Algoritmit 1. Demot Timo Männikkö
|
|
- Kirsti Järvenpää
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Algoritmit 1 Demot Timo Männikkö
2 Tehtävä 1 (a) Ei-rekursiivinen algoritmi: etsipienin(t, n) { pnn = t[0]; for (i = 1; i < n; i++) { pnn = min(pnn, t[i]); return pnn; Silmukka suoritetaan n 1 kertaa O(n) Algoritmit 1 Kevät 2018 Demot /32
3 Tehtävä 1 (a) jatkuu Rekursiivinen algoritmi: etsipienin(t, n) { if (n == 1) return t[0]; else return min(etsipienin(t, n-1), t[n-1]); Suoritusaika muotoa { b, kun n = 1, T (n) = T (n 1) + c, kun n > 1, missä b, c > 0 vakioita Algoritmit 1 Kevät 2018 Demot /32
4 Tehtävä 1 (a) jatkuu Suoritusaika muotoa { b, kun n = 1, T (n) = T (n 1) + c, kun n > 1, missä b, c > 0 vakioita T (n) = T (n 1) + c = T (n 2) + 2c = T (n 3) + 3c = = T (1) + (n 1)c = b c + cn = O(n) Algoritmit 1 Kevät 2018 Demot /32
5 Tehtävä 1 (b) Ei-rekursiivinen algoritmi: asetaluku(t, n, luku) { for (i = 0; i < n; i++) { t[i] = luku; return; Silmukka suoritetaan n kertaa O(n) Algoritmit 1 Kevät 2018 Demot /32
6 Tehtävä 1 (b) jatkuu Rekursiivinen algoritmi: asetaluku(t, n, luku) { if (n == 0) return; else { t[n-1] = luku; asetaluku(t, n-1, luku); return; Suoritusaika muuten samaa muotoa kuin (a)-kohdassa paitsi että rekursio päättyy vasta kun n = 0 Algoritmit 1 Kevät 2018 Demot /32
7 Tehtävä 1 (b) jatkuu Suoritusaika muotoa { b, kun n = 0, T (n) = T (n 1) + c, kun n > 0, missä b, c > 0 vakioita T (n) = T (n 1) + c = T (n 2) + 2c = = T (0) + nc = b + cn = O(n) Algoritmit 1 Kevät 2018 Demot /32
8 Tehtävä 1 (c) Ei-rekursiivinen algoritmi: laskenollat(t, n) { lkm = 0; for (i = 0; i < n; i++) { if (t[i] == 0) lkm++; return lkm; Silmukka suoritetaan n kertaa O(n) Algoritmit 1 Kevät 2018 Demot /32
9 Tehtävä 1 (c) jatkuu Rekursiivinen algoritmi: laskenollat(t, n) { if (n == 0) return 0; else { if (t[n-1] == 0) return (laskenollat(t, n-1) + 1); else return (laskenollat(t, n-1)); Suoritusaika samaa muotoa kuin (b)-kohdassa O(n) Algoritmit 1 Kevät 2018 Demot /32
10 Tehtävä 2 (a) Tavalliset pino-operaatiot: push, pop, isempty, size, top operate: Poistaa pinon kaksi päällimmäistä alkiota ja korvaa ne yhdellä uudella alkiolla, joka on poistettujen alkioiden yhdiste operate(yhdiste,pino) { if (size(pino) < 2) return error; a = pop(pino); b = pop(pino); c = yhdiste(a,b); push(c,pino); Aputilaa tarvitaan vakiomäärä (muuttujat a, b ja c) Algoritmit 1 Kevät 2018 Demot /32
11 Tehtävä 2 (b) sink: Siirtää pinon päällimmäisen alkion alimmaiseksi, jolloin kaikki muut alkiot nousevat pinossa yhdellä askeleella ylöspäin Päällimmäinen alkio talteen, muut alkiot apupinoon Tallessa oleva alkio alkuperäisen pinon pohjalle Lopuksi alkiot apupinosta alkuperäiseen pinoon Aputilaa tarvitaan apupinolle (ja muille muuttujille) Aputilan koko samaa kertaluokkaa kuin alkuperäisen pinon koko Algoritmit 1 Kevät 2018 Demot /32
12 Tehtävä 2 (b) jatkuu sink(pino) { if (size(pino) < 1) return error; a = pop(pino); while (!isempty(pino)) { b = pop(pino); push(b,apu); // apupinoon push(a,pino); while (!isempty(apu)) { b = pop(apu); push(b,pino); // takaisin Algoritmit 1 Kevät 2018 Demot /32
13 Tehtävä 2 (c) flip: Kääntää pinon nurin, toisin sanoen vanha päällimäinen alkio siirtyy alimmaiseksi, toiseksi päällimmäinen alkio toiseksi alimmaiseksi jne. Siirretään alkiot taulukkoon (tai apupinoon) Siirretään alkiot takaisin uudessa järjestyksessä Algoritmit 1 Kevät 2018 Demot /32
14 Tehtävä 2 (c) jatkuu flip(pino) { n = size(pino); for (i = 1; i <= n; i++) a[i] = pop(pino); for (i = 1; i <= n; i++) push(a[i],pino); Aputilaa tarvitaan taulukolle (ja muille muuttujille) Aputilan koko samaa kertaluokkaa kuin alkuperäisen pinon koko Algoritmit 1 Kevät 2018 Demot /32
15 Tehtävä 3 (a) Merkkijono DAGEBFICH Lisätään merkki s pinoon p operaatiolla push(s,p) Poistetaan merkki pinosta operaatiolla pop(p) Pinoon ei saa lisätä merkkiä sellaisen merkin päälle, joka on aakkosissa aikaisemmin (koska silloin alle jäänyttä merkkiä ei voi poistaa oikealla hetkellä) Algoritmit 1 Kevät 2018 Demot /32
16 Tehtävä 3 (a) jatkuu Merkkijono DAGEBFICH push(d,1) push(a,1) pop(1) A push(g,2) push(e,2) push(b,1) pop(1) B push(f,3) push(i,4) Tarvitaan vähintään neljä pinoa push(c,1) pop(1) C pop(1) D pop(2) E pop(3) F pop(2) G push(h,1) pop(1) H pop(4) I Algoritmit 1 Kevät 2018 Demot /32
17 Tehtävä 3 (b) Merkkijono IDCBHGAFE push(i,1) push(d,1) push(c,1) push(b,1) push(h,2) push(g,2) push(a,1) pop(1) A pop(1) B Tarvitaan vähintään kaksi pinoa pop(1) C pop(1) D push(f,1) push(e,1) pop(1) E pop(1) F pop(2) G pop(2) H pop(1) I Algoritmit 1 Kevät 2018 Demot /32
18 Tehtävä 3 (c) Merkkijono DAGEBFICH Lisätään merkki s jonoon q operaatiolla enq(s,q) Poistetaan merkki jonosta operaatiolla deq(q) Jonoon ei saa lisätä merkkiä sellaisen merkin perään, joka on aakkosissa myöhemmin (koska silloin taakse jäänyttä merkkiä ei voi poistaa oikealla hetkellä) Algoritmit 1 Kevät 2018 Demot /32
19 Tehtävä 3 (c) jatkuu Merkkijono DAGEBFICH enq(d,1) enq(a,2) deq(2) A enq(g,1) enq(e,2) enq(b,3) deq(3) B enq(f,2) enq(i,1) Tarvitaan vähintään kolme jonoa enq(c,3) deq(3) C deq(1) D deq(2) E deq(2) F deq(1) G enq(h,2) deq(2) H deq(1) I Algoritmit 1 Kevät 2018 Demot /32
20 Tehtävä 3 (d) Merkkijono IDCBHGAFE enq(i,1) enq(d,2) enq(c,3) enq(b,4) enq(h,2) enq(g,3) enq(a,5) deq(5) A deq(4) B Tarvitaan vähintään viisi jonoa deq(3) C deq(2) D enq(f,4) enq(e,5) deq(5) E deq(4) F deq(3) G deq(2) H deq(1) I Algoritmit 1 Kevät 2018 Demot /32
21 Tehtävä 4 (a) first Lisätään listaan osoitin last, joka osoittaa viimeiseen alkioon Ensin erikoistapaus: if (first == null) // tyhjä lista last = null; Algoritmit 1 Kevät 2018 Demot /32
22 Tehtävä 4 (a) jatkuu last first last = first; while (last.next!= null) last = last.next; Täytyy etsiä listan viimeinen alkio Joudutaan käymään läpi koko lista Suoritusaika O(n) Algoritmit 1 Kevät 2018 Demot /32
23 Tehtävä 4 (b) first Vaihdetaan listan ensimmäinen ja viimeinen alkio keskenään Operaatio mielekäs vain jos listassa vähintään kaksi alkiota Ensin tarkistukset: if (first == null) return; // tyhjä lista if (first.next == null) return; // vain yksi alkio Algoritmit 1 Kevät 2018 Demot /32
24 Tehtävä 4 (b) jatkuu q p first p = osoitin viimeiseen alkioon q = osoitin toiseksi viimeiseen alkioon q = null; p = first; while (p.next!= null) { q = p; p = p.next; Algoritmit 1 Kevät 2018 Demot /32
25 Tehtävä 4 (b) jatkuu q p first p.next = first.next; q.next = first; first.next = null; first = p; Täytyy etsiä listan viimeinen ja toiseksi viimeinen alkio Suoritusaika O(n) Algoritmit 1 Kevät 2018 Demot /32
26 Tehtävä 4 (b) jatkuu q p first Mutta: Toimiiko, jos vain kaksi alkiota? Ei, sillä p.next = first.next; asettaa viimeisen alkion osoittamaan itseensä! Algoritmit 1 Kevät 2018 Demot /32
27 Tehtävä 4 (b) jatkuu q p first Jos vain kaksi alkiota: p.next = first; first.next = null; first = p; Algoritmit 1 Kevät 2018 Demot /32
28 Tehtävä 4 (b) jatkuu if (first == null) // tyhjä lista return; else if (first.next == null) // vain yksi alkio return; else { q = null; p = first; while (p.next!= null) { q = p; p = p.next; // nyt p osoittaa viimeiseen, q toiseksi viimeiseen if (q == first) // vain kaksi alkiota p.next = first; else { p.next = first.next; q.next = first; first.next = null; first = p; Algoritmit 1 Kevät 2018 Demot /32
29 Tehtävä 5 first last (a) Poistetaan listan ensimmäinen alkio (b) Lisätään listan loppuun yksi alkio (c) Tehdään listasta rengaslista Kaikissa tapauksissa tarvittaviin alkioihin päästään käsiksi suoraan (ilman listan läpikäyntiä) Suoritusajat O(1) Algoritmit 1 Kevät 2018 Demot /32
30 Tehtävä 5 (a) first last if (first == null) // tyhjä lista return; else if (first.next == null) { // vain yksi alkio first = null; last = null; else { first = first.next; first.prev = null; Algoritmit 1 Kevät 2018 Demot /32
31 Tehtävä 5 (b) first p last // p osoitin lisättävään alkioon p.next = null; p.prev = last; if (first == null) // lisäys tyhjään listaan first = p; else last.next = p; last = p; Algoritmit 1 Kevät 2018 Demot /32
32 Tehtävä 5 (c) first last if (first!= null) { // vain ei-tyhjälle listalle first.prev = last; last.next = first; Algoritmit 1 Kevät 2018 Demot /32
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 2 1.-2.2.2017 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: laskesumma(t, n) sum = t[0]; for (i = 1; i < n; i++) sum = sum + t[i]; return sum; Silmukka suoritetaan n 1 kertaa
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,
Algoritmit 1. Luento 4 Ke Timo Männikkö
Algoritmit 1 Luento 4 Ke 18.1.2017 Timo Männikkö Luento 4 Tietorakenteet Pino Pinon toteutus Jono Jonon toteutus Lista Listaoperaatiot Algoritmit 1 Kevät 2017 Luento 4 Ke 18.1.2017 2/29 Pino Pino, stack,
Algoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 1 27.-28.3.2019 Timo Männikkö Tehtävä 1 (a) 4n 2 + n + 4 = O(n 2 ) c, n 0 > 0 : 0 4n 2 + n + 4 cn 2 n n 0 Vasen aina tosi Oikea tosi, jos (c 4)n 2 n 4 0, joten oltava c > 4 Kokeillaan
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 31.1.-1.2.2018 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka tutkii onko kokonaisluku tasan jaollinen jollain toisella kokonaisluvulla siten, että ei käytetä lainkaan jakolaskuja Jaettava
Algoritmit 1. Luento 3 Ti Timo Männikkö
Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku
TIETORAKENTEET JA ALGORITMIT
TIETORAKENTEET JA ALGORITMIT Timo Harju 1999-2004 1 typedef link List; /* Vaihtoehtoisia nimiä */ typedef link Stack; /* nodepointterille */ typedef link Queue typedef struct node Node; /* itse nodelle
Algoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 2 3.-4.4.2019 Timo Männikkö Tehtävä 1 Avoin osoitteenmuodostus: Hajautustaulukko t (koko m) Erikoisarvot VAPAA ja POISTETTU Hajautusfunktio h(k,i) Operaatiot: lisaa etsi poista Algoritmit
Algoritmit 2. Luento 2 To Timo Männikkö
Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento
Algoritmit 2. Luento 7 Ti Timo Männikkö
Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26
Algoritmit 2. Luento 2 Ke Timo Männikkö
Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento
A274101 TIETORAKENTEET JA ALGORITMIT
A274101 TIETORAKENTEET JA ALGORITMIT PERUSTIETORAKENTEET LISTA, PINO, JONO, PAKKA ABSTRAKTI TIETOTYYPPI Tietotyyppi on abstrakti, kun se on määritelty (esim. matemaattisesti) ottamatta kantaa varsinaiseen
Algoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 20.3.2018 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2018 Luento 3 Ti 20.3.2018
Algoritmit 1. Luento 5 Ti Timo Männikkö
Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019
Pino S on abstrakti tietotyyppi, jolla on ainakin perusmetodit:
Pino (stack) Pino: viimeisenä sisään, ensimmäisenä ulos (LIFO, Last In, First Out) -tietorakenne kaksi perusoperaatiota: alkion lisäys pinon päälle (push), ja päällimmäisen alkion poisto (pop) Push(alkio)
Algoritmit 2. Luento 14 Ke Timo Männikkö
Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan
Algoritmit 1. Luento 12 Ke Timo Männikkö
Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu
1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:
Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return
Algoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 4 24.-25.4.2019 Timo Männikkö Tehtävä 1 (a) int laske(n) { if (n
Tietorakenteet, laskuharjoitus 3, ratkaisuja
Tietorakenteet, laskuharjoitus 3, ratkaisuja 1. (a) Toistolauseen runko-osassa tehdään yksi laskuoperaatio, runko on siis vakioaikainen. Jos syöte on n, suoritetaan runko n kertaa, eli aikavaativuus kokonaisuudessaan
Algoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017
Tietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Merkintöjen tulkintoja *++Pstack->top = item *Pstack->top++ = item (*Pstack->top)++ *(Pstack++)->top = item *(++Pstack)->top = item Lisää pinon toteutuksia Dynaaminen taulukko
Algoritmit 1. Luento 12 Ti Timo Männikkö
Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit
Algoritmit 2. Luento 8 To Timo Männikkö
Algoritmit 2 Luento 8 To 4.4.2019 Timo Männikkö Luento 8 Algoritmien analysointi Algoritmien suunnittelu Rekursio Osittaminen Rekursioyhtälöt Rekursioyhtälön ratkaiseminen Master-lause Algoritmit 2 Kevät
811312A Tietorakenteet ja algoritmit II Perustietorakenteet
811312A Tietorakenteet ja algoritmit 2017-2018 II Perustietorakenteet Sisältö 1. Johdanto 2. Pino 3. Jono 4. Lista 811312A TRA, Perustietorakenteet 2 II.1. Johdanto Tietorakenne on tapa, jolla algoritmi
Algoritmit 1. Luento 6 Ke Timo Männikkö
Algoritmit 1 Luento 6 Ke 25.1.2017 Timo Männikkö Luento 6 Järjestetty lista Listan toteutus dynaamisesti Linkitetyn listan operaatiot Vaihtoehtoisia listarakenteita Puurakenteet Binääripuu Järjestetty
811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta
811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden
Algoritmit 1. Luento 10 Ke Timo Männikkö
Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot
Tarkennamme geneeristä painamiskorotusalgoritmia
Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi
Algoritmit 1. Luento 1 Ti Timo Männikkö
Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017
Kaksiloppuinen jono D on abstrakti tietotyyppi, jolla on ainakin seuraavat 4 perusmetodia... PushFront(x): lisää tietoalkion x jonon eteen
Viimeksi käsiteltiin pino: lisäys ja poisto lopusta jono: lisäys loppuun, poisto alusta Pinon ja jonon yleistävä tietorakenne: kaksiloppuinen jono alkion lisäys/poisto voidaan kohdistaa jonon alkuun tai
Algoritmit 1. Luento 2 Ke Timo Männikkö
Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät
Algoritmit 1. Luento 7 Ti Timo Männikkö
Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017
Tietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Rekursio Rekursion käyttötapauksia Rekursio määritelmissä Rekursio ongelmanratkaisussa ja ohjelmointitekniikkana Esimerkkejä taulukolla Esimerkkejä linkatulla listalla Hanoin
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 11.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 11.2.2009 1 / 33 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin
4 Tehokkuus ja algoritmien suunnittelu
TIE-20100 Tietorakenteet ja algoritmit 52 4 Tehokkuus ja algoritmien suunnittelu Tässä luvussa pohditaan tehokkuuden käsitettä ja esitellään kurssilla käytetty kertaluokkanotaatio, jolla kuvataan algoritmin
Algoritmit 1. Luento 9 Ti Timo Männikkö
Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward
Algoritmit 1. Luento 11 Ti Timo Männikkö
Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017
List-luokan soveltamista. Listaan lisääminen Listan läpikäynti Listasta etsiminen Listan sisällön muuttaminen Listasta poistaminen Listan kopioiminen
1 List-luokan soveltamista List-luokan metodeja Listaan lisääminen Listan läpikäynti Listasta etsiminen Listan sisällön muuttaminen Listasta poistaminen Listan kopioiminen 1 List-luokan metodeja List-luokan
Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö
Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys
Algoritmit 2. Luento 4 To Timo Männikkö
Algoritmit 2 Luento 4 To 21.3.2019 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2019 Luento 4
Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003
Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Matti Nykänen 5. joulukuuta 2003 1 Satelliitit Muunnetaan luennoilla luonnosteltua toteutusta seuraavaksi: Korvataan puusolmun p kentät p. key ja
Algoritmit 2. Luento 9 Ti Timo Männikkö
Algoritmit 2 Luento 9 Ti 19.4.2016 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutus Verkon 3-väritys Algoritmit 2 Kevät 2016 Luento 9 Ti 19.4.2016
Algoritmit 1. Luento 8 Ke Timo Männikkö
Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin
Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö
Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit
(p j b (i, j) + p i b (j, i)) (p j b (i, j) + p i (1 b (i, j)) p i. tähän. Palaamme sanakirjaongelmaan vielä tasoitetun analyysin yhteydessä.
Loppu seuraa suoralla laskulla: n n Tave TR = p j (1 + b (i, j)) j=1 = 1 + 1 i
(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun:
Tietorakenteet ja algoritmit, kevät 201 Kurssikoe 1, ratkaisuja 1. Tehtävästä sai yhden pisteen per kohta. (a) Invariantteja voidaan käyttää algoritmin oikeellisuustodistuksissa Jokin väittämä osoitetaan
Listarakenne (ArrayList-luokka)
Listarakenne (ArrayList-luokka) Mikä on lista? Listan määrittely ArrayList-luokan metodeita Listan läpikäynti Listan läpikäynti indeksin avulla Listan läpikäynti iteraattorin avulla Listaan lisääminen
Tietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Pino Pinon määritelmä Pinon sovelluksia Järjestyksen kääntäminen Palindromiprobleema Postfix-lausekkeen laskenta Infix-lausekkeen muunto postfix-lausekkeeksi Sisäkkäiset funktiokutsut
1.1 Pino (stack) Koodiluonnos. Graafinen esitys ...
1. Tietorakenteet Tietorakenteet organisoivat samankaltaisten olioiden muodostaman tietojoukon. Tämä järjestys voidaan saada aikaan monin tavoin, esim. Keräämällä oliot taulukkoon. Liittämällä olioihin
Algoritmit 2. Luento 10 To Timo Männikkö
Algoritmit 2 Luento 10 To 11.4.2019 Timo Männikkö Luento 10 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutusmenetelmä Osajoukon summa Algoritmit 2 Kevät 2019 Luento 10 To
Algoritmit 2. Luento 12 To Timo Männikkö
Algoritmit 2 Luento 12 To 3.5.2018 Timo Männikkö Luento 12 Geneettiset algoritmit Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Algoritmit 2 Kevät 2018 Luento 12 To 3.5.2018 2/35 Algoritmien
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 9.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 9.2.2009 1 / 35 Listat Esimerkki: halutaan kirjoittaa ohjelma, joka lukee käyttäjältä 30 lämpötilaa. Kun lämpötilat
815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset
815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 6 Vastaukset Harjoituksen aiheena on funktionaalinen ohjelmointi Scheme- ja Haskell-kielillä. Voit suorittaa ohjelmat osoitteessa https://ideone.com/
Algoritmit 2. Luento 9 Ti Timo Männikkö
Algoritmit 2 Luento 9 Ti 17.4.2018 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen Huffmanin koodi LZW-menetelmä Taulukointi Editointietäisyys Algoritmit 2 Kevät 2018 Luento 9 Ti 17.4.2018 2/29 Merkkitiedon
Algoritmit 2. Luento 4 Ke Timo Männikkö
Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 10.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 10.2.2010 1 / 43 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin
2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.
Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 25.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 25.2.2009 1 / 34 Syötteessä useita lukuja samalla rivillä Seuraavassa esimerkissä käyttäjä antaa useita lukuja samalla
811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista
811312A Tietorakenteet ja algoritmit 2016-2017 III Lajittelualgoritmeista Sisältö 1. Johdanto 2. Pikalajittelu 3. Kekolajittelu 4. Lajittelualgoritmien suorituskyvyn rajoista 811312A TRA, Lajittelualgoritmeista
Kääreluokat (oppikirjan luku 9.4) (Wrapper-classes)
Kääreluokat (oppikirjan luku 9.4) (Wrapper-classes) Kääreluokista Javan alkeistietotyypit ja vastaavat kääreluokat Autoboxing Integer-luokka Double-luokka Kääreluokista Alkeistietotyyppiset muuttujat (esimerkiksi
Kohdissa 2 ja 3 jos lukujen valintaan on useita vaihtoehtoja, valitaan sellaiset luvut, jotka ovat mahdollisimman lähellä listan alkua.
A Lista Aikaraja: 1 s Uolevi sai käsiinsä listan kokonaislukuja. Hän päätti laskea listan luvuista yhden luvun käyttäen seuraavaa algoritmia: 1. Jos listalla on vain yksi luku, pysäytä algoritmi. 2. Jos
811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu
81112A Tietoraketeet ja algoritmit, 217-218, Harjoitus 4, Ratkaisu Harjoitukse aiheita ovat algoritmie aikakompleksisuus ja lajittelualgoritmit Tehtävä 4.1 Selvitä seuraavie rekursioyhtälöide ratkaisuje
Jakso 4 Aliohjelmien toteutus
Jakso 4 Aliohjelmien toteutus Tyypit Parametrit Aktivointitietue (AT) AT-pino Rekursio 1 Aliohjelmatyypit (2) Korkean tason ohjelmointikielen käsitteet: aliohjelma, proseduuri parametrit funktio parametrit,
Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja
581336 Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 1. S! axc X! axc X! by c Y! by c Y! " 2. (a) Tehtävänä on konstruoida rajoittamaton kielioppi, joka tuottaa kielen f0 n 1 n jn 1g. Vaihe1: alkutilanteen
Numeeriset menetelmät
Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:
811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu
811312A Tietorakenteet ja algoritmit 2017-2018, Harjoitus 2 ratkaisu Harjoituksen aiheena on algoritmien oikeellisuus. Tehtävä 2.1 Kahvipurkkiongelma. Kahvipurkissa P on valkoisia ja mustia kahvipapuja,
4. Algoritmien tehokkuus
4. Algoritmien tehokkuus (Harel luku 6) vastaa jo minulle! [Psalmi 69:18] Kuinka paljon suoritusaikaa tai -tilaa algoritmin suoritus vaatii? Keskitymme lähinnä aikavaativuuden tarkasteluun. Myös algoritmien
Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina
Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella
2. Perustietorakenteet
2. Perustietorakenteet Tässä osassa käsitellään erilaisia perustietorakenteita, joita algoritmit käyttävät toimintansa perustana. Aluksi käydään läpi tietorakenteen abstrakti määritelmä. Tämän jälkeen
Aikavaativuuden perussäännöt
Aikavaativuuden perussäännöt Riittävän yksinkertaiset perusoperaatiot vievät vakioajan (voidaan toteuttaa vakiomäärällä konekäskyjä): vakiokokoisen muuttujan sijoitusoperaatio aritmeettiset perustoimitukset
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli
Algoritmit 2. Luento 6 Ke Timo Männikkö
Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu
TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja Tietokonetekniikan laitos TKT-3200 Tietokonetekniikka ASSEMBLER: QSORT 11.08.2010 Ryhmä 00 nimi1 email1 opnro1 nimi2 email2 opnro2 nimi3 email3 opnro3 1. TEHTÄVÄ
Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:
Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] = = T [i + 1] 4 return True 5
58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 1, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 1, 25.2.2013, vastauksia 1. (a) O-merkintä Ω-merkintä: Kyseessä on (aika- ja tila-) vaativuuksien kertalukumerkinnästä. O-merkintää käytetään ylärajan
Aliohjelmatyypit (2) Jakso 4 Aliohjelmien toteutus
Jakso 4 Aliohjelmien toteutus Tyypit Parametrit Aktivointitietue (AT) AT-pino Rekursio Aliohjelmatyypit (2) Korkean tason ohjelmointikielen käsitteet: aliohjelma, proseduuri parametrit funktio parametrit,
Jakso 4 Aliohjelmien toteutus
Jakso 4 Aliohjelmien toteutus Tyypit Parametrit Aktivointitietue (AT) AT-pino Rekursio 1 Aliohjelmatyypit (2) Korkean tason ohjelmointikielen käsitteet: aliohjelma, proseduuri parametrit funktio parametrit,
Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi
Imperatiivisen ohjelmoinnin peruskäsitteet muuttuja muuttujissa oleva data voi olla yksinkertaista eli primitiivistä (esim. luvut ja merkit) tai rakenteista jolloin puhutaan tietorakenteista. puhuttaessa
Luento 4 Aliohjelmien toteutus
Luento 4 Aliohjelmien toteutus Tyypit Parametrit Aktivointitietue (AT) AT-pino Rekursio 1 Aliohjelmatyypit (2) Korkean tason ohjelmointikielen käsitteet: aliohjelma, proseduuri parametrit funktio parametrit,
815338A Ohjelmointikielten periaatteet 2014-2015. Harjoitus 7 Vastaukset
815338A Ohjelmointikielten periaatteet 2014-2015. Harjoitus 7 Vastaukset Harjoituksen aiheena on funktionaalinen ohjelmointi Scheme- ja Haskell-kielillä. Voit suorittaa ohjelmat osoitteessa https://ideone.com/
Algoritmit 2. Luento 5 Ti Timo Männikkö
Algoritmit 2 Luento 5 Ti 26.3.2019 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot B-puun muunnelmia Algoritmit 2 Kevät 2019 Luento 5 Ti 26.3.2019 2/34 B-puu B-puut ovat tasapainoisia
TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen)
TKT0001 Tietorakenteet ja algoritmit Erilliskoe 5.1.01, malliratkaisut (Jyrki Kivinen) 1. [1 pistettä] (a) Esitä algoritmi, joka poistaa kahteen suuntaan linkitetystä järjestämättömästä tunnussolmullisesta
4.3. Matemaattinen induktio
4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta
18. Abstraktit tietotyypit 18.1
18. Abstraktit tietotyypit 18.1 Sisällys Johdanto abstrakteihin tietotyyppeihin. Pino ja jono. Linkitetty lista. Pino linkitetyllä listalla toteutettuna. 18.2 Johdanto Javan omat tietotyypit ovat jo tuttuja:
Algoritmit 2. Luento 1 Ti Timo Männikkö
Algoritmit 2 Luento 1 Ti 14.3.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin valinta Algoritmin analysointi Algoritmin suoritusaika Peruskertaluokkia Kertaluokkamerkinnät Kertaluokkien ominaisuuksia
811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta
811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen
Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen
Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:
Algoritmit 2. Luento 6 To Timo Männikkö
Algoritmit 2 Luento 6 To 28.3.2019 Timo Männikkö Luento 6 B-puun operaatiot Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2019 Luento 6 To 28.3.2019 2/30 B-puu 40 60 80 130 90 100
811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja
811312A Tietorakenteet ja algoritmit, 2015-2016 VI Algoritmien suunnitteluparadigmoja Sisältö 1. Hajota ja hallitse-menetelmä 2. Dynaaminen taulukointi 3. Ahneet algoritmit 4. Peruuttavat algoritmit 811312A
Taulukoiden käsittely Javalla
1 Taulukoiden käsittely Javalla Mikä taulukko on? Taulukon syntaksi Merkkijonotaulukko Lukutaulukko Taulukon kopiointi 1 Mikä taulukko on? Taulukko on rakenne, minne saadaan talteen usea saman tyyppinen
5 Kertaluokkamerkinnät
TIE-20100 Tietorakenteet ja algoritmit 75 5 Kertaluokkamerkinnät Tässä luvussa käsitellään asymptoottisessa analyysissa käytettyjä matemaattisia merkintätapoja Määritellään tarkemmin Θ, sekä kaksi muuta
A274101 TIETORAKENTEET JA ALGORITMIT
A274101 TIETORAKENTEET JA ALGORITMIT ALGORITMIEN ANALYYSISTÄ 1.ratkaisu Laskentaaika hakkeri - optimoitu ALGORITMIANALYYSIÄ hyvä algoritmi hakkeri -optimoitu hyvä algoritmi Tehtävän koko Kuva mukailtu
Ohjelmoinnin peruskurssien laaja oppimäärä
Ohjelmoinnin peruskurssien laaja oppimäärä Keskeneräinen luento 3: Listat (mm. SICP 22.2.3) Riku Saikkonen 31. 10. 2011 Sisältö 1 Linkitetyt listat 2 Linkitetyt listat (SICP 2.1.1, 2.2.1) funktionaalinen
Jäsennysalgoritmeja. TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 29. syyskuuta 2009 TIETOTEKNIIKAN LAITOS. Jäsennysalgoritmeja
TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. syyskuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe B tiistai 6.10. klo 10 selaaja ja jäsentäjä toimivat Kääntäjän
Tietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Elegantti toteutus funktiolle insert_to_list_end Alkion lisäys sisällön mukaan järjestettyyn listaan (insert_to_list) Linkatun listan yleisyys alkiotyypin suhteen source-tasolla
Rakenteiset tietotyypit Moniulotteiset taulukot
C! Rakenteiset tietotyypit Moniulotteiset taulukot 22.2.2018 Agenda Rakenteiset tietotyypit Vilkaisu 6. kierroksen tehtäviin Moniulotteiset taulukot Esimerkki Seuraava luento to 8.3. Ilmoittautuminen ohjelmointikokeeseen