Liitosesimerkki Tietokannan hallinta, kevät 2006, J.Li 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Liitosesimerkki Tietokannan hallinta, kevät 2006, J.Li 1"

Transkriptio

1 Liitosesimerkki Tietokannan hallinta, kevät 2006, J.Li 1

2 Esim R1 R2 yhteinen attribuutti C T(R1) = 10,000 riviä T(R2) = 5,000 riviä S(R1) = S(R2) = 1/10 lohkoa Puskuritilaa = 101 lohkoa Tietokannan hallinta, kevät 2006, J.Li 2

3 Vaihtoehdot Liitosjärjestys: R1 R2, R2 R1 Liitosalgoritmit: Sisäkkäiset silmukat Sort merge liitos Hakemistoliitos Hajautusliitos Tietokannan hallinta, kevät 2006, J.Li 3

4 Sisäkkäiset silmukat for each r R1 do for each s R2 do if r.c = s.c then output {r,s} pair Tietokannan hallinta, kevät 2006, J.Li 4

5 Sort merge liitos (1) Jos R1 tai R2 ei ole lajiteltu, lajittele se (2) i 1; j 1; While (i T(R1)) (j T(R2)) do if R1{ i }.C = R2{ j }.C then outputtuples else if R1{ i }.C > R2{ j }.C then j j+1 else if R1{ i }.C < R2{ j }.C then i i Tietokannan hallinta, kevät 2006, J.Li 5

6 Procedure Output Tuples While (R1{ i }.C = R2{ j }.C) (i T(R1)) do [jj j; while (R1{ i }.C = R2{ jj }.C) (jj T(R2)) do [output pair R1{ i }, R2{ jj }; jj jj+1 ] i i+1 ] Tietokannan hallinta, kevät 2006, J.Li 6

7 Esimerkki i R1{i}.C R2{j}.C j Tietokannan hallinta, kevät 2006, J.Li 7

8 Hakemistoliitos For each r R1 do [ X index (R2, C, r.c) Oletus R2.C hakemistossa for each s X do output {r,s} pair] Huom: X index(rel, attr, value) then X = set of rel tuples with attr = value Tietokannan hallinta, kevät 2006, J.Li 8

9 Hajautusliitos Hajautusfunktio h, arvoalue 0 k Solut R1: G0, G1,... Gk Solut R2: H0, H1,... Hk Algoritmi (1) Hajauta R1 tietueet soluihin G (2) Hajauta R2 tietueet soluihin H (3) For i = 0 to k do vertaa tietueita soluissa Gi, Hi Tietokannan hallinta, kevät 2006, J.Li 9

10 Esimerkkihajautus R1 R2 Solut 2 5 Parilliset 4 4 R1 R Parittomat Tietokannan hallinta, kevät 2006, J.Li 10

11 Esim 1(a): sisäkkäiset silmukat R1 R2 Relaatiot eivät ole peräkkäisiä T(R1) = 10,000 T(R2) = 5,000 S(R1) = S(R2) =1/10 lohkoa Muistia=101 lohkoa Kustannus: jokaiselle R1:n tietueelle [lue tietue + lue R2] Yhteensä =10,000 [1+5000]=50,010,000 I/O:ta Tietokannan hallinta, kevät 2006, J.Li 11

12 Voidaanko tehdä paremmin? Käytetään muistia (1) Luetaan 100 lohkoa R:tä (2) Luetaan kokonaan R2 (1 lohko) + liitos (3) Toistetaan kunnes valmista Tietokannan hallinta, kevät 2006, J.Li 12

13 Kustannus: jokaiselle R1 lohkolle Lue lohkot: 1000 IOs Lue R2: 5000 IOs 6000 Yht = 10,000 x 6000 = 60,000 IOs 1, Tietokannan hallinta, kevät 2006, J.Li 13

14 Voidaanko parantaa? Vaihdetaan järjestys: R2 R1 Yht = 5000 x ( ,000) = x 11,000 = 55,000 IOs Tietokannan hallinta, kevät 2006, J.Li 14

15 Esim 1(b): sisäkkäiset silmukat R2 R1 Relaatiot peräkkäisiä Kustannus jokaiselle R2 palalle: Lue lohkot: 100 IOs Lue R1: 1000 IOs 1,100 Yhteensä= 5 palaa x 1,100 = 5,500 IOs Tietokannan hallinta, kevät 2006, J.Li 15

16 Esim 1(c): Lomitusliitos (Merge Join) Molemmat R1, R2 järjestetty C:n mukaan ; relaatiot peräkkäisiä Muisti R1.. R1 R2.. R2 Kustannus: Lue R1 + Lue R2 = = 1,500 IOs Tietokannan hallinta, kevät 2006, J.Li 16

17 Esim 1(d): Sort Merge liitos R1, R2 eivät järjestettyjä, mutta peräkkäisiä > Lajitellaan R1, R2 ensin. Kuinka? Tietokannan hallinta, kevät 2006, J.Li 17

18 Merge Sort (i) Jokaiselle 100 lohkon palalle R:ää R1 R2 Lue lohkot Lajittelele muistissa Kirjoita levylle Muisti... lajitellut palat Tietokannan hallinta, kevät 2006, J.Li 18

19 (ii) Lue kaikki palat + liitä + kirjoita Lajiteltu Muisti Lajiteltu pala Tietokannan hallinta, kevät 2006, J.Li 19

20 Kustannus: Lajittelu Jokainen tietue luetaan, kirjoitetaan, luetaan, kirjoitetaan siis... R1 lajittelukustannus: 4 x 1,000 = 4,000 R2 lajittelukustannus: 4 x 500 = 2, Tietokannan hallinta, kevät 2006, J.Li 20

21 Esim 1(d): Sort Merge liitos jatkoa Kokonaiskustannus = järjestys + liitos = 6, ,500 = 7,500 IOs Mutta: sisäkkäiset silmukat = 5,500 ei kannata siis! Tietokannan hallinta, kevät 2006, J.Li 21

22 Oletetaan R1 = 10,000 lohkoa peräkkäin R2 = 5,000 lohkoa, ei järjestetty Silmukat: 5000 x (100+10,000) = 50 x 10, = 505,000 IOs Sort Merge: 5(10,000+5,000) = 75,000 IOs Sort Merge parempi! Tietokannan hallinta, kevät 2006, J.Li 22

23 Esim 1(e): Hakemistoliitos Oletetaan R1.C hakemisto; 2 tasoa Oletetaan R2 peräkkäin, järjestämätön Oletetaan R1.C hakemisto mahtuu muistiin Tietokannan hallinta, kevät 2006, J.Li 23

24 Kustannus: Lukeminen: 500 IOs jokaiselle R2 tietueelle: läpikäy hakemisto ilmaista jos löytyy, lue R1 tietue: 1 IO Tietokannan hallinta, kevät 2006, J.Li 24

25 Kuinka monta yhteistä tietuetta? (a) Olkoon R1.C avain ja R2.C viiteavain, tällöin = 1 (b) Olkoon V(R1,C) = 5000, T(R1) = 10,000 tasaisen jakauman oletuksella keskimäärin = 10,000/5,000 = 2 ( V(R,C) = C attribuutin arvojen lkm R:ssä) Tietokannan hallinta, kevät 2006, J.Li 25

26 Kuinka monta yhteistä arvoa? (c) Olkoon DOM(R1, C)=1,000,000 T(R1) = 10,000 tällä oletuksella yhteisiä = 10,000 = 1 1,000, ( DOM(R,C) = C:n arvoalue R:ssä ) Tietokannan hallinta, kevät 2006, J.Li 26

27 Hakemistoliitoksen kokonaiskustannus (a) Yhteensä = (1)1 = 5,500 (b) Yhteensä = (2)1 = 10,500 (c) Yhteensä = (1/100)1= Tietokannan hallinta, kevät 2006, J.Li 27

28 Entä jos hakemisto ei mahdu muistiin? Esim: Olkoon R1.C hakemiston koko 201 lohkoa Pidä juuri + 99 lehtitason solmua muistissa Jokaisen läpikäynnin odotettu kustannus E = (0) 99 + (1) Tietokannan hallinta, kevät 2006, J.Li 28

29 Kokonaiskustannus = [läpikäynti + tietueen luku] = [0.5+2] tasainen jakauma oletuksena = ,500 = 13,000 (tapaus b) Tapaus (c): = [ (1/100) 1] = = 3050 IOs Tietokannan hallinta, kevät 2006, J.Li 29

30 Eli tähänmennessä tiedetään että ei peräkkäin peräkkäin Sisäkkäin R2 R1 55,000 (paras) Lomitusliitos Sort Merge liitos R1.C hakemisto R2.C hakemisto Sisäkkäin R2 R Lomitusliitos 1500 Sort Merge liitos R1.C hakemisto R2.C hakemisto Tietokannan hallinta, kevät 2006, J.Li 30

31 Esim 1(f): Hajautusliitos R1, R2 peräkkäisiä, järjestämättömi Käytetään 100 solua Lue R1, hajauta, + kirjoita solut R lohkoa Tietokannan hallinta, kevät 2006, J.Li 31

32 > Samoin R2 > Lue yksi R1 solu; rakenna solutaulukko > Lue vastaavat R2 solut + hajauta + tutki R2 R1 R muisti Toista kaikille soluille Tietokannan hallinta, kevät 2006, J.Li 32

33 Kustannus: Soluittain: Lue R1 + kirjoita Lue R2 + kirjoita Liitos: Lue R1, R2 Yhteensä = 3 x [ ] = Tietokannan hallinta, kevät 2006, J.Li 33

34 Yhteenveto Sisäkkäiset silmukat menetelmä sopii pienille relaatioille (verrattuna keskusmuistiin). Hajautusliitos yleensä paras yhtäsuuruusliitokseen, missä relaatiot eivät ole järjestetty eikä hakemistoja ole. Sort Mege on hyvä jos ehtona ei yhtäsuuruus (esim, R1.C > R2.C). Jos relaatiot jo järjestetty, käytä lomitusliitosta. Jos hakemistoja on, ovat yleensä hyödyllisiä (riippuu siitä kuinka rajaava liitosehto on) Tietokannan hallinta, kevät 2006, J.Li 34

Liitosesimerkki. Esim R1 R2 yhteinen attribuutti C. Vaihtoehdot

Liitosesimerkki. Esim R1 R2 yhteinen attribuutti C. Vaihtoehdot Esim yhteinen attribuutti C Liitosesimerkki T() = 10,000 riviä T() = 5,000 riviä S() = S() = 1/10 lohkoa Puskuritilaa = 101 lohkoa 1 2 Vaihtoehdot Sisäkkäiset silmukat Liitosjärjestys:, Liitosalgoritmit:

Lisätiedot

1. a) Laadi suoraviivaisesti kyselyä vastaava optimoimaton kyselypuu.

1. a) Laadi suoraviivaisesti kyselyä vastaava optimoimaton kyselypuu. Helsingin yliopisto, Tietojenkäsittelytieteen laitos Kyselykielet, s 2006, Harjoitus 5 (7.12.2006) Tietokannassa on tietoa tavaroista ja niiden toimittajista: Supplier(sid,sname,city,address,phone,etc);

Lisätiedot

Helsingin yliopisto/ tktl DO Tietokantojen perusteet, s 2000 Relaatioalgebra 14.9.2000. Harri Laine 1. Relaatioalgebra

Helsingin yliopisto/ tktl DO Tietokantojen perusteet, s 2000 Relaatioalgebra 14.9.2000. Harri Laine 1. Relaatioalgebra DO NOT PRINT THIS DOCUMENT operaatiot, joilla relaatioista voidaan muodostaa uusia relaatioita joukko opin perusoperaatiot yhdiste, erotus, ristitulo, leikkaus erityisiä relaatioalgebran operaatioita projektio,

Lisätiedot

Lisätään avainarvo 1, joka mahtuu lehtitasolle:

Lisätään avainarvo 1, joka mahtuu lehtitasolle: Helsingin Yliopisto, Tietojenkäsittelytieteen laitos Tietokannan hallinta, kurssikoe 14.5.2004, J. Lindström Ratkaisuehdotuksia 1. Hakemistorakenteet, 15p. Tutkitaan tyhjää B+-puuta, jossa jokaiselle hakemistosivulle

Lisätiedot

Algoritmit 1. Luento 12 Ke Timo Männikkö

Algoritmit 1. Luento 12 Ke Timo Männikkö Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu

Lisätiedot

Relaatioalgebra. Kyselyt:

Relaatioalgebra. Kyselyt: Relaatioalgebra Relaatiomalliin liittyy malli tietokannan käsittelystä Tietokannasta pitää pystyä hakemaan tietoa ja toisaalta tietokantaa on ylläpidettävä Tietokannan käsittelyn malli relaatioalgebra

Lisätiedot

Relaatioalgebra. Relaatioalgebra. Relaatioalgebra. Relaatioalgebra - erotus (set difference) Kyselyt:

Relaatioalgebra. Relaatioalgebra. Relaatioalgebra. Relaatioalgebra - erotus (set difference) Kyselyt: Relaatiomalliin liittyy malli tietokannan käsittelystä Tietokannasta pitää pystyä hakemaan tietoa ja toisaalta tietokantaa on ylläpidettävä Tietokannan käsittelyn malli relaatioalgebra määrittelee operaatiot,

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017

Lisätiedot

Kyselyt: Lähtökohtana joukko lukuja Laskukaava kertoo miten luvuista lasketaan tulos soveltamalla laskentaoperaatioita

Kyselyt: Lähtökohtana joukko lukuja Laskukaava kertoo miten luvuista lasketaan tulos soveltamalla laskentaoperaatioita Relaatioalgebra Relaatiomalliin liittyy malli tietokannan käsittelystä Tietokannasta pitää pystyä hakemaan tietoa ja toisaalta tietokantaa on ylläpidettävä Tietokannan käsittelyn malli relaatioalgebra

Lisätiedot

Helsingin yliopisto/tktl Kyselykielet, s 2006 Tietokantaoperaatioiden toteutuksesta Harri Laine 1. Kyselyjen käsittely

Helsingin yliopisto/tktl Kyselykielet, s 2006 Tietokantaoperaatioiden toteutuksesta Harri Laine 1. Kyselyjen käsittely Kyselyjen käsittely Kyselyn käsittelyn vaiheet: TKHJ ottaa vastaan kyselyn asiakasohjelmalta Kysely selataan ja jäsennetään tarkistetaan kyselyn rakenteellinen oikeellisuus Jäsennetty kysely muunnetaan

Lisätiedot

11. Javan toistorakenteet 11.1

11. Javan toistorakenteet 11.1 11. Javan toistorakenteet 11.1 Sisällys Laskuri- ja lippumuuttujat. Sisäkkäiset silmukat. Tyypillisiä ohjelmointivirheitä: Silmukan rajat asetettu kierroksen verran väärin. Ikuinen silmukka. Silmukoinnin

Lisätiedot

Lohkot. if (ehto1) { if (ehto2) { lause 1;... lause n; } } else { lause 1;... lause m; } 16.3

Lohkot. if (ehto1) { if (ehto2) { lause 1;... lause n; } } else { lause 1;... lause m; } 16.3 16. Lohkot 16.1 Sisällys Tutustutaan lohkoihin. Muuttujien ja vakioiden näkyvyys sekä elinikä erityisesti operaation lohkossa. Nimikonfliktit. Muuttujat operaation alussa vai myöhemmin? 16.2 Lohkot Kaarisulut

Lisätiedot

D B. Kyselyjen käsittely ja optimointi. Kyselyjen käsittely ja optimointi

D B. Kyselyjen käsittely ja optimointi. Kyselyjen käsittely ja optimointi Kyselyn käsittelyn vaiheet: TKHJ ottaa vastaan kyselyn asiakasohjelmalta Kysely selataan ja jäsennetään tarkistetaan kyselyn rakenteellen oikeellisuus Jäsennetty kysely muunnetaan relaatiolausekkeiksi

Lisätiedot

Kyselyiden käsittely. R & G Chapter Tietokannan hallinta, kevät 2006, Jan 1

Kyselyiden käsittely. R & G Chapter Tietokannan hallinta, kevät 2006, Jan 1 Kyselyiden käsittely R & G Chapter 12 15 16.02.06 Tietokannan hallinta, kevät 2006, Jan 1 Kyselyjen käsittely ja optimointi Kyselyn käsittelyn vaiheet: TKHJ ottaa vastaan kyselyn asiakasohjelmalta Kysely

Lisätiedot

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n)) Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia

Lisätiedot

joukko operaatioita, joilla relaatioista voidaan muodostaa uusia relaatioita joukko opin perusoperaatiot yhdiste, erotus, ristitulo, leikkaus

joukko operaatioita, joilla relaatioista voidaan muodostaa uusia relaatioita joukko opin perusoperaatiot yhdiste, erotus, ristitulo, leikkaus DO NOT PRINT THIS DOCUMENT joukko operaatioita, joilla relaatioista voidaan muodostaa uusia relaatioita joukko opin perusoperaatiot yhdiste, erotus, ristitulo, leikkaus erityisiä relaatioalgebran operaatioita

Lisätiedot

Helsingin yliopisto/tktl Tietokannan hallinta, s Harri Laine 1 D B. Kyselyjen käsittely ja optimointi

Helsingin yliopisto/tktl Tietokannan hallinta, s Harri Laine 1 D B. Kyselyjen käsittely ja optimointi Kyselyn käsittelyn vaiheet: TKHJ ottaa vastaan kyselyn asiakasohjelmalta Kysely selataan ja jäsennetään tarkistetaan kyselyn rakenteellinen oikeellisuus Jäsennetty kysely muunnetaan relaatiolausekkeiksi

Lisätiedot

Algoritmit 1. Luento 11 Ti Timo Männikkö

Algoritmit 1. Luento 11 Ti Timo Männikkö Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017

Lisätiedot

Tarkennamme geneeristä painamiskorotusalgoritmia

Tarkennamme geneeristä painamiskorotusalgoritmia Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi

Lisätiedot

Dynaaminen ohjelmointi ja vaikutuskaaviot

Dynaaminen ohjelmointi ja vaikutuskaaviot Dynaaminen ohjelmointi ja vaikutuskaaviot. Taustaa 2. Vaikutuskaaviot ja superarvosolmut 3. Vaikutuskaavion ratkaiseminen 4. Vaikutuskaavio ja dynaaminen ohjelmointi: 5. Yhteenveto Esitelmän sisältö Optimointiopin

Lisätiedot

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu

Lisätiedot

Hajautusrakenteet. R&G Chapter Tietokannan hallinta, kevät 2006, Jan 1

Hajautusrakenteet. R&G Chapter Tietokannan hallinta, kevät 2006, Jan 1 Hajautusrakenteet R&G Chapter 11 16.02.06 Tietokannan hallinta, kevät 2006, Jan 1 Hajautukseen perustuvat tiedostorakenteet Hajautukseen perustuvissa tiedostorakenteissa on tavoitteena yksittäisen tietueen

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

8. Lajittelu, joukot ja valinta

8. Lajittelu, joukot ja valinta 8. Lajittelu, joukot ja valinta Yksi tietojenkäsittelyn klassisista tehtävistä on lajittelu (järjestäminen) (sorting) jo mekaanisten tietojenkäsittelylaitteiden ajalta. Lajiteltua tietoa tarvitaan lukemattomissa

Lisätiedot

4.3. Matemaattinen induktio

4.3. Matemaattinen induktio 4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta

Lisätiedot

12. Javan toistorakenteet 12.1

12. Javan toistorakenteet 12.1 12. Javan toistorakenteet 12.1 Sisällys Yleistä toistorakenteista. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirheitä. Silmukan rajat asetettu

Lisätiedot

D B. Kyselyjen käsittely ja optimointi. Kyselyn käsittelyn vaiheet:

D B. Kyselyjen käsittely ja optimointi. Kyselyn käsittelyn vaiheet: Kyselyjen käsittely ja optimointi Kyselyn käsittelyn vaiheet: TKHJ ottaa vastaan kyselyn asiakasohjelmalta Kysely selataan ja jäsennetään tarkistetaan kyselyn rakenteellinen oikeellisuus Jäsennetty kysely

Lisätiedot

Algoritmi on periaatteellisella tasolla seuraava:

Algoritmi on periaatteellisella tasolla seuraava: Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S

Lisätiedot

HELIA 1 (15) Outi Virkki Tiedonhallinta

HELIA 1 (15) Outi Virkki Tiedonhallinta HELIA 1 (15) Luento Suorituskyvyn optimointi... 2 Tiedonhallintajärjestelmän rakenne... 3 Suunnittele... 4 SQL-komentojen viritys... 5 Tekninen ympäristö... 6 Fyysisen tason ratkaisut... 7 Indeksit...

Lisätiedot

Sisällys. 16. Lohkot. Lohkot. Lohkot

Sisällys. 16. Lohkot. Lohkot. Lohkot Sisällys 16. ohkot Tutustutaan lohkoihin. Muuttujien ja vakioiden näkyvyys sekä elinikä erityisesti operaation lohkossa. Nimikonfliktit. Muuttujat operaation alussa vai myöhemmin? 16.1 16.2 ohkot aarisulut

Lisätiedot

Lohkot. if (ehto1) { if (ehto2) { lause 1;... lause n; } } else { lause 1;... lause m; } 15.3

Lohkot. if (ehto1) { if (ehto2) { lause 1;... lause n; } } else { lause 1;... lause m; } 15.3 15. Lohkot 15.1 Sisällys Tutustutaan lohkoihin. Muuttujien ja vakioiden näkyvyys sekä elinikä erityisesti operaation lohkossa. Nimikonfliktit. Muuttujat operaation alussa vai myöhemmin? 15.2 Lohkot Aaltosulkeet

Lisätiedot

Algoritmit 1. Luento 5 Ti Timo Männikkö

Algoritmit 1. Luento 5 Ti Timo Männikkö Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti

Lisätiedot

TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto

TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto Indeksin luonti ja hävitys TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto Komentoa ei ole standardoitu ja niinpä sen muoto vaihtelee järjestelmäkohtaisesti Indeksi voidaan

Lisätiedot

Hajautusrakenteet. Hajautukseen perustuvat tiedostorakenteet. Hajautukseen perustuvat tiedostorakenteet. Hajautukseen perustuvat tiedostorakenteet

Hajautusrakenteet. Hajautukseen perustuvat tiedostorakenteet. Hajautukseen perustuvat tiedostorakenteet. Hajautukseen perustuvat tiedostorakenteet Hajautusrakenteet R&G Chapter Hajautukseen perustuvissa tiedostorakenteissa on tavoitteena yksittäisen tietueen nopea haku. Tähän pyritään siten, että tietueen sijoituspaikan eli solun (cell, bucket) osoite

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit 811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi

Lisätiedot

Tiedostorakenteet. R&G Chapter Tietokannan hallinta, kevät 2006, Jan 1

Tiedostorakenteet. R&G Chapter Tietokannan hallinta, kevät 2006, Jan 1 Tiedostorakenteet R&G Chapter 9 16.02.06 Tietokannan hallinta, kevät 2006, Jan 1 Tiedostorakenteet Tiedostojen tehokkuutta yhtä kyselyä kohti arvioidaan usein tarvittavien levyhakujen määrällä. kuten levykäsittelyn

Lisätiedot

Perusteet. Pasi Sarolahti Aalto University School of Electrical Engineering. C-ohjelmointi Kevät Pasi Sarolahti

Perusteet. Pasi Sarolahti Aalto University School of Electrical Engineering. C-ohjelmointi Kevät Pasi Sarolahti C! Perusteet 19.1.2017 Palautteesta (1. kierros toistaiseksi) (Erittäin) helppoa Miksi vain puolet pisteistä? Vaikeinta oli ohjelmointiympäristön asennus ja käyttö Ei selvää että main funktion pitikin

Lisätiedot

Sisällys. 12. Javan toistorakenteet. Yleistä. Laskurimuuttujat

Sisällys. 12. Javan toistorakenteet. Yleistä. Laskurimuuttujat Sisällys 12. Javan toistorakenteet Ylstä toistorakentsta. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirhtä. Silmukan rajat asetettu kierroksen

Lisätiedot

A TIETORAKENTEET JA ALGORITMIT

A TIETORAKENTEET JA ALGORITMIT A274105 TIETORAKENTEET JA ALGORITMIT HARJOITUSTEHTÄVÄT 6 DEADLINE 1.4.2009 KLO 9:00 Kynätehtävät tehdään kirjallisesti ja esitetään harjoituksissa. Välivaiheet näkyviin! Ohjelmointitehtävät sähköisesti

Lisätiedot

Sisällys. 15. Lohkot. Lohkot. Lohkot

Sisällys. 15. Lohkot. Lohkot. Lohkot Sisällys 15. Lohkot Tutustutaan lohkoihin. Muuttujien ja vakioiden näkyvyys sekä elinikä erityisesti operaation lohkossa. Nimikonfliktit. Muuttujat operaation alussa vai myöhemmin? 15.1 15.2 Lohkot Aaltosulkeet

Lisätiedot

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa Kekolajittelu Prioriteettijonolla toteutettu keko InsertItem ja RemoveMinElem: O(log(n)) Lajittelu prioriteettijonolla: PriorityQueueSort(lajiteltava sekvenssi S) alusta prioriteettijono P while S.IsEmpty()

Lisätiedot

Algoritmit 2. Luento 4 Ke Timo Männikkö

Algoritmit 2. Luento 4 Ke Timo Männikkö Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4

Lisätiedot

Käsitellyt hakemistot (hajautus, ISAM): hakemisto-osa on staattinen eli ei muutu muuten kuin uudelleenorganisoinnissa.

Käsitellyt hakemistot (hajautus, ISAM): hakemisto-osa on staattinen eli ei muutu muuten kuin uudelleenorganisoinnissa. Tietokannan hallinta 35 3. Tietokannan 3.3 Dynaamiset Käsitellyt hakemistot (hajautus, ISAM): hakemisto-osa on staattinen eli ei muutu muuten kuin uudelleenorganisoinnissa. Ajan mittaan epätasapainoa:

Lisätiedot

Ohjausrakenteet. Valinta:

Ohjausrakenteet. Valinta: Ohjausrakenteet Luento antaa yleiskuvan siitä kuinka ohjelmassa suorittaan vaihtoehtoisia tehtäviä valintarakenteiden avulla ja kuinka samanlaisia ohjelma-askeleita toistetaan toistorakenteiden avulla

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 11.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 11.2.2009 1 / 33 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin

Lisätiedot

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos

Lisätiedot

Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, (s) symmetrinen, jos xry yrx, (as) antisymmetrinen, jos xry yrx x =

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Yksitasoisia talletusrakenteita käytetään lähinnä datatietueiden talletukseen

Yksitasoisia talletusrakenteita käytetään lähinnä datatietueiden talletukseen Yksitasoiset talletusrakenteet Yksitasoisia talletusrakenteita käytetään lähinnä datatietueiden talletukseen järjestämätön peräkkäisrakenne (kasa, heap) järjestetty peräkkäisrakenne (sequential file) hajautusrakenne

Lisätiedot

Sisällys. 11. Javan toistorakenteet. Laskurimuuttujat. Yleistä

Sisällys. 11. Javan toistorakenteet. Laskurimuuttujat. Yleistä Sisällys 11. Javan toistorakenteet Laskuri- ja lippumuuttujat.. Tyypillisiä ohjelmointivirheitä: Silmukan rajat asetettu kierroksen verran väärin. Ikuinen silmukka. Silmukoinnin lopettaminen break-lauseella.

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille

Lisätiedot

Algoritmit 1. Luento 9 Ti Timo Männikkö

Algoritmit 1. Luento 9 Ti Timo Männikkö Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja

811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja 811312A Tietorakenteet ja algoritmit, 2015-2016 VI Algoritmien suunnitteluparadigmoja Sisältö 1. Hajota ja hallitse-menetelmä 2. Dynaaminen taulukointi 3. Ahneet algoritmit 4. Peruuttavat algoritmit 811312A

Lisätiedot

1 Erilaisia tapoja järjestää

1 Erilaisia tapoja järjestää TIE-20100 Tietorakenteet ja algoritmit 1 1 Erilaisia tapoja järjestää Käsitellään seuraavaksi järjestämisalgoritmeja, jotka perustuvat muihin kuin vertailuun alkioiden oikean järjestyksen saamiseksi. Lisäksi

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen. Ohjausrakenteet:

Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen. Ohjausrakenteet: 3. Pseudokoodi 3.1 Sisällys Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen. Ohjausrakenteet: Valinta if- ja if-else-rakenteilla. Toisto while-, do-while- ja for-rakenteilla.

Lisätiedot

Luento 5. Timo Savola. 28. huhtikuuta 2006

Luento 5. Timo Savola. 28. huhtikuuta 2006 UNIX-käyttöjärjestelmä Luento 5 Timo Savola 28. huhtikuuta 2006 Osa I Shell-ohjelmointi Ehtolause Lausekkeet suoritetaan jos ehtolausekkeen paluuarvo on 0 if ehtolauseke then lauseke

Lisätiedot

HELIA 1 (21) Outi Virkki Tietokantasuunnittelu

HELIA 1 (21) Outi Virkki Tietokantasuunnittelu HELIA 1 (21) Luento 3.1 Suorituskyvyn optimointi... 2 Suunnittele... 3 Tiedonhallintajärjestelmän rakenne... 4 SQL-käsittelijä... 5 Parsinta... 5 Optimointi... 5 Tilan käsittelijä... 5 Puskurin käsittelijä

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

Tietorakenteet, laskuharjoitus 7, ratkaisuja

Tietorakenteet, laskuharjoitus 7, ratkaisuja Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9

Lisätiedot

811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu

811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu 811312A Tietorakenteet ja algoritmit 2017-2018, Harjoitus 2 ratkaisu Harjoituksen aiheena on algoritmien oikeellisuus. Tehtävä 2.1 Kahvipurkkiongelma. Kahvipurkissa P on valkoisia ja mustia kahvipapuja,

Lisätiedot

Sisällys. 3. Pseudokoodi. Johdanto. Johdanto. Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen.

Sisällys. 3. Pseudokoodi. Johdanto. Johdanto. Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen. Sisällys 3. Pseudokoodi Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen. Ohjausrakenteet: Valinta if- ja if--rakenteilla. oisto while-, do-while- ja for-rakenteilla. 3.1 3.2 Johdanto

Lisätiedot

Algoritmit 1. Luento 3 Ti Timo Männikkö

Algoritmit 1. Luento 3 Ti Timo Männikkö Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien

Lisätiedot

Luento 2: Tiedostot ja tiedon varastointi

Luento 2: Tiedostot ja tiedon varastointi HELIA 1 (19) Luento 2: Tiedostot ja tiedon varastointi Muistit... 2 Päämuisti (Primary storage)... 2 Apumuisti (Secondary storage)... 2 Tiedon tallennuksen yksiköitä... 3 Looginen taso... 3 Fyysinen taso...

Lisätiedot

oheishakemistoja voi tiedostoon liittyä useita eri perustein muodostettuja

oheishakemistoja voi tiedostoon liittyä useita eri perustein muodostettuja Tietokantojen hakemistorakenteet Hakemistorakenteiden (indeksien) tarkoituksena on nopeuttaa tietojen hakua tietokannasta. Hakemisto voi olla ylimääräinen oheishakemisto (secondary index), esimerkiksi

Lisätiedot

List-luokan soveltamista. Listaan lisääminen Listan läpikäynti Listasta etsiminen Listan sisällön muuttaminen Listasta poistaminen Listan kopioiminen

List-luokan soveltamista. Listaan lisääminen Listan läpikäynti Listasta etsiminen Listan sisällön muuttaminen Listasta poistaminen Listan kopioiminen 1 List-luokan soveltamista List-luokan metodeja Listaan lisääminen Listan läpikäynti Listasta etsiminen Listan sisällön muuttaminen Listasta poistaminen Listan kopioiminen 1 List-luokan metodeja List-luokan

Lisätiedot

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit

Lisätiedot

Helsingin yliopisto/tktl Tietokannan hallinta kevät Harri Laine 1 D B. Yksitasoiset talletusrakenteet

Helsingin yliopisto/tktl Tietokannan hallinta kevät Harri Laine 1 D B. Yksitasoiset talletusrakenteet Yksitasoiset talletusrakenteet Yksitasoisia talletusrakenteita käytetään lähinnä datatietueiden talletukseen järjestämätön peräkkäisrakenne (kasa, heap) järjestetty peräkkäisrakenne (sequential file) hajautusrakenne

Lisätiedot

D B. Tietokannan hallinta kertaus

D B. Tietokannan hallinta kertaus TKHJ:n pääkomponentit metadata TKHJ:ssä Tiedostojen käsittely puskurien rooli tiedostokäsittelyssä levymuistin rakenne ja käsittely mistä tekijöistä hakuaika muodostuu jonotus jos useita samanaikaisia

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

D B. Harvat hakemistot. Harvat hakemistot

D B. Harvat hakemistot. Harvat hakemistot Harvassa hakemistossa on ei ole hakemistomerkintöjä jokaista tietuetta kohden vaan yksi merkintä jotain isompaa kokonaisuutta esimerkiksi sivua tai sivujoukkoa (esim. saman uran sivut) kohti Harvan hakemiston

Lisätiedot

Anna Kuikka Pyöräkatu 9 B Kuopio GSM: Opiskelijanro: 60219K. Prioriteettijonot

Anna Kuikka Pyöräkatu 9 B Kuopio GSM: Opiskelijanro: 60219K. Prioriteettijonot Anna Kuikka Pyöräkatu 9 B 68 70600 Kuopio GSM: 040-734 9266 akuikka@cc.hut.fi Opiskelijanro: 60219K Prioriteettijonot PRIORITEETTIJONOT...1 1. JOHDANTO...3 2. TOTEUTUKSET...3 1.2 Keon toteutus...4 1.3

Lisätiedot

6.4. Järjestyssuhteet

6.4. Järjestyssuhteet 6.4. Järjestyssuhteet Joukon suhteilla voidaan kuvata myös alkioiden järjestystä tietyn ominaisuuden suhteen. Järjestys on myös kaksipaikkainen suhde (ja on monia erilaisia järjestyksiä). Suhde R joukossa

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

1.4 Funktioiden kertaluokat

1.4 Funktioiden kertaluokat 1.4 Funktioiden kertaluokat f on kertaluokkaa O(g), merk. f = O(g), jos joillain c > 0, m N pätee f(n) cg(n) aina kun n m f on samaa kertaluokkaa kuin g, merk. f = Θ(g), jos joillain a, b > 0, m N pätee

Lisätiedot

B-puu. 3.3 Dynaamiset hakemistorakenteet

B-puu. 3.3 Dynaamiset hakemistorakenteet Tietokannan hallinta 2 3. Tietokannan hakemistorakenteet 3.3 Dynaamiset hakemistorakenteet Käsitellyt hakemistot (hajautus, ISAM): hakemisto-osa on staattinen eli ei muutu muuten kuin uudelleenorganisoinnissa.

Lisätiedot

Algoritmit 2. Luento 14 Ke Timo Männikkö

Algoritmit 2. Luento 14 Ke Timo Männikkö Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 6. Alkeislukuteoria 6.1 Jaollisuus Käsitellään kokonaislukujen perusominaisuuksia: erityisesti jaollisuutta Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,...

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

2. Käsiteanalyysi ja relaatiomalli

2. Käsiteanalyysi ja relaatiomalli 2. Käsiteanalyysi ja relaatiomalli lehtori Pasi Ranne Metropolia ammattikorkeakoulu E-mail: pasi.ranne@metropolia.fi sivu 1 Tietokannan suunnitteluprosessin osat sivu 2 Käsiteanalyysi ER-mallinnus, tietomallinnus

Lisätiedot

4. Kyselyjen käsittely ja optimointi

4. Kyselyjen käsittely ja optimointi Tietokannan hallinta 1 4. Kyselyjen käsittely ja 4. Kyselyjen käsittely ja (E&N, Ch. 18) - taustana mm. relaatioalgebra ja hakemistorakenteet Kyselyn käsittelyn vaiheet: käyttöliittymästä tai jostakin

Lisätiedot

Tietuetyypin määrittely toteutetaan C-kielessä struct-rakenteena seuraavalla tavalla:

Tietuetyypin määrittely toteutetaan C-kielessä struct-rakenteena seuraavalla tavalla: KERTAUSTEHTÄVIÄ Tietue Tietuetyypin määrittely toteutetaan C-kielessä struct-rakenteena seuraavalla tavalla: struct henkilotiedot char nimi [20]; int ika; char puh [10]; ; Edellä esitetty kuvaus määrittelee

Lisätiedot

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Matti Nykänen 5. joulukuuta 2003 1 Satelliitit Muunnetaan luennoilla luonnosteltua toteutusta seuraavaksi: Korvataan puusolmun p kentät p. key ja

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 1.4.2009 T-106.1208 Ohjelmoinnin perusteet Y 1.4.2009 1 / 56 Tentti Ensimmäinen tenttimahdollisuus on pe 8.5. klo 13:00 17:00 päärakennuksessa. Tämän jälkeen

Lisätiedot

useampi ns. avain (tai vertailuavain) esim. opiskelijaa kuvaavassa alkiossa vaikkapa opintopistemäärä tai opiskelijanumero

useampi ns. avain (tai vertailuavain) esim. opiskelijaa kuvaavassa alkiossa vaikkapa opintopistemäärä tai opiskelijanumero Alkioiden avaimet Usein tietoalkioille on mielekästä määrittää yksi tai useampi ns. avain (tai vertailuavain) esim. opiskelijaa kuvaavassa alkiossa vaikkapa opintopistemäärä tai opiskelijanumero 80 op

Lisätiedot

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2 Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,

Lisätiedot

Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi

Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi Antti Leino 29. maaliskuuta 2005 Tietojenkäsittelytieteen

Lisätiedot

Ohjelmointiharjoituksia Arduino-ympäristössä

Ohjelmointiharjoituksia Arduino-ympäristössä Ohjelmointiharjoituksia Arduino-ympäristössä Yleistä Arduino-sovelluksen rakenne Syntaksi ja käytännöt Esimerkki ohjelman rakenteesta Muuttujat ja tietotyypit Tietotyypit Esimerkkejä tietotyypeistä Ehtolauseet

Lisätiedot

DATA-vaiheen ohjelmoijan yleissivistys helposti unohtuvia asioita

DATA-vaiheen ohjelmoijan yleissivistys helposti unohtuvia asioita Markku Suni Factotum emeritus Turun ammattikorkeakoulu DATA-vaiheen ohjelmoijan yleissivistys helposti unohtuvia asioita Aivan ensimmäiseksi haluan kiittää kuulijoita kuuntelusta Kuten tunnettu poliitikko

Lisätiedot

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I.

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I. Vaihto-ominaisuudella on seuraava intuition kannalta keskeinen seuraus: Olkoot A I ja B I samankokoisia riippumattomia joukkoja: A = B = m jollain m > 0. Olkoon vielä n = m A B, jolloin A B = B A = n.

Lisätiedot

1. Mitä tehdään ensiksi?

1. Mitä tehdään ensiksi? 1. Mitä tehdään ensiksi? Antti Jussi i Lakanen Ohjelmointi 1, kevät 2010/ Jyväskylän yliopisto a) Etsitään Googlesta valmis algoritmi b) Mietitään miten itse tehtäisiin sama homma kynällä ja paperilla

Lisätiedot

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun:

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun: Tietorakenteet ja algoritmit, kevät 201 Kurssikoe 1, ratkaisuja 1. Tehtävästä sai yhden pisteen per kohta. (a) Invariantteja voidaan käyttää algoritmin oikeellisuustodistuksissa Jokin väittämä osoitetaan

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

Algoritmit 2. Luento 9 Ti Timo Männikkö

Algoritmit 2. Luento 9 Ti Timo Männikkö Algoritmit 2 Luento 9 Ti 19.4.2016 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutus Verkon 3-väritys Algoritmit 2 Kevät 2016 Luento 9 Ti 19.4.2016

Lisätiedot

Valitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia.

Valitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia. MAA11 Koe 8.4.013 5 5 1. Luvut 6 38 ja 43 4 jaetaan luvulla 17. Osoita, että tällöin jakojäännökset ovat yhtäsuuret. Paljonko tämä jakojäännös on?. a) Tutki onko 101 alkuluku. Esitä tutkimuksesi tueksi

Lisätiedot

Ctl160 Tekstikorpusten tietojenkäsittely Kolmas luento,

Ctl160 Tekstikorpusten tietojenkäsittely Kolmas luento, Ctl160 490160-0 Kolmas luento, 10.2.2003 Nicholas Volk Yleisen kielitieteen laitos, Helsingin yliopisto Ctl160 490160-0Kolmas luento, 10.2.2003 p.1/28 Unohtui viime kerralla... Skriptin ajaminen edellyttää

Lisätiedot

4. Kyselyjen käsittely ja optimointi

4. Kyselyjen käsittely ja optimointi Tietokannan hallinta 1 4. Kyselyjen käsittely ja optimointi Tietokannan hallinta 2 4. Kyselyjen käsittely ja optimointi 4. Kyselyjen käsittely ja optimointi (E&N, Ch. 18) - taustana mm. relaatioalgebra

Lisätiedot