4 Tehokkuus ja algoritmien suunnittelu
|
|
- Ritva Hukkanen
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 TIE Tietorakenteet ja algoritmit 52 4 Tehokkuus ja algoritmien suunnittelu Tässä luvussa pohditaan tehokkuuden käsitettä ja esitellään kurssilla käytetty kertaluokkanotaatio, jolla kuvataan algoritmin asymptoottista käyttäytymistä eli tapaa, jolla algoritmin resurssien kulutus muuttuu syötekoon kasvaessa. t n
2 TIE Tietorakenteet ja algoritmit Kertaluokat Algoritmin analysoinnilla tarkoitetaan sen kuluttamien resurssien määrän arvioimista Tyypillisesti analysoidaan syötekoon kasvun vaikutusta algoritmin resurssien kulutukseen Useimmiten meitä kiinnostaa algoritmin ajankäytön kasvu syötteen koon kasvaessa Voimme siis tarkastella ajankäyttöä irrallaan toteutusympäristöstä Itse asiassa voimme kuvata periaatteessa minkä tahansa peräkkäisiä operaatioita sisältävän toiminnan ajankulutusta
3 TIE Tietorakenteet ja algoritmit 54 Algoritmin ajankäyttö: Algoritmin suorittamien "askelten" suorituskertojen määrä Askel: syötekoosta riippumattoman operaation viemä aika. Emme välitä siitä, kuinka monta kertaa jokin operaatio suoritetaan kunhan se tehdään vain vakiomäärä kertoja. Tutkimme kuinka monta kertaa algoritmin suorituksen aikana kukin rivi suoritetaan ja laskemme nämä määrät yhteen.
4 TIE Tietorakenteet ja algoritmit 55 Yksinkertaistamme vielä tulosta poistamalla mahdolliset vakiokertoimet ja alemman asteen termit. Näin voidaan tehdä, koska syötekoon kasvaessa riittävästi alemman asteen termit käyvät merkityksettömiksi korkeimman asteen termin rinnalla. Menetelmä ei luonnollisestikaan anna luotettavia tuloksia pienillä syöteaineistoilla, mutta niillä ohjelmat ovat tyypillisesti riittävän tehokkaita joka tapauksessa. Kutsumme näin saatua tulosta algoritmin ajan kulutuksen kertaluokaksi, jota merkitään kreikkalaisella kirjaimella Θ (äännetään theeta ). f(n) = 23n 2 + 2n + 15 f Θ(n 2 ) f(n) = 1 2n lg n + n f Θ(n lg n)
5 TIE Tietorakenteet ja algoritmit 56 Esimerkki 1: taulukon alkioiden summaus 1 for i := 1 to A.length do 2 summa := summa + A[i] jos taulukon A pituus (syötekoko) on n, rivi 1 suoritetaan n + 1 kertaa rivi 2 suoritetaan n kertaa ajankulutus kasvaa siis n:n kasvaessa seuraavalla tavalla: n aika = 2n n:n arvo hallitsee ajankulutusta
6 TIE Tietorakenteet ja algoritmit 57 suoritamme edellä sovitut yksinkertaistukset: poistamme vakiokertoimen ja alemman asteen termin: f(n) = 2n + 1 n saamme tulokseksi Θ(n) kulutettu aika riippuu lineaarisesti syötteen koosta
7 TIE Tietorakenteet ja algoritmit 58 Esimerkki 2: alkion etsintä järjestämättömästä taulukosta 1 for i := 1 to A.length do 2 if A[i] = key then 3 return i tässä tapauksessa suoritusaika riippuu syöteaineiston koon lisäksi sen koostumuksesta eli siitä, mistä kohtaa taulukkoa haluttu alkio löytyy On tutkittava erikseen: paras, huonoin ja keskimääräinen tapaus
8 TIE Tietorakenteet ja algoritmit 59 paras tapaus: Kuva 6: Etsintä: paras tapaus, löytyy ensimmäisestä alkiosta alkio löytyy vakioajassa eli ajankulutus on Θ(1)
9 TIE Tietorakenteet ja algoritmit 60 huonoin tapaus Kuva 7: Etsintä: huonoin tapaus, löytyy viimeisestä tai ei ollenkaan rivi 1 suoritetaan n + 1 kertaa ja rivi 2 n kertaa suoritusaika on lineaarinen eli Θ(n).
10 TIE Tietorakenteet ja algoritmit 61 keskimääräinen tapaus: täytyy tehdä jonkinlainen oletus tyypillisestä eli keskimääräisestä aineistosta: alkio on taulukossa todennäköisyydellä p (0 p 1) ensimmäinen haettu alkio löytyy taulukon jokaisesta kohdasta samalla todennäköisyydellä voimme laskea suoraan todennäköisyyslaskennan avulla, kuinka monta vertailua keskimäärin joudutaan tekemään
11 TIE Tietorakenteet ja algoritmit 62 todennäköisyys sille, että alkio ei löydy taulukosta on 1 - p joudutaan tekemään n vertailua (huonoin tapaus) todennäköisyys sille, että alkio löytyy kohdasta i, on p/n joudutaan tekemään i vertailua odotusarvoinen tarvittavien vertailujen määrä saadaan siis seuraavasti: [1 p n + 2 p n + + i p n + n p ] + n (1 p) n
12 TIE Tietorakenteet ja algoritmit 63 oletamme, että alkio varmasti löytyy taulukosta eli p = 1, saamme tulokseksi (n+1)/2 eli Θ(n) koska myös tapaus, jossa alkio ei löydy taulukosta, on ajankäytöltään lineaarinen, voimme olla varsin luottavaisia sen suhteen, että keskimääräinen ajankäyttö on kertaluokassa Θ(n) kannattaa kuitenkin muistaa, että läheskään aina kaikki syötteet eivät ole yhtä todennäköisiä jokaista tapausta on syytä tutkia erikseen
13 TIE Tietorakenteet ja algoritmit 64 Esimerkki 3: kahden taulukon yhteisen alkion etsintä 1 for i := 1 to A.length do 2 for j := 1 to B.length do 3 if A[i] = B[j] then 4 return A[i] rivi 1 suoritetaan 1.. (n + 1) kertaa rivi 2 suoritetaan 1.. (n (n + 1)) kertaa rivi 3 suoritetaan 1.. (n n) kertaa rivi 4 suoritetaan korkeintaan kerran
14 TIE Tietorakenteet ja algoritmit 65 nopeimmillaan algoritmi on siis silloin kun molempien taulukoiden ensimmäinen alkio on sama parhaan tapauksen ajoaika on Θ(1) pahimmassa tapauksessa taulukoissa ei ole ainuttakaan yhteistä alkiota tai ainoastaan viimeiset alkiot ovat samat tällöin suoritusajaksi tulee neliöllinen eli 2n 2 + 2n + 1 = Θ(n 2 ) keskimäärin voidaan olettaa, että molempia taulukoita joudutaan käymään läpi noin puoleen väliin tällöin suoritusajaksi tulee Θ(n 2 ) (tai Θ(nm) mikäli taulukot ovat eri mittaisia)
15 TIE Tietorakenteet ja algoritmit 66 Palataan INSERTION-SORTiin. Sen ajankäyttö: INSERTION-SORT( A ) (syöte saadaan taulukossa A) 1 for j := 2 to A.length do (siirretään osien välistä rajaa) 2 key := A[ j ] (otetaan alkuosan uusi alkio käsittelyyn) 3 i := j 1 4 while i > 0 and A[ i ] > key do (etsitään uudelle alkiolle oikea paikka) 5 A[ i + 1 ] := A[ i ] (raivataan uudelle alkiolle tilaa) 6 i := i 1 7 A[ i + 1 ] := key (asetetaan uusi alki o oikealle paikalleen) rivi 1 suoritetaan n kertaa rivit 2 ja 3 suoritetaan n - 1 kertaa rivi 4 suoritetaan vähintään n - 1, enintään ( n - 2) kertaa rivit 5 ja 6 suoritetaan vähintään 0, enintään ( n - 3) kertaa
16 TIE Tietorakenteet ja algoritmit 67 parhaassa tapauksessa, kun taulukko on valmiiksi järjestyksessä, koko algoritmi siis kuluttaa vähintään Θ(n) aikaa huonoimmassa tapauksessa, kun taulukko on käänteisessä järjestyksessä, aikaa taas kuluu Θ(n 2 ) keskimääräisen tapauksen selvittäminen on jälleen vaikeampaa: oletamme, että satunnaisessa järjestyksessä olevassa taulukossa olevista elementtipareista puolet ovat keskenään epäjärjestyksessä. vertailuja joudutaan tekemään puolet vähemmän kuin pahimmassa tapauksessa, jossa kaikki elementtiparit ovat keskenään väärässä järjestyksessä keskimääräinen ajankulutus on pahimman tapauksen ajankäyttö jaettuna kahdella: [(n - 1)n]/ 4 = Θ(n 2 )
17 TIE Tietorakenteet ja algoritmit 68 Tarkastellaanpa sitten MERGE-SORTin ajankäyttöä. MERGEn ensimmäinen for-silmukka käyttää osataulukon kokoon nähden lineaarisen määrän aikaa Θ(n) while-silmukka käy osataulukon alkuosan ja loppuosan molemmat läpi korkeintaan kerran ja ainakin toisen puolikkaan kokonaan Θ(n) toinen for-silmukka käy läpi korkeintaan puolet taulukosta, ja käyttää siis pahimmassa tapauksessa aikaa Θ(n) muut operaatiot ovat vakioaikaisia kun edelliset yhdistetään, saadaan suoritusajaksi Θ(n) sekä parhaassa että pahimmassa tapauksessa.
18 TIE Tietorakenteet ja algoritmit 69 MERGE-SORTIN suoritusajan laskeminen on aiempaa haastavampaa, koska algoritmi on rekursiivinen, ja sen suoritusajan kaava olisi myös rekursiivinen. Rekursiivisen kaavan etsiminen matemaattisesti on kuitenkin tämän kurssin tavoitteiden ulkopuolella, joten tyydymme tutkimaan tilannetta vähemmän formaalilla tavalla. MERGE-SORT kutsuu itseään ja MERGEÄ, kaikki muut operaatiot ovat vakioaikaisia. voidaan siis keskittyä tarkastelemaan MERGEN suorituskertojen kuluttamaa aikaa, kaikki muu on vakioaikaista log 2 n n
19 TIE Tietorakenteet ja algoritmit 70 MERGEN suorituskerroista muodostuu edellisellä sivulla esitetty puurakenne. osataulukoiden koot on merkitty MERGEN instanssien kuviin ensimmäisellä tasolla kaikki osataulukot ovat yhden (tai nollan kokoisia) muilla tasoilla osataulukot ovat aina kaksi kertaa edellisen tason osataulukoiden kokoisia viimeisellä tasolla käsitellään koko taulukkoa jokaisen tason osataulukoiden yhteenlaskettu koko on n yksittäisen tason MERGE-instanssien määrä on 2 kertaa edellisen tason vastaava määrä kasvaa kahden potensseissa, jolloin viimeisen tason instanssien määrä on 2 h, missä h on puun korkeus viimeisellä tasolla instansseja on noin n kappaletta 2 h = n log 2 n = h, siis puun korkeus on log 2 n koska jokaisella tasolla tehdään lineaarinen määrä työtä ja tasoja on lg n kappaletta, koko algoritmin suoritusaika on Θ(n lg n)
20 TIE Tietorakenteet ja algoritmit 71 MERGE-SORT on selvästi monimutkaisempi kuin INSERTION-SORT. Onko sen käytöstä vastaavaa hyötyä? Kyllä, suurilla testiaineistolla ero on selvä. jos n on n 2 on , kun taas nlogn on noin aivan pienillä syötteillä INSERTION-SORT on kuitenkin usein tehokkaampi MERGE-SORT on kurssin määritelmän mukainen hyvä algoritmi.
21 TIE Tietorakenteet ja algoritmit 72 MERGE-SORTin etuja ja haittoja Etuja Ajankäyttö Θ(n lg n) Vakaus Haittoja MERGE-SORTin lisämuistintarve on Θ(n) INSERTION-SORT ja myöhemmin tavattava QUICKSORT järjestävät paikoillaan (lisämuistin tarve Θ(1)) Algoritmin vakiokerroin on suuri
22 TIE Tietorakenteet ja algoritmit Puolitushaku Kun hakujoukko on järjestyksessä, voidaan alkion etsinnässä hyödyntää hajota ja hallitse -periaatetta Ns. puolitushaku toimii vertaamalla hakuavainta tietojoukon keskimmäisen alkion avainarvoon seuraavasti: jaetaan hakualue kahtia valitaan se puoli, jossa avaimen on avainten järjestyksen perusteella oltava ja unohdetaan toinen puoli turhana jatketaan kunnes on saatu rajattua yksi ehdokasalkio, joka joko on etsitty avain, tai etsittyä alkiota ei ole tietojoukossa
23 TIE Tietorakenteet ja algoritmit 74 BIN-SEARCH( A, 1, n, key ) vaatimus: n 1, taulukko on järjestetty 1 low := 1; hi := n (alustetaan etsintäalue kattamaan koko taulukon) 2 while low < hi do (jatketaan etsintää, kunnes etsintäalue on tyhjä) 3 mid := ( low + hi )/2 (puolitetaan etsintäalue) 4 if key A[ mid ] then (jos avain löytyy alemmasta puoliskosta...) 5 hi := mid (...valitaan alempi puolisko uudeksi etsintäalueeksi) 6 else (muuten...) 7 low := mid + 1 (...valitaan ylempi puolisko uudeksi etsintäalueeksi) 8 if A[ low ] = key then 9 return low (etsitty löytyi taulukosta) 10 else 11 return 0 (etsittyä ei löytynyt) BIN-SEARCHIN suoritusaika on Θ(lg n).
5 Kertaluokkamerkinnät
TIE-20100 Tietorakenteet ja algoritmit 75 5 Kertaluokkamerkinnät Tässä luvussa käsitellään asymptoottisessa analyysissa käytettyjä matemaattisia merkintätapoja Määritellään tarkemmin Θ, sekä kaksi muuta
9 Erilaisia tapoja järjestää
TIE-20100 Tietorakenteet ja algoritmit 198 9 Erilaisia tapoja järjestää Käsitellään seuraavaksi järjestämisalgoritmeja, jotka perustuvat muihin kuin vertailuun alkioiden oikean järjestyksen saamiseksi.
1 Erilaisia tapoja järjestää
TIE-20100 Tietorakenteet ja algoritmit 1 1 Erilaisia tapoja järjestää Käsitellään seuraavaksi järjestämisalgoritmeja, jotka perustuvat muihin kuin vertailuun alkioiden oikean järjestyksen saamiseksi. Lisäksi
811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu
811312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 3, Ratkaisu Harjoituksessa käsitellään algoritmien aikakompleksisuutta. Tehtävä 3.1 Kuvitteelliset algoritmit A ja B lajittelevat syötteenään
TIE Tietorakenteet ja algoritmit 25
TIE-20100 Tietorakenteet ja algoritmit 25 Tällä kurssilla keskitytään algoritmien ideoihin ja algoritmit esitetään useimmiten pseudokoodina ilman laillisuustarkistuksia, virheiden käsittelyä yms. Otetaan
f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))
Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia
Algoritmit 1. Luento 12 Ti Timo Männikkö
Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit
Algoritmit 1. Luento 11 Ti Timo Männikkö
Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017
Algoritmit 1. Luento 1 Ti Timo Männikkö
Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017
1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:
Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return
Algoritmit 1. Luento 12 Ke Timo Männikkö
Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu
Algoritmit 2. Luento 8 To Timo Männikkö
Algoritmit 2 Luento 8 To 4.4.2019 Timo Männikkö Luento 8 Algoritmien analysointi Algoritmien suunnittelu Rekursio Osittaminen Rekursioyhtälöt Rekursioyhtälön ratkaiseminen Master-lause Algoritmit 2 Kevät
Tietorakenteet, laskuharjoitus 3, ratkaisuja
Tietorakenteet, laskuharjoitus 3, ratkaisuja 1. (a) Toistolauseen runko-osassa tehdään yksi laskuoperaatio, runko on siis vakioaikainen. Jos syöte on n, suoritetaan runko n kertaa, eli aikavaativuus kokonaisuudessaan
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,
Algoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 1 27.-28.3.2019 Timo Männikkö Tehtävä 1 (a) 4n 2 + n + 4 = O(n 2 ) c, n 0 > 0 : 0 4n 2 + n + 4 cn 2 n n 0 Vasen aina tosi Oikea tosi, jos (c 4)n 2 n 4 0, joten oltava c > 4 Kokeillaan
58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen)
58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 1. Lisäysjärjestämisessä järjestetään ensin taulukon kaksi ensimmäistä lukua, sitten kolme ensimmäistä lukua, sitten neljä ensimmäistä
Tämä on helpompi ymmärtää, kun tulkitaan keko täydellisesti tasapainotetuksi binääripuuksi, jonka juuri on talletettu taulukon paikkaan
TIE-20100 Tietorakenteet ja algoritmit 178 Keko Taulukko A[1... n] on keko, jos A[i] A[2i] ja A[i] A[2i + 1] aina kun 1 i n 2 (ja 2i + 1 n). Tämä on helpompi ymmärtää, kun tulkitaan keko täydellisesti
Algoritmit 1. Luento 2 Ke Timo Männikkö
Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät
Algoritmit 1. Luento 5 Ti Timo Männikkö
Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti
Tiraka, yhteenveto tenttiinlukua varten
Tiraka, yhteenveto tenttiinlukua varten TERMEJÄ Tietorakenne Tietorakenne on tapa tallettaa tietoa niin, että tietoa voidaan lisätä, poistaa, muokata ja hakea. Tietorakenteet siis säilövät tiedon niin,
Algoritmit 2. Luento 7 Ti Timo Männikkö
Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26
Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina
Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella
Algoritmit 2. Luento 2 To Timo Männikkö
Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento
Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin
Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin jaetaan muut alkiot kahteen ryhmään: L: alkiot, jotka eivät suurempia kuin pivot G : alkiot, jotka suurempia kuin pivot 6 1 4 3 7 2
1.4 Funktioiden kertaluokat
1.4 Funktioiden kertaluokat f on kertaluokkaa O(g), merk. f = O(g), jos joillain c > 0, m N pätee f(n) cg(n) aina kun n m f on samaa kertaluokkaa kuin g, merk. f = Θ(g), jos joillain a, b > 0, m N pätee
Algoritmit 2. Luento 2 Ke Timo Männikkö
Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento
1 Puu, Keko ja Prioriteettijono
TIE-20100 Tietorakenteet ja algoritmit 1 1 Puu, Keko ja Prioriteettijono Tässä luvussa käsitellään algoritmien suunnitteluperiaatetta muunna ja hallitse (transform and conquer) Lisäksi esitellään binääripuun
Algoritmit 1. Luento 3 Ti Timo Männikkö
Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien
Lähteet. OHJ-2010 TIETORAKENTEIDEN KÄYTTÖ lukuvuosi 2012-2013 Terhi Kilamo
OHJ-2010 Tietorakenteiden käyttö 1 OHJ-2010 TIETORAKENTEIDEN KÄYTTÖ lukuvuosi 2012-2013 Terhi Kilamo OHJ-2010 Tietorakenteiden käyttö 2 Lähteet Luentomoniste pohjautuu vahvasti Antti Valmarin luentomonisteeseen
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 2 1.-2.2.2017 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: laskesumma(t, n) sum = t[0]; for (i = 1; i < n; i++) sum = sum + t[i]; return sum; Silmukka suoritetaan n 1 kertaa
Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:
Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] = = T [i + 1] 4 return True 5
811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta
811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen
811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta
811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden
Tietorakenteet ja algoritmit - syksy 2015 1
Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä
Algoritmit 1. Luento 10 Ke Timo Männikkö
Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019
Algoritmit 2. Luento 1 Ti Timo Männikkö
Algoritmit 2 Luento 1 Ti 14.3.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin valinta Algoritmin analysointi Algoritmin suoritusaika Peruskertaluokkia Kertaluokkamerkinnät Kertaluokkien ominaisuuksia
Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen
Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:
4. Algoritmien tehokkuus
4. Algoritmien tehokkuus (Harel luku 6) vastaa jo minulle! [Psalmi 69:18] Kuinka paljon suoritusaikaa tai -tilaa algoritmin suoritus vaatii? Keskitymme lähinnä aikavaativuuden tarkasteluun. Myös algoritmien
Nopea kertolasku, Karatsuban algoritmi
Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys
(p j b (i, j) + p i b (j, i)) (p j b (i, j) + p i (1 b (i, j)) p i. tähän. Palaamme sanakirjaongelmaan vielä tasoitetun analyysin yhteydessä.
Loppu seuraa suoralla laskulla: n n Tave TR = p j (1 + b (i, j)) j=1 = 1 + 1 i
A TIETORAKENTEET JA ALGORITMIT
A274105 TIETORAKENTEET JA ALGORITMIT HARJOITUSTEHTÄVÄT 6 DEADLINE 1.4.2009 KLO 9:00 Kynätehtävät tehdään kirjallisesti ja esitetään harjoituksissa. Välivaiheet näkyviin! Ohjelmointitehtävät sähköisesti
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 2 7.-8.2.2018 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: etsipienin(t, n) { pnn = t[0]; for (i = 1; i < n; i++) { pnn = min(pnn, t[i]); return pnn; Silmukka suoritetaan
TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen)
TKT0001 Tietorakenteet ja algoritmit Erilliskoe 5.1.01, malliratkaisut (Jyrki Kivinen) 1. [1 pistettä] (a) Esitä algoritmi, joka poistaa kahteen suuntaan linkitetystä järjestämättömästä tunnussolmullisesta
9.3 Algoritmin valinta
TIE-20100 Tietorakenteet ja algoritmit 218 9.3 Algoritmin valinta Merkittävin algoritmin valintaan vaikuttava tekijä on yleensä sen suorituskyky käyttötilanteessa. Muitakin perusteita kuitenkin on: toteutuksen
Algoritmit 2. Luento 14 Ke Timo Männikkö
Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan
A274101 TIETORAKENTEET JA ALGORITMIT
A274101 TIETORAKENTEET JA ALGORITMIT ALGORITMIEN ANALYYSISTÄ 1.ratkaisu Laskentaaika hakkeri - optimoitu ALGORITMIANALYYSIÄ hyvä algoritmi hakkeri -optimoitu hyvä algoritmi Tehtävän koko Kuva mukailtu
Algoritmit 1. Luento 13 Ma Timo Männikkö
Algoritmit 1 Luento 13 Ma 26.2.2018 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 31.1.-1.2.2018 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka tutkii onko kokonaisluku tasan jaollinen jollain toisella kokonaisluvulla siten, että ei käytetä lainkaan jakolaskuja Jaettava
Algoritmianalyysin perusteet
Tietorakenteet ja algoritmit Algoritmianalyysin perusteet Ari Korhonen 1 5. ALGORITMIANALYYSI 5.1 Johdanto 5.2 Tavoitteet 5.3 Algoritmien luokittelu 5.4 Kertaluokkamerkinnät (Big Oh Notation) 5.5 Kertaluokkamerkinnöillä
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille
Tarkennamme geneeristä painamiskorotusalgoritmia
Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi
Tutkimusmenetelmät-kurssi, s-2004
Algoritmitutkimuksen menetelmistä Tutkimusmenetelmät-kurssi, s-2004 Pekka Kilpeläinen Kuopion yliopisto Tietojenkäsittelytieteen laitos Algoritmitutkimuksen menetelmistä p.1/20 Sisällys Tänään Tietojenkäsittelytiede
811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto
811312A Tietorakenteet ja algoritmit 2015-2016 I Johdanto Sisältö 1. Algoritmeista ja tietorakenteista 2. Algoritmien analyysistä 811312A TRA, Johdanto 2 I.1. Algoritmeista ja tietorakenteista I.1.1. Algoritmien
lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa
Kekolajittelu Prioriteettijonolla toteutettu keko InsertItem ja RemoveMinElem: O(log(n)) Lajittelu prioriteettijonolla: PriorityQueueSort(lajiteltava sekvenssi S) alusta prioriteettijono P while S.IsEmpty()
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku
On annettu jono lukuja tai muita alkioita, joiden välille on määritelty suuruusjärjestys. Tehtävänä on saattaa alkiot suuruusjärjestykseen.
6. Järjestäminen On annettu jono lukuja tai muita alkioita, joiden välille on määritelty suuruusjärjestys. Tehtävänä on saattaa alkiot suuruusjärjestykseen. Tämä on eräs klassisimpia tietojenkäsittelyongelmia,
Olkoon S(n) kutsun merge-sort(a, p, q) tilavaativuus kun p q + 1 = n. Oletetaan merge toteutetuksi vakiotyötilassa (ei-triviaalia mutta mahdollista).
Esimerkki Lomitusjärjestäminen merge-sort(a, p, q): var k % paikallinen muuttuja, vakiotila 1. if p < q then 2. r := (p + q)/2 3. merge-sort(a, p, r) 4. merge-sort(a, r + 1, q) 5. merge(a, p, r, q) Olkoon
Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö
Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
Algoritmi on periaatteellisella tasolla seuraava:
Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S
Tietorakenteet, laskuharjoitus 2,
Tietorakenteet, laskuharjoitus, 6.-9.1 Muista TRAKLA-tehtävien deadline 31.1. 1. Tarkastellaan ensin tehtävää yleisellä tasolla. Jos funktion T vaativuusluokka on O(f), niin funktio T on muotoa T (n) =
4. Joukkojen käsittely
4 Joukkojen käsittely Tämän luvun jälkeen opiskelija osaa soveltaa lomittuvien kasojen operaatioita tuntee lomittuvien kasojen toteutuksen binomi- ja Fibonacci-kasoina sekä näiden totetutusten analyysiperiaatteet
811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista
811312A Tietorakenteet ja algoritmit 2016-2017 III Lajittelualgoritmeista Sisältö 1. Johdanto 2. Pikalajittelu 3. Kekolajittelu 4. Lajittelualgoritmien suorituskyvyn rajoista 811312A TRA, Lajittelualgoritmeista
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 11.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 11.2.2009 1 / 33 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin
Luku 8. Aluekyselyt. 8.1 Summataulukko
Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa
811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu
811312A Tietorakenteet ja algoritmit 2017-2018, Harjoitus 2 ratkaisu Harjoituksen aiheena on algoritmien oikeellisuus. Tehtävä 2.1 Kahvipurkkiongelma. Kahvipurkissa P on valkoisia ja mustia kahvipapuja,
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,
811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu
832A Tietorakenteet ja algoritmit, 204-205, Harjoitus 7, ratkaisu Hajota ja hallitse-menetelmä: Tehtävä 7.. Muodosta hajota ja hallitse-menetelmää käyttäen algoritmi TULOSTA_PUU_LASKEVA, joka tulostaa
TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja Tietokonetekniikan laitos TKT-3200 Tietokonetekniikka ASSEMBLER: QSORT 11.08.2010 Ryhmä 00 nimi1 email1 opnro1 nimi2 email2 opnro2 nimi3 email3 opnro3 1. TEHTÄVÄ
ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2
Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,
58131 Tietorakenteet ja algoritmit (syksy 2015)
58131 Tietorakenteet ja algoritmit (syksy 2015) Harjoitus 2 (14. 18.9.2015) Huom. Sinun on tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. 1. Erään algoritmin suoritus vie 1 ms, kun syötteen
A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
1.1 Tavallinen binäärihakupuu
TIE-20100 Tietorakenteet ja algoritmit 1 1 Puurakenteet http://imgur.com/l77fy5x Tässä luvussa käsitellään erilaisia yleisiä puurakenteita. ensin käsitellään tavallinen binäärihakupuu sitten tutustutaan
Algoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 4 24.-25.4.2019 Timo Männikkö Tehtävä 1 (a) int laske(n) { if (n
8. Lajittelu, joukot ja valinta
8. Lajittelu, joukot ja valinta Yksi tietojenkäsittelyn klassisista tehtävistä on lajittelu (järjestäminen) (sorting) jo mekaanisten tietojenkäsittelylaitteiden ajalta. Lajiteltua tietoa tarvitaan lukemattomissa
811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja
811312A Tietorakenteet ja algoritmit, 2015-2016 VI Algoritmien suunnitteluparadigmoja Sisältö 1. Hajota ja hallitse-menetelmä 2. Dynaaminen taulukointi 3. Ahneet algoritmit 4. Peruuttavat algoritmit 811312A
Algoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 20.3.2018 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2018 Luento 3 Ti 20.3.2018
Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja
58053-7 Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja Malliratkaisut ja pisteytysohje: Jyrki Kivinen Tentin arvostelu: Jouni Siren (tehtävät 1 ja 2) ja Jyrki Kivinen (tehtävät
(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun:
Tietorakenteet ja algoritmit, kevät 201 Kurssikoe 1, ratkaisuja 1. Tehtävästä sai yhden pisteen per kohta. (a) Invariantteja voidaan käyttää algoritmin oikeellisuustodistuksissa Jokin väittämä osoitetaan
useampi ns. avain (tai vertailuavain) esim. opiskelijaa kuvaavassa alkiossa vaikkapa opintopistemäärä tai opiskelijanumero
Alkioiden avaimet Usein tietoalkioille on mielekästä määrittää yksi tai useampi ns. avain (tai vertailuavain) esim. opiskelijaa kuvaavassa alkiossa vaikkapa opintopistemäärä tai opiskelijanumero 80 op
811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu
81112A Tietoraketeet ja algoritmit, 217-218, Harjoitus 4, Ratkaisu Harjoitukse aiheita ovat algoritmie aikakompleksisuus ja lajittelualgoritmit Tehtävä 4.1 Selvitä seuraavie rekursioyhtälöide ratkaisuje
Algoritmit 2. Luento 12 To Timo Männikkö
Algoritmit 2 Luento 12 To 3.5.2018 Timo Männikkö Luento 12 Geneettiset algoritmit Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Algoritmit 2 Kevät 2018 Luento 12 To 3.5.2018 2/35 Algoritmien
Liitosesimerkki Tietokannan hallinta, kevät 2006, J.Li 1
Liitosesimerkki 16.02.06 Tietokannan hallinta, kevät 2006, J.Li 1 Esim R1 R2 yhteinen attribuutti C T(R1) = 10,000 riviä T(R2) = 5,000 riviä S(R1) = S(R2) = 1/10 lohkoa Puskuritilaa = 101 lohkoa 16.02.06
Tietorakenteet ja algoritmit. Järjestäminen. Ari Korhonen
Tietorakenteet ja algoritmit Järjestäminen Ari Korhonen 6.10.2015 1 6. Järjestäminen (sor0ng) 6.1 Johdanto 6.2 Yksinkertaiset menetelmät 6.2.1 Valintajärjestäminen 6.2.2 Lisäysjärjestäminen 6.3 Lomitusjärjestäminen
Algoritmit 1. Luento 8 Ke Timo Männikkö
Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin
Algoritmit 2. Luento 6 To Timo Männikkö
Algoritmit 2 Luento 6 To 28.3.2019 Timo Männikkö Luento 6 B-puun operaatiot Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2019 Luento 6 To 28.3.2019 2/30 B-puu 40 60 80 130 90 100
13 Lyhimmät painotetut polut
TIE-20100 Tietorakenteet ja algoritmit 297 13 Lyhimmät painotetut polut BFS löytää lyhimmän polun lähtösolmusta graafin saavutettaviin solmuihin. Se ei kuitenkaan enää suoriudu tehtävästä, jos kaarien
Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö
Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu
TIE Tietorakenteet ja algoritmit 1. TIE Tietorakenteet ja algoritmit
TIE-20100 Tietorakenteet ja algoritmit 1 TIE-20100 Tietorakenteet ja algoritmit TIE-20100 Tietorakenteet ja algoritmit 2 Lähteet Luentomoniste pohjautuu vahvasti prof. Antti Valmarin vanhaan luentomonisteeseen
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli
Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia
Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä
Algoritmit 2. Luento 6 Ke Timo Männikkö
Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon
Algoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017
58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen)
58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 1. Avaimet 1, 2, 3 ja 4 mahtuvat samaan lehtisolmuun. Tässä tapauksessa puussa on vain yksi solmu, joka on samaan aikaan juurisolmu
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 25.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 25.2.2009 1 / 34 Syötteessä useita lukuja samalla rivillä Seuraavassa esimerkissä käyttäjä antaa useita lukuja samalla
TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja Tietokonetekniikan laitos TKT-3200 Tietokonetekniikka ASSEMBLER: QSORT 06.09.2005 Ryhmä 00 nimi1 email1 opnro1 nimi2 email2 opnro2 nimi3 email3 opnro3 1. TEHTÄVÄ
Tietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Rekursio Rekursion käyttötapauksia Rekursio määritelmissä Rekursio ongelmanratkaisussa ja ohjelmointitekniikkana Esimerkkejä taulukolla Esimerkkejä linkatulla listalla Hanoin
Liitosesimerkki. Esim R1 R2 yhteinen attribuutti C. Vaihtoehdot
Esim yhteinen attribuutti C Liitosesimerkki T() = 10,000 riviä T() = 5,000 riviä S() = S() = 1/10 lohkoa Puskuritilaa = 101 lohkoa 1 2 Vaihtoehdot Sisäkkäiset silmukat Liitosjärjestys:, Liitosalgoritmit: