraktit tietotyypit. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Abstraktit tietotyypit. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Abstraktit tietotyypit TIEA341 Funktio ohjelmointi 1 Syksy 2005 Data abstraktio Abstraktio on ohjelmoinnin tärkein väline Data abstraktio abstrahoi dataa Abstrakti tietotyyppi Koostuu kolmesta asiasta:

Lisätiedot

Laajennetaan vielä Ydin-Haskellia ymmärtämään vakiomäärittelyt. Määrittely on muotoa

Laajennetaan vielä Ydin-Haskellia ymmärtämään vakiomäärittelyt. Määrittely on muotoa 2.6. TIETOKONE LASKIMENA 23 Edellä esitetty Ydin-Haskell on hyvin lähellä sitä kieltä, jota GHCi (Glasgow Haskell Compiler, Interactive) sekä muut Haskell-järjestelmät suostuvat ymmärtämään. Esimerkiksi:

Lisätiedot

v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint.

v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint. Yleiset hakupuut 4 Monitiehakupuu: Binäärihakupuu 0 1 3 5 6 7 8 v k 1 k k 3 v v 3 v 4 k 1 k 3 k 1 k k k 3 d lapsisolmua d 1 avainta Yleinen hakupuu? Tietorakenteet, syksy 007 1 Esimerkki monitiehakupuusta

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PUURAKENTEET, BINÄÄRIPUU, TASAPAINOTETUT PUUT MIKÄ ON PUUTIETORAKENNE? Esim. Viereinen kuva esittää erästä puuta. Tietojenkäsittelytieteessä puut kasvavat alaspäin.

Lisätiedot

tään painetussa ja käsin kirjoitetussa materiaalissa usein pienillä kreikkalaisilla

tään painetussa ja käsin kirjoitetussa materiaalissa usein pienillä kreikkalaisilla 2.5. YDIN-HASKELL 19 tään painetussa ja käsin kirjoitetussa materiaalissa usein pienillä kreikkalaisilla kirjaimilla. Jos Γ ja ovat tyyppilausekkeita, niin Γ on tyyppilauseke. Nuoli kirjoitetaan koneella

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 5 Ympärysmitta. Puut. Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 CASE: YMPÄRYSMITTA Lasketaan kuvioiden ympärysmittoja

Lisätiedot

Tämän vuoksi kannattaa ottaa käytännöksi aina kirjoittaa uuden funktion tyyppi näkyviin, ennen kuin alkaa sen määritemää kirjoittamaan.

Tämän vuoksi kannattaa ottaa käytännöksi aina kirjoittaa uuden funktion tyyppi näkyviin, ennen kuin alkaa sen määritemää kirjoittamaan. 3.1. LISTAT 35 destaan pisteittäisesti: init :: [α] [α] init (x : []) = [] init (x : xs) = x : init xs Varuskirjastoon kuuluu myös funktiot take ja drop, jotka ottavat tai tiputtavat pois, funktiosta riippuen,

Lisätiedot

Algoritmit 2. Luento 2 Ke Timo Männikkö

Algoritmit 2. Luento 2 Ke Timo Männikkö Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento

Lisätiedot

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta AVL-puut eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta pohjana jo esitetyt binäärihakupuiden operaatiot tasapainotus vie pahimmillaan lisäajan lisäys- ja

Lisätiedot

Binäärihaun vertailujärjestys

Binäärihaun vertailujärjestys Järjestetyn sanakirjan tehokas toteutus: binäärihaku Binäärihaku (esimerkkikuassa aain = nimi) op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea

Lisätiedot

Miten käydä läpi puun alkiot (traversal)?

Miten käydä läpi puun alkiot (traversal)? inääripuut ieman lisää aidon binääripuun ominaisuuksia lehtisolmuja on yksi enemmän kuin sisäsolmuja inääripuut tasolla d on korkeintaan 2 d solmua pätee myös epäaidolle binääripuulle taso 0: 2 0 = 1 solmu

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 10 Todistamisesta Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 Samuuden todistaminen usein onnistuu ihan laskemalla

Lisätiedot

CS-A1140 Tietorakenteet ja algoritmit

CS-A1140 Tietorakenteet ja algoritmit CS-A1140 Tietorakenteet ja algoritmit Kierros 4: Binäärihakupuut Tommi Junttila Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Syksy 2016 Sisältö Binäärihakupuut Avainten lisääminen,

Lisätiedot

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 4 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 17. tammikuuta 2008 Modulin viimeistelyä module Shape ( Shape ( Rectangle, E l l i p

Lisätiedot

Tietorakenteet, laskuharjoitus 6,

Tietorakenteet, laskuharjoitus 6, Tietorakenteet, laskuharjoitus, 23.-2.1 1. (a) Kuvassa 1 on esitetty eräät pienimmistä AVL-puista, joiden korkeus on 3 ja 4. Pienin h:n korkuinen AVL-puu ei ole yksikäsitteinen juuren alipuiden keskinäisen

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA34 Funktio-ohjelmointi, kevät 2008 Luento 3 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 2. tammikuuta 2008 Ydin-Haskell: Syntaksi Lausekkeita (e) ovat: nimettömät funktiot: \x

Lisätiedot

Algoritmit 2. Luento 6 Ke Timo Männikkö

Algoritmit 2. Luento 6 Ke Timo Männikkö Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu

Lisätiedot

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Matti Nykänen 5. joulukuuta 2003 1 Satelliitit Muunnetaan luennoilla luonnosteltua toteutusta seuraavaksi: Korvataan puusolmun p kentät p. key ja

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

Tyyppejä ja vähän muutakin. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Tyyppejä ja vähän muutakin. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Tyyppejä ja vähän muutakin TIEA341 Funktio ohjelmointi 1 Syksy 2005 Viime luennolla... Haskellin alkeita pääasiassa Hello World!... ja muita tutunoloisia ohjelmia Haskellilla Haskellin voima on kuitenkin

Lisätiedot

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

2.4 Normaalimuoto, pohja ja laskentajärjestys 2.4. NORMAALIMUOTO, POHJA JA LASKENTAJÄRJESTYS 13

2.4 Normaalimuoto, pohja ja laskentajärjestys 2.4. NORMAALIMUOTO, POHJA JA LASKENTAJÄRJESTYS 13 2.4. NORMAALIMUOTO, POHJA JA LASKENTAJÄRJESTYS 13 Toisinaan voi olla syytä kirjoittaa α- tai β-kirjain yhtäsuuruusmerkin yläpuolelle kertomaan, mitä muunnosta käytetään. Esimerkki 4 1. (λx.x)y β = y 2.

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 9 Kombinaattoreista Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 Currying Haskell-funktio ottaa aina vain yhden

Lisätiedot

Tietorakenteet, laskuharjoitus 7, ratkaisuja

Tietorakenteet, laskuharjoitus 7, ratkaisuja Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9

Lisätiedot

Algoritmit 2. Luento 5 Ti Timo Männikkö

Algoritmit 2. Luento 5 Ti Timo Männikkö Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti

Lisätiedot

Algoritmit 1. Luento 7 Ti Timo Männikkö

Algoritmit 1. Luento 7 Ti Timo Männikkö Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017

Lisätiedot

Luku 3. Listankäsittelyä. 3.1 Listat

Luku 3. Listankäsittelyä. 3.1 Listat Luku 3 Listankäsittelyä Funktio-ohjelmoinnin tärkein yksittäinen tietorakenne on lista. Listankäsittely on paitsi käytännöllisesti oleellinen aihe, se myös valaisee funktio-ohjelmoinnin ideaa. 3.1 Listat

Lisätiedot

58131 Tietorakenteet (kevät 2008) 1. kurssikoe, ratkaisuja

58131 Tietorakenteet (kevät 2008) 1. kurssikoe, ratkaisuja 1 Tietorakenteet (kevät 08) 1. kurssikoe, ratkaisuja Tehtävän 1 korjasi Mikko Heimonen, tehtävän 2 Jaakko Sorri ja tehtävän Tomi Jylhä-Ollila. 1. (a) Tehdään linkitetty lista kaikista sukunimistä. Kuhunkin

Lisätiedot

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun:

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun: Tietorakenteet ja algoritmit, kevät 201 Kurssikoe 1, ratkaisuja 1. Tehtävästä sai yhden pisteen per kohta. (a) Invariantteja voidaan käyttää algoritmin oikeellisuustodistuksissa Jokin väittämä osoitetaan

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 1, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 1, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 1, 25.2.2013, vastauksia 1. (a) O-merkintä Ω-merkintä: Kyseessä on (aika- ja tila-) vaativuuksien kertalukumerkinnästä. O-merkintää käytetään ylärajan

Lisätiedot

private TreeMap<String, Opiskelija> nimella; private TreeMap<String, Opiskelija> numerolla;

private TreeMap<String, Opiskelija> nimella; private TreeMap<String, Opiskelija> numerolla; Tietorakenteet, laskuharjoitus 7, ratkaisuja 1. Opiskelijarekisteri-luokka saadaan toteutetuksi käyttämällä kahta tasapainotettua binäärihakupuuta. Toisen binäärihakupuun avaimina pidetään opiskelijoiden

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017

Lisätiedot

1.1 Pino (stack) Koodiluonnos. Graafinen esitys ...

1.1 Pino (stack) Koodiluonnos. Graafinen esitys ... 1. Tietorakenteet Tietorakenteet organisoivat samankaltaisten olioiden muodostaman tietojoukon. Tämä järjestys voidaan saada aikaan monin tavoin, esim. Keräämällä oliot taulukkoon. Liittämällä olioihin

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli

Lisätiedot

Laiska laskenta, korekursio ja äärettömyys. TIEA341 Funktio ohjelmointi Syksy 2005

Laiska laskenta, korekursio ja äärettömyys. TIEA341 Funktio ohjelmointi Syksy 2005 Laiska laskenta, korekursio ja äärettömyys TIEA341 Funktio ohjelmointi Syksy 2005 Muistatko graafinsievennyksen? DAG esitys ja graafinsievennys DAG esitys Lausekkeen rakennepuu, jossa yhteiset alilausekkeet

Lisätiedot

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet ) T-79144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet 11-22) 26 29102004 1 Ilmaise seuraavat lauseet predikaattilogiikalla: a) Jokin porteista on viallinen

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta

811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta jälkiosasta IV Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden aikakompleksisuus

Lisätiedot

5.5 Jäsenninkombinaattoreista

5.5 Jäsenninkombinaattoreista 5.5. JÄSENNINKOMBINAATTOREISTA 67 type Env α = FiniteMap String α data EnvT m α = MkE (Env Integer m (Env Integer, α)) instance Transformer EnvT where promote mp = MkE $ λenv mp λr return $(env, r) instance

Lisätiedot

Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min

Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min Koe Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min Kokeessa saa olla mukana A4:n kokoinen kaksipuolinen käsiten tehty, itse kirjoitettu lunttilappu 1 Tärkeää ja vähemmäntärkeää Ensimmäisen

Lisätiedot

Algoritmi on periaatteellisella tasolla seuraava:

Algoritmi on periaatteellisella tasolla seuraava: Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten

Lisätiedot

Tietorakenteet ja algoritmit Hakurakenteet Ari Korhonen

Tietorakenteet ja algoritmit Hakurakenteet Ari Korhonen Tietorakenteet ja algoritmit Hakurakenteet Ari Korhonen 27.10. & 3.11.2015 Tietorakenteet ja algoritmit - syksy 2015 1 8. HAKURAKENTEET (dictionaries) 8.1 Haku (vrt. sanakirjahaku) 8.2 Listat tallennusrakenteina

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 25.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 25.2.2009 1 / 34 Syötteessä useita lukuja samalla rivillä Seuraavassa esimerkissä käyttäjä antaa useita lukuja samalla

Lisätiedot

7. Tasapainoitetut hakupuut

7. Tasapainoitetut hakupuut 7. Tasapainoitetut hakupuut Tässä luvussa jatketaan järjestetyn sanakirjan tarkastelua esittämällä kehittynyt puutietorakenne. Luvussa 7.1. esitetään monitiehakupuun käsite. Se on järjestetty puu, jonka

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

5.3 Laskimen muunnelmia 5.3. LASKIMEN MUUNNELMIA 57

5.3 Laskimen muunnelmia 5.3. LASKIMEN MUUNNELMIA 57 5.3. LASKIMEN MUUNNELMIA 57 Samaan sarjaan kuuluu seuraavakin funktio, jonka määritelmä esittelee muutenkin hyödyllisen tavan kirjoittaa ohjelmia: getline :: IO String getline = getchar λc case c of \n

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu 1312A Tietorakenteet ja algoritmit, 2016-2017, Harjoitus 5, Ratkaisu Harjoituksen aihe ovat hash-taulukot ja binääriset etsintäpuut Tehtävä 5.1 Tallenna avaimet 10,22,31,4,15,28,17 ja 59 hash-taulukkoon,

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 2. helmikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 2. helmikuuta 2012 TIEA241 Automaatit ja, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 2. helmikuuta 2012 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti lueteltava

Lisätiedot

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa Kekolajittelu Prioriteettijonolla toteutettu keko InsertItem ja RemoveMinElem: O(log(n)) Lajittelu prioriteettijonolla: PriorityQueueSort(lajiteltava sekvenssi S) alusta prioriteettijono P while S.IsEmpty()

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 2.3.2009 T-106.1208 Ohjelmoinnin perusteet Y 2.3.2009 1 / 28 Puhelinluettelo, koodi def lue_puhelinnumerot(): print "Anna lisattavat nimet ja numerot." print

Lisätiedot

Algoritmit 1. Luento 6 Ke Timo Männikkö

Algoritmit 1. Luento 6 Ke Timo Männikkö Algoritmit 1 Luento 6 Ke 25.1.2017 Timo Männikkö Luento 6 Järjestetty lista Listan toteutus dynaamisesti Linkitetyn listan operaatiot Vaihtoehtoisia listarakenteita Puurakenteet Binääripuu Järjestetty

Lisätiedot

B + -puut. Kerttu Pollari-Malmi

B + -puut. Kerttu Pollari-Malmi B + -puut Kerttu Pollari-Malmi Tämä monista on alunperin kirjoitettu sksn 2005 kurssille osittain Luukkaisen ja Nkäsen vanhojen luentokalvojen pohjalta. Maaliskuussa 2010 pseudokoodiesits on muutettu vastaamaan

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 1. Avaimet 1, 2, 3 ja 4 mahtuvat samaan lehtisolmuun. Tässä tapauksessa puussa on vain yksi solmu, joka on samaan aikaan juurisolmu

Lisätiedot

Algoritmit 2. Luento 4 Ke Timo Männikkö

Algoritmit 2. Luento 4 Ke Timo Männikkö Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4

Lisätiedot

1.1 Tavallinen binäärihakupuu

1.1 Tavallinen binäärihakupuu TIE-20100 Tietorakenteet ja algoritmit 1 1 Puurakenteet http://imgur.com/l77fy5x Tässä luvussa käsitellään erilaisia yleisiä puurakenteita. ensin käsitellään tavallinen binäärihakupuu sitten tutustutaan

Lisätiedot

TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 9. marraskuuta 2009

TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 9. marraskuuta 2009 TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe D tiistai 10.11. klo 10 välikielen generointi Vaihe E tiistai

Lisätiedot

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin.

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin. 3. Hakupuut Hakupuu on listaa tehokkaampi dynaamisen joukon toteutus. Erityisesti suurilla tietomäärillä hakupuu kannattaa tasapainottaa, jolloin päivitysoperaatioista tulee hankalampia toteuttaa mutta

Lisätiedot

A TIETORAKENTEET JA ALGORITMIT KORVAAVAT HARJOITUSTEHTÄVÄT 3, DEADLINE KLO 12:00

A TIETORAKENTEET JA ALGORITMIT KORVAAVAT HARJOITUSTEHTÄVÄT 3, DEADLINE KLO 12:00 A274101 TIETORAKENTEET JA ALGORITMIT KORVAAVAT HARJOITUSTEHTÄVÄT 3, DEADLINE 9.2.2005 KLO 12:00 PISTETILANNE: www.kyamk.fi/~atesa/tirak/harjoituspisteet-2005.pdf Kynätehtävät palautetaan kirjallisesti

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 2.3.2011 T-106.1208 Ohjelmoinnin perusteet Y 2.3.2011 1 / 39 Kertausta: tiedoston avaaminen Kun ohjelma haluaa lukea tai kirjoittaa tekstitiedostoon, on ohjelmalle

Lisätiedot

1 Puu, Keko ja Prioriteettijono

1 Puu, Keko ja Prioriteettijono TIE-20100 Tietorakenteet ja algoritmit 1 1 Puu, Keko ja Prioriteettijono Tässä luvussa käsitellään algoritmien suunnitteluperiaatetta muunna ja hallitse (transform and conquer) Lisäksi esitellään binääripuun

Lisätiedot

4. Joukkojen käsittely

4. Joukkojen käsittely 4 Joukkojen käsittely Tämän luvun jälkeen opiskelija osaa soveltaa lomittuvien kasojen operaatioita tuntee lomittuvien kasojen toteutuksen binomi- ja Fibonacci-kasoina sekä näiden totetutusten analyysiperiaatteet

Lisätiedot

useampi ns. avain (tai vertailuavain) esim. opiskelijaa kuvaavassa alkiossa vaikkapa opintopistemäärä tai opiskelijanumero

useampi ns. avain (tai vertailuavain) esim. opiskelijaa kuvaavassa alkiossa vaikkapa opintopistemäärä tai opiskelijanumero Alkioiden avaimet Usein tietoalkioille on mielekästä määrittää yksi tai useampi ns. avain (tai vertailuavain) esim. opiskelijaa kuvaavassa alkiossa vaikkapa opintopistemäärä tai opiskelijanumero 80 op

Lisätiedot

Anna Kuikka Pyöräkatu 9 B Kuopio GSM: Opiskelijanro: 60219K. Prioriteettijonot

Anna Kuikka Pyöräkatu 9 B Kuopio GSM: Opiskelijanro: 60219K. Prioriteettijonot Anna Kuikka Pyöräkatu 9 B 68 70600 Kuopio GSM: 040-734 9266 akuikka@cc.hut.fi Opiskelijanro: 60219K Prioriteettijonot PRIORITEETTIJONOT...1 1. JOHDANTO...3 2. TOTEUTUKSET...3 1.2 Keon toteutus...4 1.3

Lisätiedot

Ydin-Haskell Tiivismoniste

Ydin-Haskell Tiivismoniste Ydin-Haskell Tiivismoniste Antti-Juhani Kaijanaho 8. joulukuuta 2005 1 Abstrakti syntaksi Päätesymbolit: Muuttujat a, b, c,..., x, y, z,... Tyyppimuuttujat α, β, γ,... Koostimet (data- ja tyyppi-) C, D,...,

Lisätiedot

Algoritmit 1. Luento 5 Ti Timo Männikkö

Algoritmit 1. Luento 5 Ti Timo Männikkö Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti

Lisätiedot

Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin

Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin jaetaan muut alkiot kahteen ryhmään: L: alkiot, jotka eivät suurempia kuin pivot G : alkiot, jotka suurempia kuin pivot 6 1 4 3 7 2

Lisätiedot

Tämä tarina on Fibonaccin lukujen ongelman alkuperäinen muotoilu.

Tämä tarina on Fibonaccin lukujen ongelman alkuperäinen muotoilu. Rekursiosta ja iteraatiosta Oletetaan että meillä on aluksi yksi vastasyntynyt kanipari, joista toinen on uros ja toinen naaras. Kanit saavuttavat sukukypsyyden yhden kuukauden ikäisinä. Kaninaaraan raskaus

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 5: Sijoituslause, SICP-oliot, todistamisesta (mm. SICP 33.1.3, 3.33.3.2) Riku Saikkonen 7. 11. 2011 Sisältö 1 Muuttujan arvon muuttaminen: set! 2 SICP-oliot

Lisätiedot

Muita linkattuja rakenteita

Muita linkattuja rakenteita 1 Muita linkattuja rakenteita Johdanto Aikaisemmin on käsitelty listan, jonon ja pinon toteutus dynaamisesti linkattuna rakenteena. Dynaamisella linkkauksella voidaan toteuttaa mitä moninaisimpia rakenteita.

Lisätiedot

Demo 7 ( ) Antti-Juhani Kaijanaho. 9. joulukuuta 2005

Demo 7 ( ) Antti-Juhani Kaijanaho. 9. joulukuuta 2005 Demo 7 (14.12.2005) Antti-Juhani Kaijanaho 9. joulukuuta 2005 Liitteenä muutama esimerkki Ydin-Haskell-laskuista. Seuraavassa on enemmän kuin 12 nimellistä tehtävää; ylimääräiset ovat bonustehtäviä, joilla

Lisätiedot

Algoritmit 2. Luento 11 Ti Timo Männikkö

Algoritmit 2. Luento 11 Ti Timo Männikkö Algoritmit 2 Luento 11 Ti 25.4.2017 Timo Männikkö Luento 11 Peruutusmenetelmä Osajoukon summa Pelipuut Pelipuun läpikäynti Rajoitehaku Kapsäkkiongelma Algoritmit 2 Kevät 2017 Luento 11 Ti 25.4.2017 2/29

Lisätiedot

3. Binääripuu, Java-toteutus

3. Binääripuu, Java-toteutus 3. Binääripuu, Java-toteutus /*-------------------------------------------------------------/ / Rajapinta SearchTree: binäärisen hakupuun käsittelyrajapinta / / Metodit: / / void insert( Comparable x );

Lisätiedot

811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista

811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista 811312A Tietorakenteet ja algoritmit 2016-2017 III Lajittelualgoritmeista Sisältö 1. Johdanto 2. Pikalajittelu 3. Kekolajittelu 4. Lajittelualgoritmien suorituskyvyn rajoista 811312A TRA, Lajittelualgoritmeista

Lisätiedot

811312A Tietorakenteet ja algoritmit II Perustietorakenteet

811312A Tietorakenteet ja algoritmit II Perustietorakenteet 811312A Tietorakenteet ja algoritmit 2017-2018 II Perustietorakenteet Sisältö 1. Johdanto 2. Pino 3. Jono 4. Lista 811312A TRA, Perustietorakenteet 2 II.1. Johdanto Tietorakenne on tapa, jolla algoritmi

Lisätiedot

Kysymyksiä koko kurssista?

Kysymyksiä koko kurssista? Kysymyksiä koko kurssista? Lisää kysymyksesi osoitteessa slido.com syötä event code: #8777 Voit myös pyytää esimerkkiä jostain tietystä asiasta Vastailen kysymyksiin luennon loppupuolella Tätä luentoa

Lisätiedot

Mukautuvat järjestämisalgoritmit

Mukautuvat järjestämisalgoritmit 1 Mukautuvat järjestämisalgoritmit Riku Saikkonen TIK-päivä, 17. 1. 2013 2 Mukautuva järjestäminen minkä tahansa vertailuihin perustuvan järjestämisalgoritmin täytyy tehdä pahimmassa tapauksessa vähintään

Lisätiedot

Geneeriset tyypit. TIES542 Ohjelmointikielten periaatteet, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos

Geneeriset tyypit. TIES542 Ohjelmointikielten periaatteet, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos Geneeriset tyypit TIES542 Ohjelmointikielten periaatteet, kevät 2007 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 6. maaliskuuta 2007 Kysymys Mitä yhteistä on seuraavilla funktioilla?

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

18. Abstraktit tietotyypit 18.1

18. Abstraktit tietotyypit 18.1 18. Abstraktit tietotyypit 18.1 Sisällys Johdanto abstrakteihin tietotyyppeihin. Pino ja jono. Linkitetty lista. Pino linkitetyllä listalla toteutettuna. 18.2 Johdanto Javan omat tietotyypit ovat jo tuttuja:

Lisätiedot

Algoritmit 1. Luento 3 Ti Timo Männikkö

Algoritmit 1. Luento 3 Ti Timo Männikkö Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien

Lisätiedot

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 14: Monadit Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 Tyyppien tyypit eli luonteet engl. kind tyyppinimet, kuten

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015 TIEA24 Automaatit ja kieliopit, syksy 205 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 5. marraskuuta 205 Sisällys Käsiteanalyysiä Tarkastellaan koodilukkoa äärellisenä automaattina. Deterministinen äärellinen

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PERUSTIETORAKENTEET LISTA, PINO, JONO, PAKKA ABSTRAKTI TIETOTYYPPI Tietotyyppi on abstrakti, kun se on määritelty (esim. matemaattisesti) ottamatta kantaa varsinaiseen

Lisätiedot

Sisällys. 18. Abstraktit tietotyypit. Johdanto. Johdanto

Sisällys. 18. Abstraktit tietotyypit. Johdanto. Johdanto Sisällys 18. bstraktit tietotyypit Johdanto abstrakteihin tietotyyppeihin. Pino ja jono. Linkitetty lista. Pino linkitetyllä listalla toteutettuna. 18.1 18.2 Johdanto Javan omat tietotyypit ovat jo tuttuja:

Lisätiedot

Jäsennys. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Jäsennys. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Jäsennys TIEA341 Funktio ohjelmointi 1 Syksy 2005 Muistutus: Laskutehtävä ja tulos data Laskutehtava = Luku Double Yhteen Laskutehtava Laskutehtava Vahennys Laskutehtava Laskutehtava Tulo Laskutehtava

Lisätiedot

Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi

Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi Imperatiivisen ohjelmoinnin peruskäsitteet muuttuja muuttujissa oleva data voi olla yksinkertaista eli primitiivistä (esim. luvut ja merkit) tai rakenteista jolloin puhutaan tietorakenteista. puhuttaessa

Lisätiedot

Harjoitus 1 -- Ratkaisut

Harjoitus 1 -- Ratkaisut Kun teet harjoitustyöselostuksia Mathematicalla, voit luoda selkkariin otsikon (ja mahdollisia alaotsikoita...) määräämällä soluille erilaisia tyylejä. Uuden solun tyyli määrätään painamalla ALT ja jokin

Lisätiedot

5.2.5 Konstruktoriluokat Edellisessä esimerkissä määrittelimme oman tyyppiluokan Isqrt jonka jäsenet olivat tyyppejä (kuten Int, Integer, Word,...).

5.2.5 Konstruktoriluokat Edellisessä esimerkissä määrittelimme oman tyyppiluokan Isqrt jonka jäsenet olivat tyyppejä (kuten Int, Integer, Word,...). 5.2.5 Konstruktoriluokat Edellisessä esimerkissä määrittelimme oman tyyppiluokan Isqrt jonka jäsenet olivat tyyppejä (kuten Int, Integer, Word,...). Voimme määritellä tyyppiluokkia myös tyyppikonstruktoreille

Lisätiedot

Tietueet. Tietueiden määrittely

Tietueet. Tietueiden määrittely Tietueet Tietueiden määrittely Tietue on tietorakenne, joka kokoaa yhteen eri tyyppistä tietoa yhdeksi asiakokonaisuudeksi. Tähän kokonaisuuteen voidaan viitata yhteisellä nimellä. Auttaa ohjelmoijaa järjestelemään

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

Ohjelmistojen mallintaminen viikon 4 laskareiden mallivastauksia

Ohjelmistojen mallintaminen viikon 4 laskareiden mallivastauksia Ohjelmistojen mallintaminen viikon 4 laskareiden mallivastauksia Tehtävä 1 Tehtävässä 1 mallinnettiin Monopolipeliä. Alla olevassa esimerkissä peliin liittyy aina 2 noppaa, peliä pelataan pelilaudalla,

Lisätiedot

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2 Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,

Lisätiedot