Liite F: laskuesimerkkejä

Koko: px
Aloita esitys sivulta:

Download "Liite F: laskuesimerkkejä"

Transkriptio

1 Liite F: laskuesimerkkejä 1 Lämpövirta astiasta Astiasta ympäristöön siirtyvää lämpövirtaa ei voida arvioida vain astian seinämien lämmönjohtavuuksilla sillä ilma seinämä ja maali seinämä -rajapinnoilla on tässä hallitseva osuus Lasketaan UU vedellä valeltupinta +U kuiva pinta alussa ja lopussa Lämmönjohtavuuden kaava: Uk A (T alku T loppu ) L Seinämien vaikutus arvioidaan kaavalla: Uh A (T sisä T ulko ) jossa h on rajapinnan lämmönsiirtokerroin joka määräytyy Nusselt'n numeron ja ominaispituuden perusteella: Nu h k L k Nu h L Sylinterin Nusselt'n numero: Levyn Nusselt'n numero: Prandt'n numero: PrC p µ/ k Grashof'n numero: 09 L Nu sylinteri Nu levy (1+143 ( (D Gr 05 ) ) ) / (Gr Pr)1 Nu levy (085+ (1+(049/ Pr) 9 /16 ) ) 8/ 7 Gr g β ν T s T L 3 jossa ideaalisille fluideille Alku [ºC] Loppu [ºC] Kuiva seinämä Märkä seinämä Ympäristö 9 9 Astian sisällä keskellä Astian sisällä reunassa β 1 T Lasketaan kertoimia β: 1 β huone 7315 C / K+9 C K 1 1 β säiliö alussa 7315 C/K +716 C K 1 1 β säiliö lopussa 7315 C/ K+378 C 0003 K 1

2 Astian korkeus on 1 m Ilman kinemaattinen viskositeetti 0 C:n lämpötilassa on m /s lasketaan myös maalin kinemaattinen viskositeetti: ν µ Pas ρ 1186 kg / m m /s Gr ilma kuiva alku 981 m / s K 1 ( m / s) 35 C 9 C (1 m) Gr ilma märkä alku 981 m /s K 1 ( m / s) 95 C 9 C (1 m) Gr ilma kuiva loppu 981 m/s K 1 ( m /s) 171 C 9 C ( 1 m) Gr ilma märkä loppu 981 m / s K 1 ( m / s) 95 C 9 C (1 m) Gr maali alku 981 m /s K 1 ( m / s) 716 C 510 C ( 1m) Gr maali loppu 981 m/s 0003 K 1 ( m /s) 378 C 64 C ( 1 m) Pr ilma 1005 J /(kgk ) Pas 004 /( mk) Pas Pr maali 400 J /(kgk ) 030 /( mk) 435 Astian säde on 066 m lasketaan Nusselt'n numeroita Nu levy ilma kuiva alku ( (( ) 083) 1/ 6 ) 373 (1+( 049/ 083) 9/ 16 ) 8/ 7 1 m Nu sylinteri ilma kuiva alku 373 ( ( 09) m ( ) ) 05 Nu levy ilma märkä alku ( (( ) 083) 1/6 ) 3574 (1+(049/ 083) 9/16 ) 8/ m Nu sylinteri ilma märkä alku 3574 (1+143 ( 066 m ( ) ) ) Nu levy ilma kuiva loppu ( (( ) 083) 1/ 6 ) 660 (1+(049/ 083) 9/ 16 ) 8 / m Nu sylinteri ilma kuiva loppu 660 (1+143 ( 066 m ( ) ) )69 05

3 Nu levy ilma märkä loppu ( (( ) 083) 1/ 6 ) 1115 (1+(049/083) 9/16 ) 8/7 1 m Nu sylinteri ilma märkä loppu 1115 (1+143 ( 09) m ( ) ) 05 Nu levy maali alku ( (( ) 435) 1 /6 ) (1+( 049/435) 9/ 16 ) 8 /7 1 m Nu sylinteri maali alku (1+143 ( 09) m ( ) ) 05 Nu levy maali loppu ( (( ) 435) 1/6 ) (1+( 049/ 435) 9/16 ) 8/7 1 m Nu sylinteri maali loppu ( ( 09) m ( ) ) 05 Lasketaan rajapintojen lämmönsiirtokertoimia: h ilma kuiva alku h ilma märkä alku h ilma kuiva loppu h ilma märkä loppu h maalialku h maaliloppu Lasketaan lämpövirtoja: /( mk ) 438 /( m K) 1 m /( mk) 40 /( m K ) 1 m /( mk) 313 /(m K) 1 m /( mk ) 133 /( m K) 1 m /( mk ) 9376 /( m K) 1 m /(mk ) 7987 /( m K) 1 m U kuiva seinä ilma alku 438 m K (1188 m 37 m ) (35 C 9 C)840 U märkä seinä ilma alku 40 m K 37 m ( 95 C 9 C)30 U kuiva seinä ilma loppu 313 m K (1188 m 37 m ) ( 171 C 9 C)07 U märkä seinä ilma loppu 133 m K 37 m (95 C 9 C)47

4 U maali alku 9376 m K 1188 m (716 C 510 C)9000 U maali loppu 7987 m K 1188 m ( 378 C 6 4 C) Lasketaan vielä lämpövirtoja metallissa: U kuiva seinä maali alku 16 mk U märkä seinä maali alku 16 mk m 37 m) (510 C 35 C) ( k 0003 m m (510 C 95 C) k 0003 m U kuiva seinä maali loppu 16 m 37 m) ( 64 C 171 C) ( mk 0003 m U loppu märkä seinä maali 16 mk m (46 C 95 C) m Lämmönvaihdin Lasketaan lämmönvaihtimen pituus pinta-alasta lämpövirrasta ja lämmönvaihdinkohtaisesta kertoimesta Kertoimen kaava ottaa huomioon suoran lämmönjohtumisen lisäksi myös nesteiden ja seinämän välisten rajapintojen vastukset siten että suurimman vastuksen vaikutus on määräävä Lämpötilakeskiarvo on logaritminen keskilämpötilaero U Uh A ΔT keskiarvo Aπ D L L h π D ΔT keskiarvo D o h[ + D o ln(d o /D i ) ] h i D i k h o Lämpötilaeroksi saadaan: ΔT keskiarvo 60K 50K ln 60K/50K K ja ΔT keskiarvo ΔT 1 ΔT ln ΔT 1 / ΔT kun oletetaan että 90 ºC maalia jäähdytetään 30 ºC:hen ja oletetaan että jäähdytykseen käytetty vesi on vastaavasti vaihtimessa asteista Rajapintojen lämmönsiirtokertoimet lasketaan Nusselt'n numerosta: h(k/d) Nu Reynolds'in numeroa tarvitaan Nusselt'n numeron laskemisessa ja se myös määrittää oikean kaavan Nusselt'n numeron laskemiseen:

5 ReD v neste ν 1 Reynolds'n numeron laskemiseen tarvitaan veden ja maalin virtausnopeudet Maalista tunnetaan massavirta 90 l/min joka muutetaan virtausnopeudeksi putkessa jonka sisähalkaisijaksi valitaan m ajatuksella että seinämät olisivat n 15 mm paksuja: 009 m 3 /min π ( m 058 m/s ) 60 s/ min Lasketaan 90 l/min virtaavan maalin energiavirta: 90 l / min 119 kg / l 400 J/( kg K) 60 K4498 kj /s 60s/ min Tästä saadaan veden vaadittava tilavuusvirta: J/ s 4186 J/( kg K) 1kg 50 K 15 kg/ s 15 dm 3 / s 60 s/ min19 l/min Lasketaan tarvittava nopeus olettamalla vaippa tuuman sisäputkea paksummaksi: π (( m m m 3 /s ) ( m m 0668 m/s ) ) Lasketaan Reynolds'n numerot (70 C-asteisen veden viskositeetti on m /s): Re maali m 058 m/s ( m / s) Re vesi 0056 m 067 m /s ( m /s) Reynolds'n numero määrää käytetyn Nusselt'n numeron kaavan Arvon ollessa yli 4000 voidaan käyttää turbulenttisen virtauksen kaavaa: Nu007 Re 08 Pr 1 /3 (µ/ µ reuna ) 014 josta oletetaan: µµ reuna (µ/ µ reuna ) koska maalin viskositeettia eri lämpötiloissa ei tarkkaan tunneta Maalin Prandtl'n numero tunnetaan lasketaan sama vedelle: Pr vesi 4180 J/( kgk) Pas/ 06 /( mk )35 Voidaan laskea maalin ja veden Nussent'n numerot sekä rajapintojen lämmönsiirtokertoimet: Nu vesi 007 ( ) / Nu maali 007 ( ) / /(mk ) h vesi 0056 m /( m K)

6 030 /(mk ) h maali m /(m K) Lämmönvaihtimen lämmönsiirtokerroin on: 00603m ln( 00603m m h[ /(m K) 00573m m ) /(mk) 4010/(m K) ] h9111 josta saadaan pituus: L 9111 π m K 475 m 1 3 Jäähdytysrivat Ripahyötysyhteen yhtälö on n tanh ( m L) f m L olevan 155 m - Arvioidaan lisäpinta-ala kaavalla: D säiliö π d ripa m h k τ n f L ripa + D säiliö π D π säiliö τ d ripa parannuskerroin D säiliö π josta kerroin m tiedetään Rivan paksuudeksi valitaan 3 mm säiliön säde on 066 m ja ripojen etäisyys 0015 m Esimerkiksi rivanpituudella 001 m hyötysuhde on: n f tanh (155 m 001 m) 155 m 001 m 059 Tästä saadaan seuraava reaalinen pinta-alan lisäys: 066 π 066 m π m+066 m π 0015 m 0015 m 0003 m m π 4 Emissiivisyys Tutkitaan lämpösäteilyn määrää astian seinistä Ohessa on laskettu säteily sekä seinämän alku että loppulämpötiloilla Ulkolämpötilaksi oletetaan 9 ºC

7 4 Uσ A T abs sovellettuna: U(σ A T abs 4 4 T ympäristö ) vedellä valeltu +(σ A T abs 4 4 T ympäristö ) kuiva Alku [ºC] Loppu [ºC] Kuiva seinämä Märkä seinämä Ympäristö 9 9 U alku 816 m m K 4 [(7315 K +3 K)4 ( 7315 K+ 9 K) 4 ] +751 m m K 4 [( 7315 K+ 95 K)4 ( 7315 K+9 K) 4 ]1954 U loppu 816 m m K 4 [(7315 K+171 K)4 ( 7315 K+9 K) 4 ] +751 m m K 4 [(7315 K +95 K)4 ( 7315 K+9 K) 4 ]371

JUHA SUVANTO TUPSULAN PADAN LÄMMÖNSIIRTO. Kandidaatintyö

JUHA SUVANTO TUPSULAN PADAN LÄMMÖNSIIRTO. Kandidaatintyö JUHA SUVANTO TUPSULAN PADAN LÄMMÖNSIIRTO Kandidaatintyö ii TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Ympäristö- ja energiatekniikan koulutusohjelma SUVANTO, JUHA: Tupsulan Padan lämmönsiirto Kandidaatintyö,

Lisätiedot

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa 8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

MUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011

MUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011 Aalto yliopisto Insinööritieteiden korkeakoulu Virtausmekaniikka / Sovelletun mekaniikan laitos MUISTIO No CFD/MECHA-17-2012 pvm 22. kesäkuuta 2011 OTSIKKO Hilatiheyden määrittäminen ennen simulointia

Lisätiedot

Harjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Harjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

Sisäisen konvektion vaikutus yläpohjan lämmöneristävyyteen

Sisäisen konvektion vaikutus yläpohjan lämmöneristävyyteen FRAME 08.11.2012 Tomi Pakkanen Tampereen teknillinen yliopisto, Rakennustekniikan laitos Sisäisen konvektion vaikutus yläpohjan lämmöneristävyyteen - Kokeellinen tutkimus - Diplomityö Laboratoriokokeet

Lisätiedot

Kuva lämmönsiirtoprosessista Käytössä ristivirtalämmönvaihdin (molemmat puolet sekoittumattomat)

Kuva lämmönsiirtoprosessista Käytössä ristivirtalämmönvaihdin (molemmat puolet sekoittumattomat) Kemian laitetekniikka Kotilaku 3..008 Jarmo Vetola Kuva lämmöniirtoproeita Käytöä ritivirtalämmönvaihdin (molemmat puolet ekoittumattomat) kuuma maitovirta, eli ravaton maito patöroinnita virtau vaippapuolella

Lisätiedot

EINO TALSI RIPAPUTKIPATTERIT TYYLIKÄSTÄ LÄMMÖNTUOTTOA

EINO TALSI RIPAPUTKIPATTERIT TYYLIKÄSTÄ LÄMMÖNTUOTTOA EINO TALSI RIPAPUTKIPATTERIT TYYLIKÄSTÄ LÄMMÖNTUOTTOA JOUSTAVAA SUUNNITTELUA MUKAUTUU ERI TILOIHIN Eino Talsi Oy on osa Ekocoil-konsernia. Se on useiden vuosikymmenien ajan erikoistunut ripaputkituotteiden

Lisätiedot

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi DEE-4000 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen ratkaisuiksi Yleistä asiaa lämmönjohtumisen yleiseen osittaisdifferentiaaliyhtälöön liittyen Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälön

Lisätiedot

Demo 5, maanantaina 5.10.2009 RATKAISUT

Demo 5, maanantaina 5.10.2009 RATKAISUT Demo 5, maanantaina 5.0.2009 RATKAISUT. Lääketieteellisen tiedekunnan pääsykokeissa on usein kaikenlaisia laitteita. Seuraavassa yksi hyvä kandidaatti eli Venturi-mittari, jolla voi määrittää virtauksen

Lisätiedot

Ruiskuvalumuotin jäähdytys, simulointiesimerkki

Ruiskuvalumuotin jäähdytys, simulointiesimerkki Ruiskuvalumuotin jäähdytys, simuloiesimerkki School of Technology and Management, Polytechnic Institute of Leiria Käännös: Tuula Höök - Tampereen Teknillinen Yliopisto Mallinnustyökalut Jäähdytysjärjestelmän

Lisätiedot

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi. Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole

Lisätiedot

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus KATTILAN VESIHÖYRYPIIRIN SUUNNITTELU Höyrykattilan on tuotettava höyryä seuraavilla arvoilla.

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013 MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013 PROSENTTILASKENTA Prosentti on 1/100 tai 0,01. Esimerkki 40. Lukuarvo % 0,42 42 0,013 1,3 1,002 100,2 1/25 100/25=4 23/45 51,1

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

Kryogeniikka ja lämmönsiirto. DEE-54030 Kryogeniikka Risto Mikkonen

Kryogeniikka ja lämmönsiirto. DEE-54030 Kryogeniikka Risto Mikkonen DEE-54030 Kyogeniikka Kyogeniikka ja lämmönsiito 1 DEE-54030 Kyogeniikka Risto Mikkonen 5.5.015 Lämmönsiion mekanismit '' q x ( ) x q '' h( s ) q '' 4 4 ( s su ) DEE-54030 Kyogeniikka Risto Mikkonen 5.5.015

Lisätiedot

Ulkoseinän lämpöhäviöiden määritys Minna Teikari, diplomi-insinööri Tutkija, Tampereen teknillinen korkeakoulu teikari@ce.tut.fi

Ulkoseinän lämpöhäviöiden määritys Minna Teikari, diplomi-insinööri Tutkija, Tampereen teknillinen korkeakoulu teikari@ce.tut.fi Minna Teikari, diplomi-insinööri Tutkija, Tampereen teknillinen korkeakoulu teikari@ce.tut.fi Hannu Keränen, diplomi-insinööri Tutkija, Tampereen teknillinen korkeakoulu hannuk@ce.tut.fi Johdanto Rakennuksen

Lisätiedot

LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Mittauspäivä ja aika LASKE VIRTAAMA, JOS TIEDÄT TEHON JA LÄMPÖTILAERON

LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Mittauspäivä ja aika LASKE VIRTAAMA, JOS TIEDÄT TEHON JA LÄMPÖTILAERON LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Täytä tiedot Mittauspäivä ja aika Lähdön lämpötila Paluun lämpötila 32,6 C 27,3 C Meno paluu erotus Virtaama (Litraa/sek) 0,32 l/s - Litraa

Lisätiedot

Normaalisti valmistamme vastuksia oheisen taulukon mukaisista laadukkaista raaka-aineista. Erikoistilauksesta on saatavana myös muita raaka-aineita.

Normaalisti valmistamme vastuksia oheisen taulukon mukaisista laadukkaista raaka-aineista. Erikoistilauksesta on saatavana myös muita raaka-aineita. Putkivastuksien vaippaputken raaka-aineet Vastuksen käyttölämpötila ja ympäristön olosuhteet määräävät minkälaisesta materiaalista vastuksen vaippaputki on valmistettu. Tavallisesti käytettäviä aineita

Lisätiedot

MATEMATIIKKA PAOJ2 Harjoitustehtävät

MATEMATIIKKA PAOJ2 Harjoitustehtävät MATEMATIIKKA PAOJ2 Harjoitustehtävät 6. Laske kuvan suorakulmion pinta-ala. ( T ) 1. Täytä taulukko m 12 1,45 0,805 2. Täytä taulukko mm 12345 4321 765 23,5 7. Laske kuvan suorakulmion pinta-ala.( T )

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

TEHTÄVÄ 1 *palautettava tehtävä (DL: 3.5. klo. 10:00 mennessä!) TEHTÄVÄ 2

TEHTÄVÄ 1 *palautettava tehtävä (DL: 3.5. klo. 10:00 mennessä!) TEHTÄVÄ 2 Aalto-yliopisto/Insinööritieteiden korkeakoulu/energiatalous ja voimalaitostekniikka 1(5) TEHTÄVÄ 1 *palautettava tehtävä (DL: 3.5. klo. 10:00 mennessä!) Ilmaa komprimoidaan 1 bar (abs.) paineesta 7 bar

Lisätiedot

Ville Rahkola EKONOMAISERIN SUUNNITTELU JA MITOITUS

Ville Rahkola EKONOMAISERIN SUUNNITTELU JA MITOITUS Ville Rahkola EKONOMAISERIN SUUNNITTELU JA MITOITUS Opinnäytetyö CENTRIA AMMATTIKORKEAKOULU Kone- ja tuotantotekniikan koulutusohjelma Huhtikuu 2014 TIIVISTELMÄ OPINNÄYTETYÖSTÄ Yksikkö Tekniikka ja liiketalous,

Lisätiedot

Muita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin:

Muita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin: Muita lämpökoneita Nämäkin vaativat ovat työtälämpövoimakoneiden toimiakseen sillä termodynamiikan pääsääntö Lämpökoneita lisäksi laitteet,toinen jotka tekevät on Clausiuksen mukaan: laiteilmalämpöpumppu

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

Valomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta.

Valomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta. Valomylly (tunnetaan myös Crookesin radiometrinä) Mikko Marsch Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta Valomylly (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin

Lisätiedot

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä.

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkona 2.3. ennen luentojen alkua eli klo 14:00 mennessä puiseen kyyhkyslakkaan, jonka numero on 9. Arvostellut kotitehtäväpaperit palautetaan laskutuvassa.

Lisätiedot

FYSIIKAN LABORAATIOTYÖ 4 LÄMMÖNJOHTAVUUDEN, LÄMMÖNLÄPÄISYKERTOI- MEN JA LÄMMÖNSIIRTYMISKERTOIMEN MÄÄRITYS

FYSIIKAN LABORAATIOTYÖ 4 LÄMMÖNJOHTAVUUDEN, LÄMMÖNLÄPÄISYKERTOI- MEN JA LÄMMÖNSIIRTYMISKERTOIMEN MÄÄRITYS FYSIIKAN LABORAATIOTYÖ 4 LÄMMÖNJOHTAVUUDEN, LÄMMÖNLÄPÄISYKERTOI- MEN JA LÄMMÖNSIIRTYMISKERTOIMEN MÄÄRITYS Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SNC Ohjaaja: Ari Korhonen Työn tekopvm: 28.03.2008

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Tutkimus lämmönluovutuslevyjen merkityksestä puisissa välipohjarakenteissa

Tutkimus lämmönluovutuslevyjen merkityksestä puisissa välipohjarakenteissa Misael Urbano Soriano Tutkimus lämmönluovutuslevyjen merkityksestä puisissa välipohjarakenteissa Opinnäytetyö Talotekniikan ko Huhtikuu 2013 KUVAILULEHTI Opinnäytetyön päivämäärä Tekijä(t) Misael Urbano

Lisätiedot

Kandidaatintyö: Lämmöntalteenottokattilan lämpötekninen mitoitus. Thermal design of a heat recovery steam generator

Kandidaatintyö: Lämmöntalteenottokattilan lämpötekninen mitoitus. Thermal design of a heat recovery steam generator Lappeenrannan teknillinen yliopisto Teknillinen tiedekunta Energiatekniikan koulutusohjelma BH10A0200 Energiatekniikan kandidaatintyö ja seminaari Kandidaatintyö: Lämmöntalteenottokattilan lämpötekninen

Lisätiedot

PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS

PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS 1 PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen osat Lämpötilan

Lisätiedot

Ohjelma, joka kysyy 7 päivän lämpötilat, ohjelma laskee viikon keskilämpötilan.

Ohjelma, joka kysyy 7 päivän lämpötilat, ohjelma laskee viikon keskilämpötilan. LISÄHARJOITUKSIA osa 1 Lisäh1 Ohjelma, joka kysyy 7 päivän lämpötilat, ohjelma laskee viikon keskilämpötilan. float lampotila; float summa=0; printf("anna 1. lämpötila\n"); printf("anna. lämpötila\n");

Lisätiedot

Rak Tulipalon dynamiikka

Rak Tulipalon dynamiikka Rak-43.3510 Tulipalon dynamiikka 7. luento 14.10.2014 Simo Hostikka Palopatsaat 1 Luonnollisten palojen liekki 2 Palopatsas 3 Liekin korkeus 4 Palopatsaan lämpötila ja virtausnopeus 5 Ideaalisen palopatsaan

Lisätiedot

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1.

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1. SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 6 Tehtävä 1. Aurinkokennon virta I s 1,1 A ja sen mallissa olevan diodin estosuuntainen kyllästysvirta I o 1 na. Laske aurinkokennon maksimiteho suhteessa termiseen

Lisätiedot

PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS

PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS 1 PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittausprojekti Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen

Lisätiedot

Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä

Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä Yleista Sorptioroottorin jäähdytyskoneiston jäähdytystehontarvetta alentava vaikutus on erittän merkittävää

Lisätiedot

Nesteen ominaisuudet ja nestetilavuuden mallinnus

Nesteen ominaisuudet ja nestetilavuuden mallinnus Kon-4.47 Hydraulijärjestelmien mallintaminen ja simulointi Nesteen ominaisuudet ja nestetilavuuden mallinnus Hydrauliikka on tehon siirtoa nesteen välityksellä. Jos yrit ymmärtämään hydrauliikkaa, on sinun

Lisätiedot

Kuivauksen fysiikkaa. Hannu Sarkkinen

Kuivauksen fysiikkaa. Hannu Sarkkinen Kuivauksen fysiikkaa Hannu Sarkkinen 28.11.2013 Kuivatusmenetelmiä Auringon säteily Mikroaaltouuni Ilmakuivatus Ilman kosteus Ilman suhteellinen kosteus RH = ρ v /ρ vs missä ρ v = vesihöyryn tiheys (g/m

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

Vauhti = nopeuden itseisarvo. Nopeuden itseisarvon keskiarvo N:lle hiukkaselle määritellään yhtälöllä

Vauhti = nopeuden itseisarvo. Nopeuden itseisarvon keskiarvo N:lle hiukkaselle määritellään yhtälöllä S-4.35, Fysiikka III (ES) entti 8.3.006. Laske nopeuden itseisarvon keskiarvo v ave ja nopeuden neliöllinen keskiarvo v rms seuraaville 6 molekyylien nopeusjakaumille: a) kaikkien vauhti 0 m/s, b) kolmen

Lisätiedot

Kon HYDRAULIIKKA JA PNEUMATIIKKA

Kon HYDRAULIIKKA JA PNEUMATIIKKA Sarja Kon-4.303 HYDRAULIIKKA JA PNEUMATIIKKA erusteet Päiän teemat Sarja Neste kuin neste, onko sillä äliä? Tilauusirta, miten ja miksi? Mihin tilauusirtaa taritaan? Onko tilauusirran ja aineen älillä

Lisätiedot

Kertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet

Kertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet Kertaus 3 Putkisto ja häviöt, pyörivät koneet KJR-C2003 Virtausmekaniikan perusteet Käsitteelliset tehtävät Käsitteelliset tehtävät Ulkopuoliset virtaukset Miten Reynoldsin luku vaikuttaa rajakerrokseen?

Lisätiedot

Virtaukset & Reaktorit

Virtaukset & Reaktorit Virtaukset & Reaktorit Teollisuuden lämmönsiirtimet 1 Kertaus, lämmönsiirron perusteet Lämpöä siirtyy kolmella mekanismilla: 1) Johtuminen 2) Säteily 3) Konvektio 2 Kertaus, lämmönsiirron perusteet Lämmön

Lisätiedot

KALLE VÄHÄTALO LEVYLÄMMÖNSIIRTIMEN VIRTAUKSEN JA LÄMMÖNSIIRRON MALLINNUS. Diplomityö

KALLE VÄHÄTALO LEVYLÄMMÖNSIIRTIMEN VIRTAUKSEN JA LÄMMÖNSIIRRON MALLINNUS. Diplomityö KALLE VÄHÄTALO LEVYLÄMMÖNSIIRTIMEN VIRTAUKSEN JA LÄMMÖNSIIRRON MALLINNUS Diplomityö Tarkastaja: professori Reijo Karvinen Tarkastaja ja aihe hyväksytty Luonnontieteiden tiedekunnan tiedekuntaneuvoston

Lisätiedot

Säädettävä pyörrehajotin korkeisiin tiloihin PDZA

Säädettävä pyörrehajotin korkeisiin tiloihin PDZA Säädettävä pyörrehajotin korkeisiin tiloihin PDZA Pyörrehajotin PDZ takaa tehokasta ilmanvaihtoa isoihin tiloihin, kuten tuotantohallit, supermarketit, varastot yms. Hajottimet sopivat sekä vapaaseen-

Lisätiedot

LÄMMITYSJÄRJESTELMÄT Lisälämmittimet

LÄMMITYSJÄRJESTELMÄT Lisälämmittimet Lisälämmittimet LM-0000 LM-0010 12V 24V 150W 3,6 kg 250 m 3 /h 5,2 kw 218 x 180 x 339 mm. 3-nopeuksinen vesikiertoinen lisälämmitin venttiilillä. 30/11 bar, putket ø 16 mm. LM-0003 12V LM-0006 24V 150W

Lisätiedot

Pinnoitteen vaikutus jäähdytystehoon

Pinnoitteen vaikutus jäähdytystehoon Pinnoitteen vaikutus jäähdytystehoon Jesse Viitanen Esko Lätti 11I100A 16.4.2013 2 SISÄLLYS 1TEHTÄVÄN MÄÄRITTELY... 3 2TEORIA... 3 2.1Jäähdytysteho... 3 2.2Pinnoite... 4 2.3Jäähdytin... 5 3MITTAUSMENETELMÄT...

Lisätiedot

Integroimistekniikkaa Integraalifunktio

Integroimistekniikkaa Integraalifunktio . Integroimistekniikkaa.. Integraalifunktio 388. Vertaa funktioiden ln ja ln, b) arctan ja arctan + k k, c) ln( + 2 ja ln( 2, missä a >, derivaattoja toisiinsa. Tutki funktioiden erotusta muuttujan eri

Lisätiedot

dx = L2 (x + 1) 2 dx x ln x + 1 = L 2 1 L + 1 L ( = 1 ((L + 1)ln(L + 1) L) L k + 1 xk+1 = 1 k + 2 xk+2 = 1 10k+1 k + 2 = 7.

dx = L2 (x + 1) 2 dx x ln x + 1 = L 2 1 L + 1 L ( = 1 ((L + 1)ln(L + 1) L) L k + 1 xk+1 = 1 k + 2 xk+2 = 1 10k+1 k + 2 = 7. BM2A582 - Integraalilaskenta ja sovellukset Harjoitus 5, Kevät 26. a Lumikuiorman massa-alkio kohdassa on λd L2 + 2 d, joten kokonaismassa on Momentti suoran suhteen on L L 2 L m d L2 + 2 d + 2 / L L 2

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Aalto-yliopisto, sähkötekniikan korkeakol Kimmo Silvonen Tentti 30.5.03: tehtävät,3,4,6,0.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain

Lisätiedot

LÄMPÖKESKUKSEN LÄMMITYSJÄRJESTELMÄN ERISTÄMISEN VAIKUTUS POLTTOAINEEN KULUTUKSEEN

LÄMPÖKESKUKSEN LÄMMITYSJÄRJESTELMÄN ERISTÄMISEN VAIKUTUS POLTTOAINEEN KULUTUKSEEN LÄMPÖKESKUKSEN LÄMMITYSJÄRJESTELMÄN ERISTÄMISEN VAIKUTUS POLTTOAINEEN KULUTUKSEEN Antti Kulha Opinnäytetyö Syksy 2010 Talotekniikan koulutusohjelma Oulun seudun ammattikorkeakoulu TIIVISTELMÄ Oulun seudun

Lisätiedot

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla Termodynamiikkaa Energiatekniikan automaatio TKK 2007 Yrjö Majanne, TTY/ACI Martti Välisuo, Fortum Nuclear Services Automaatio- ja säätötekniikan laitos Termodynamiikan perusteita Konventionaalisessa lämpövoimaprosessissa

Lisätiedot

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis 763343A IINTEÄN AINEEN FYSIIA Ratkaisut 3 evät 2017 1. Tehtävä: CsCl muodostuu Cs + - ja Cl -ioneista, jotka asettuvat tilakeskeisen rakenteen vuoropaikoille (kuva). Laske tämän rakenteen Madelungin vakion

Lisätiedot

Stirling-perustaisen mikro-chp-laitteiston prosessilaskenta ja lämmönvaihtimen mitoitus

Stirling-perustaisen mikro-chp-laitteiston prosessilaskenta ja lämmönvaihtimen mitoitus Stirling-erustaisen mikro-chp-laitteiston rosessilaskenta ja lämmönvaihtimen mitoitus Mikko Lommi Pro gradu -tutkielma Jyväskylän ylioisto, Fysiikan laitos Uusiutuvan energian koulutusohjelma 0.1.006 Tiivistelmä

Lisätiedot

Jos olet käynyt kurssin aikaisemmin, merkitse vuosi jolloin kävit kurssin nimen alle.

Jos olet käynyt kurssin aikaisemmin, merkitse vuosi jolloin kävit kurssin nimen alle. 1(4) Lappeenrannan teknillinen yliopisto School of Energy Systems LUT Energia Nimi, op.nro: BH20A0450 LÄMMÖNSIIRTO Tentti 13.9.2016 Osa 1 (4 tehtävää, maksimi 40 pistettä) Vastaa seuraaviin kysymyksiin

Lisätiedot

SBL -LAMINAARIPALKKI TEKNINEN MANUAALI

SBL -LAMINAARIPALKKI TEKNINEN MANUAALI SBL -LAMINAARIPALKKI TEKNINEN MANUAALI Chiller Oy 1 SISÄLLYSLUETTELO: 1. Yleistä 3 2. Jäähdytystehot eri lämmönvaihdinpituuksille vesivirralla 0,1 l/s 4 3. Jäähdytystehot eri lämmönvaihdinpituuksille halutuilla

Lisätiedot

Kuljetusilmiöt. Diffuusio Lämmönjohtuminen Viskoosin nesteen virtaus Produktio ja absorptio

Kuljetusilmiöt. Diffuusio Lämmönjohtuminen Viskoosin nesteen virtaus Produktio ja absorptio Kuljetusilmiöt Diffuusio Lämmönjohtuminen Viskoosin nesteen virtaus Produktio ja absorptio Johdanto Kuljetusilmiöt on yhteinen nimitys prosesseille, joissa aineen molekyylien liike aiheuttaa energian,

Lisätiedot

Maxwell-Boltzmannin jakauma

Maxwell-Boltzmannin jakauma Maxwell-Boltzmannin jakauma Homogeenisessa tasapainotilassa redusoidut yksihiukkastodennäköisyydet f voivat olla vain nopeuden funktioita, f = f(v ), ja H-funktio ei toisaalta voi riippua ajasta, eli dh

Lisätiedot

DEE-54000 Sähkömagneettisten järjestelmien lämmönsiirto

DEE-54000 Sähkömagneettisten järjestelmien lämmönsiirto DEE-54 Säköagneettisten järjestelien läönsiirto Ripateoria 1 Säköagneettisten järjestelien läönsiirto Risto Mikkonen Ripateoria q Läönsiirtoa voidaan teostaa: Suurentaalla läpötilaeroa Suurentaalla :ta

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

LUENTO 3 LÄMPÖ, LÄMMITYS, LÄMMÖN- ERISTÄMINEN, U-ARVON LASKENTA

LUENTO 3 LÄMPÖ, LÄMMITYS, LÄMMÖN- ERISTÄMINEN, U-ARVON LASKENTA LUENTO 3 LÄMPÖ, LÄMMITYS, LÄMMÖN- ERISTÄMINEN, U-ARVON LASKENTA RAKENNUSFYSIIKAN PERUSTEET 453535P, 2 op Esa Säkkinen, arkkitehti esa.sakkinen@oulu.fi Jaakko Vänttilä, DI, arkkitehti jaakko.vanttila@oulu.fi

Lisätiedot

Max. nostokorkeus Teho (kw) LVR3-7-220V 3 32 5 44 0,55 10 50Hz ~ 220 V G1. LVR3-7-380V 3 32 5 44 0,55 10 50Hz ~ 380 V G1

Max. nostokorkeus Teho (kw) LVR3-7-220V 3 32 5 44 0,55 10 50Hz ~ 220 V G1. LVR3-7-380V 3 32 5 44 0,55 10 50Hz ~ 380 V G1 Kuvaus Virhehälytyksenestopumppu, jolla korvataan pienten vuotojen aiheuttama vedenhukka automaattisen sprinkleripumpun turhan käynnistymisen estämiseksi. Tekniset tiedot Tyyppi: Monivaiheinen keskipakopumppu

Lisätiedot

PUTKIEN PUHDISTUKSEEN

PUTKIEN PUHDISTUKSEEN U.S.A. RAM - 4 230 V, 50 Hz TAI 60 Hz PUTKILLE SISÄMITTA 6,4-25,4 mm VESISYÖTÖLLÄ 7,6 LPM TAIPUISAN AKSELIN NOPEUS 862 RPM MOOTTORIN TEHO 0,5 HP PAINO: 22 kg RAM - 5SFA 230 V, 50 Hz TAI 60 Hz PUTKILLE

Lisätiedot

kuviot samassa tai eri koordinaatistoissa a)- ja b)-kohdissa riittävät pelkät vastaukset, jos kuviot ovat oikein

kuviot samassa tai eri koordinaatistoissa a)- ja b)-kohdissa riittävät pelkät vastaukset, jos kuviot ovat oikein MAOL ry:n pisteytyssuositus PITKÄ MATEMATIIKKA KEVÄT 00. yhtälöt a) y = ) = + c) y= + + d) y= + + kuviot samassa tai eri koordinaatistoissa + a)- ja )-kohdissa riittävät pelkät vastaukset, jos kuviot ovat

Lisätiedot

Hydrauliikka: kooste teoriasta ja käsitteistä

Hydrauliikka: kooste teoriasta ja käsitteistä ENY-C003 / S-05 Hydrauliikka: kooste teoriasta ja käsitteistä Sovelletussa hydrodynamiikassa eli hydrauliikassa käsitellään veden virtausta putkissa ja avouomissa sekä maaperässä. Käsitteitä Rataviiva,

Lisätiedot

Kryogeniikka ja lämmönsiirto. Dee Kryogeniikka Risto Mikkonen

Kryogeniikka ja lämmönsiirto. Dee Kryogeniikka Risto Mikkonen DEE-54030 Kyogeniikka Kyogeniikka ja lämmönsiito Dee-54030 Kyogeniikka Risto Mikkonen Lämmönsiion mekanismit '' q x ( ) x q '' h( s ) q Dee-54030 Kyogeniikka Risto Mikkonen '' 4 4 ( s su ) Lämmön johtuminen

Lisätiedot

Virtaukset & Reaktorit

Virtaukset & Reaktorit Virtaukset & Reaktorit Lämmönsiirron perusteet Oppimistavoite tälle kerralle Lämmönsiirron perusmekanismit Lämmönjohtumisongelmien mallitus ja ratkaisu Säteilylämmönsiirto Konvektio ja lämmönsiirtokerroin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien

Lisätiedot

Maatalous-metsätieteellisen tiedekunnan valintakoe Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset

Maatalous-metsätieteellisen tiedekunnan valintakoe Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset Maatalous-metsätieteellisen tiedekunnan valintakoe 18.5.2015 Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset 7. a) Matti ja Maija lähtevät kävelemään samasta pisteestä vastakkaisiin

Lisätiedot

Venttiilin painehäviön mittaus

Venttiilin painehäviön mittaus Lappeenrannan teknillinen yliopisto School of Energy Systems Energiatekniikan koulutusohjelma BH10A000 Energiatekniikan kandidaatintyö ja seminaari Venttiilin painehäviön mittaus Työn tarkastaja: Jari

Lisätiedot

,-xrt:lrw. Losses: apr,i"rio., : (f *) + pv2 and, apr*, : Kr*, L. Power: P:LpQ. Ef :*,,r(r'r f)*, -l,in(t* f),, Ensimmäinen välikoe. pv, g.o4.

,-xrt:lrw. Losses: apr,irio., : (f *) + pv2 and, apr*, : Kr*, L. Power: P:LpQ. Ef :*,,r(r'r f)*, -l,in(t* f),, Ensimmäinen välikoe. pv, g.o4. Kul-34.3100 Introduction to Fluid Mechanics Ensimmäinen välikoe g.o4.2ot4 Muistathan, että perustelut ovat tärkeä osa laskua ja arvostelua! Properties of air density: pair : l.23kg/m3 (dynamic) viscosity:

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Projektin arvon aleneminen

Projektin arvon aleneminen Projektin arvon aleneminen sivut 99-07 Optimointiopin seminaari - Syksy 000 / Arvon aleneminen Jatketaan projektin arvon tutkimista. Nyt huomioidaan arvon aleneminen. Syitä esimerkiksi: kaluston vanheneminen

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

Lämmitys- ja jäähdytyspaneeli

Lämmitys- ja jäähdytyspaneeli Yhteystiedot, Katsaus, Sisältö Ohjeita lämmitykseen ja jäähdytykseen Plexus Professor Premum / Premax / Solo Architect Polaris I & S Plafond Podium Celo Cabinett Capella Carat Fasadium Atrium / Loggia

Lisätiedot

KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma

KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma Sekä A- että B-osiosta tulee saada vähintään 10 pistettä. Mikäli A-osion pistemäärä on vähemmän kuin 10 pistettä,

Lisätiedot

Luento 10. Virtaventtiilit Vastusventtiilit Virransäätöventtiilit Virranjakoventtiilit. BK60A0100 Hydraulitekniikka

Luento 10. Virtaventtiilit Vastusventtiilit Virransäätöventtiilit Virranjakoventtiilit. BK60A0100 Hydraulitekniikka Luento 10 Virtaventtiilit Vastusventtiilit Virransäätöventtiilit Virranjakoventtiilit BK60A0100 Hydraulitekniikka 1 Yleistä Toimilaitteen liikenopeus määräytyy sen syrjäytystilavuuden ja sille tuotavan

Lisätiedot

Lämpökuvausraportti. Pähkinärinteen neuvola ja sivukirjasto. ThermoSunEco Oy. Vantaan Tilakeskus Mikko Krohn 01300 Vantaa

Lämpökuvausraportti. Pähkinärinteen neuvola ja sivukirjasto. ThermoSunEco Oy. Vantaan Tilakeskus Mikko Krohn 01300 Vantaa Annantie 19, 04220 Kerava P. 010 2191 499 Lämpökuvausraportti Pähkinärinteen neuvola ja sivukirjasto Asiakkaan nimi: Vantaan Tilakeskus Mikko Krohn 01300 Vantaa Neuvola huone 73 IR001811.IS2 1.2.2012 12:28:47

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1 Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =

Lisätiedot

14. Putkivirtausten ratkaiseminen. KJR-C2003 Virtausmekaniikan perusteet

14. Putkivirtausten ratkaiseminen. KJR-C2003 Virtausmekaniikan perusteet 14. Putkivirtausten ratkaiseminen KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten erilaisia putkistovirtausongelmia ratkaistaan? Motivointi: putkijärjestelmien mitoittaminen sekä painehäviöiden

Lisätiedot

Oletetaan kaasu ideaalikaasuksi ja sovelletaan Daltonin lakia. Kumpikin seoksen kaasu toteuttaa erikseen ideaalikaasun tilanyhtälön:

Oletetaan kaasu ideaalikaasuksi ja sovelletaan Daltonin lakia. Kumpikin seoksen kaasu toteuttaa erikseen ideaalikaasun tilanyhtälön: S-445, ysiikka III (Sf) entti 653 Astiassa on, µmol vetyä (H ) ja, µg tyeä ( ) Seoksen lämötila on 373 K ja aine,33 Pa Määritä a) astian tilavuus, b) vedyn ja tyen osaaineet ja c) molekyylien lukumäärä

Lisätiedot

Mikroskooppisten kohteiden

Mikroskooppisten kohteiden Mikroskooppisten kohteiden lämpötilamittaukset itt t Maksim Shpak Planckin laki I BB ( λ T ) = 2hc λ, 5 2 1 hc λ e λkt 11 I ( λ, T ) = ε ( λ, T ) I ( λ T ) m BB, 0 < ε

Lisätiedot

Ideaalikaasut. 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista?

Ideaalikaasut. 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista? Ideaalikaasut 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista? 2. Auton renkaan paineeksi mitattiin huoltoasemalla 2,2 bar, kun lämpötila oli + 10 ⁰C. Pitkän ajon jälkeen rekkaan

Lisätiedot

Kon Hydraulijärjestelmät

Kon Hydraulijärjestelmät Kon-41.4040 Hydraulijärjestelmät Hydraulijärjestelmän häviöiden laskenta Oheisten kuvien (2 5) esittämissä järjestelmissä voiman F kuormittamalla sylinterillä tehdään edestakaisia liikkeitä, joiden välillä

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

EWA Solar aurinkokeräin

EWA Solar aurinkokeräin EWA Solar aurinkokeräin Sisällys: 1. Keräimen periaate 2. Keräimen rakenne 3. Keräimen toiminta 4. Keräimen yhdistäminen EWA:an 5. Ohjeita keräimen rakentamiseksi 6. Varoitus 7. Ominaisuuksia luettelona

Lisätiedot

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla. FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin

Lisätiedot

PHYS-A3121 Termodynamiikka (ENG1) (5 op)

PHYS-A3121 Termodynamiikka (ENG1) (5 op) PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset

Lisätiedot

Virtaus ruiskutusventtiilin reiästä

Virtaus ruiskutusventtiilin reiästä Jukka Kiijärvi Virtaus ruiskutusventtiilin reiästä Kaasu- ja polttomoottorin uudet tekniset mahdollisuudet Polttomoottori- ja turbotekniikan seminaari 2014-05-15 Otaniemi Teknillinen tiedekunta, sähkö-

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka

Lisätiedot

, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,

, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n, S-114.6, Fysiikka IV (EST),. VK 4.5.005, Ratkaisut 1. Selitä lyhyesti mutta mahdollisimman täsmällisesti: a) Keskimääräisen kentän malli ja itsenäisten elektronien approksimaatio. b) Monen fermionin aaltofunktion

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

Kantavat puurakenteet Liimapuuhallin kehän mitoitus EC5 mukaan Laskuesimerkki Tuulipilarin mitoitus

Kantavat puurakenteet Liimapuuhallin kehän mitoitus EC5 mukaan Laskuesimerkki Tuulipilarin mitoitus T513003 Puurakenteet Kantavat puurakenteet Liimapuuhallin kehän mitoitus EC5 mukaan Laskuesimerkki Tuulipilarin mitoitus 1 Liimapuuhalli Laskuesimerkki: Liimapuuhallin pääyn tuulipilarin mitoitus. Tuulipilareien

Lisätiedot