1 Erilaisia tapoja järjestää

Koko: px
Aloita esitys sivulta:

Download "1 Erilaisia tapoja järjestää"

Transkriptio

1 TIE Tietorakenteet ja algoritmit 1 1 Erilaisia tapoja järjestää Käsitellään seuraavaksi järjestämisalgoritmeja, jotka perustuvat muihin kuin vertailuun alkioiden oikean järjestyksen saamiseksi. Lisäksi tutkitaan vertailuun perustuvien algoritmien parasta mahdollista tehokkuutta. Lopuksi mietitään hieman algoritmin valintaan vaikuttavia tekijöitä.

2 TIE Tietorakenteet ja algoritmit Muita järjestämisalgoritmeja Kaikki tähän mennessä käsitellyt järjestämisalgoritmit perustuvat vertailemiseen. Ne hankkivat tietoa oikeasta järjestyksestä vain vertaamalla alkioita keskenään. Järjestämisen apuna on kuitenkin toisinaan mahdollista käyttää muutakin informaatiota kuin vertailun tuottamaa.

3 TIE Tietorakenteet ja algoritmit 3 Järjestäminen laskemalla Oletetaan, että alkioiden avainten arvoalue on pieni, enintään alkioiden määrän suuruusluokkaa. Yksinkertaisuuden vuoksi oletamme, että järjestettävien alkioiden avaimet ovat peräisin joukosta {1, 2,..., k}, ja k = O(n). Kullekin avaimelle lasketaan, kuinka monella alkiolla on kyseinen avain. Tuloksen perusteella siirretään alkiot suoraan lopullisille paikoilleen.

4 TIE Tietorakenteet ja algoritmit 4 COUNTING-SORT(A, B, k) 1 for i := 1 to k do 2 C[ i ] := 0 (alustetaan aputaulukko C nollilla) 3 for j := 1 to A.length do 4 C[ A[ j ].key ] := C[ A[ j ].key ] + 1 (lasketaan monenko alkion avain = i) 5 for i := 2 to k do 6 C[ i ] := C[ i ] + C[ i 1 ] (lasketaan monenko alkion avain i) 7 for j := A.length downto 1 do (käydään taulukko läpi lopusta alkuun) 8 B[ C[ A[ j ].key ] ] := A[ j ] (sijoitetaan alkio paikalleen tulostaulukkoon) 9 C[ A[ j ].key ] := C[ A[ j ].key ] 1(seuraava oikea paikka on pykälän vasemmalla) Algoritmi asettelee alkiot oikeille paikoilleen käänteisessä järjestyksessä vakauden varmistamiseksi.

5 TIE Tietorakenteet ja algoritmit 5 Suoritusaika: Ensimmäinen ja kolmas for-silmukka kuluttavat aikaa Θ(k). Toinen ja viimeinen for-silmukka kuluttavat aikaa Θ(n). Ajoaika on Θ(n + k). Jos k = O(n), ajoaika on Θ(n). Kaikki perusoperaatiot ovat yksinkertaisia, ja niitä on kussakin silmukassa vähän, joten ajoajan vakiokerroin on pieni. COUNTING-SORTIA ei kannata käyttää, jos k n. Algoritmin muistinkulutus on Θ(k). Tavallisesti k n. esimerkiksi: kaikki mahdolliset henkilötunnukset TTY:n henkilökunnan henkilötunnukset

6 TIE Tietorakenteet ja algoritmit 6 Toisinaan on tarvetta järjestää moniosaisen avaimen mukaan. tenttituloslista ensin osastoittain, sitten nimen mukaan aakkosjärjestyksessä päiväykset ensin vuoden, sitten kuukauden ja sitten päivän mukaan korttipakka ensin maan, sitten numeron mukaan Eriarvoiset kriteerit otetaan huomioon seuraavasti: Eniten merkitsevä kriteeri, jonka mukaan alkiot ovat erilaiset, ratkaisee vertailun tuloksen. Jos alkiot ovat kaikkien kriteerien mukaan yhtä suuret, ne katsotaan kokonaan yhtä suuriksi.

7 TIE Tietorakenteet ja algoritmit 7 Ongelma voidaan ratkaista vertailuun perustuvan algoritmin avulla (esim. QUICKSORT käyttämällä tilanteeseen sopivaa vertailufunktiota.) esimerkki: päiväysten vertailu DATE-COMPARE(x, y) 1 if x.year < y.year then return smaller 2 if x.year > y.year then return greater 3 if x.month < y.month then return smaller 4 if x.month > y.month then return greater 5 if x.day < y.day then return smaller 6 if x.day > y.day then return greater 7 return equal Toisinaan on kuitenkin tarkoituksenmukaista käsitellä aineisto kriteeri kerrallaan. Esimerkiksi korttipakka on helpointa lajitella ensin neljäksi kasaksi maittain, ja sitten jokainen kasa erikseen.

8 TIE Tietorakenteet ja algoritmit 8 Tällöin merkitsevien kriteerien arvoalue on usein pieni verrattuna alkioiden määrään, ja COUNTING-SORT on käyttökelpoinen. Moniosaisen avaimen mukaan järjestämiseen on kaksi erilaista algoritmia. LSD-RADIX-SORT järjestetään taulukko ensin vähiten merkitsevän numeron mukaan, sitten seuraavaksi vähiten merkitsevän mukaan jne. vaatii vakaan järjestelyalgoritmin - muutenhan taulukko olisi lopuksi järjestyksessä ainoastaan eniten merkitsevän kriteerin mukaan sopiva järjestysalgoritmi on COUNTING-SORT vertailuun perustuvia algoritmeja ei kannata käyttää, koska ne järjestäisivät taulukon suunnilleen samalla vaivalla kaikkien kriteerien mukaan kerralla

9 TIE Tietorakenteet ja algoritmit 9 LSD-RADIX-SORT(A, d) 1 for i := 1 to d do (käydään kriteerit läpi vähiten merkitsevästä lähtien) 2 järjestä A jollain vakaalla järjestämisalgoritmilla kriteerin i mukaan

10 TIE Tietorakenteet ja algoritmit 10 MSD-RADIX-SORT järjestetään taulukko ensin eniten merkitsevän numeron mukaan, ja samanarvoisten alkioiden osataulukot tarvittaessa seuraavaksi merkitsevän numeron mukaan jne. ei vaadi järjestysalgoritmilta vakautta käyttökelpoinen esimerkiksi mahdollisesti erimittaisia merkkijonoja järjestettäessä tarkastaa kriteerejä ainoastaan siihen asti kun järjestämisen vuoksi on tarpeen LSD-RADIX-SORTIA monimutkaisempi toteuttaa emme esitä sille algoritmia tässä

11 TIE Tietorakenteet ja algoritmit 11 RADIX-SORTIN ajankulutus, kun apuna on COUNTING-SORT: järjestäminen yhden kriteerin mukaan: Θ(n + k) kriteerejä on kaikkiaan d kpl kokonaisaika Θ(dn + dk) k on yleensä vakio kokonaisaika Θ(dn), tai Θ(n), jos d:kin vakio RADIX-SORT näyttäisi siis tietyin edellytyksin olevan O(n) järjestämisalgoritmi. Onko se yleisessä tapauksessa vertailuun perustuvia algoritmeja parempi?

12 TIE Tietorakenteet ja algoritmit 12 Järjestämisalgoritmin suorituskykyä tarkasteltaessa on järkevää olettaa, että kaikki (tai ainakin useimmat) alkiot ovat erisuuria. Esimerkiksi INSERTION-SORT on O(n), jos kaikki alkiot ovat saman suuruisia. Jos kaikki alkiot ovat erisuuria, ja yhden kriteerin arvoalueen koko on vakio k, niin k d n d log k n = Θ(lg n) RADIX-SORT on Θ(dn) = Θ(n lg n), jos oletetaan, että alkiot ovat enimmäkseen eri suuria. RADIX-SORT on asymptoottisesti yhtä hidas kuin muutkin hyvät järjestämisalgoritmit. Jos oletetaan vakio d, niin RADIX-SORT on Θ(n), mutta silloin isoilla n:n arvoilla useimmat alkiot ovat samoja.

13 TIE Tietorakenteet ja algoritmit 13 RADIX-SORTIN etuja ja haittoja Etuja: RADIX-SORT on nopeutensa puolesta kilpailukykyinen esimerkiksi QUICKSORTIN kanssa jos avaimet ovat esimerkiksi 32-bittisiä lukuja, ja taulukko järjestetään 8 bitin mukaan kerrallaan k = 2 8 ja d = 4 COUNTING-SORTia kutsutaan neljästi RADIX-SORT sopii hyvin moniosaisen avaimen mukaan järjestämiseen, kun avaimen osilla on pieni arvoalue. esim. tekstitiedoston järjestäminen annetuilla sarakkeilla olevien merkkien mukaan (vrt. Unix tai MS/DOS sort) Haittoja: COUNTING-SORT tarvitsee toisen n:n mittaisen taulukon B, johon se rakentaa lopputuloksensa sekä k:n kokoisen aputaulukon. Sen apumuistin tarve on siis Θ(n), eli merkittävästi suurempi kuin esimerkiksi QUICKSORTilla ja HEAPSORTilla.

14 TIE Tietorakenteet ja algoritmit 14 Bucket sort Oletetaan, että avaimet kuuluvat tunnetulle välille, ja avainten arvot ovat jakautuneet tasan. Jokainen avaimen arvo yhtä todennäköinen. Esimerkin vuoksi oletamme, että avainten arvot sijoittuvat nollan ja ykkösen välille. Otetaan käyttöön n ämpäriä (bucket) B[ 0 ]... B[ n 1 ]. BUCKET-SORT(A) 1 n := A.length 2 for i := 1 to n do (käydään kaikki alkiot läpi) 3 INSERT(B[ n A[i] ], A[i]) (heitetään alkio oikeaan ämpäriin) 4 k := 1 (aloitetaan taulukon täyttäminen kohdasta 1) 5 for i := 0 to n 1 do (käydään ämpärit läpi) 6 while B[ i ] ei ole tyhjä do (tyhjennetään epätyhjät ämpärit...) 7 A[ k ] := EXTRACT-MIN(B[ i ]) (... siirtämällä alkiot pienimmästä alkaen...) 8 k := k + 1 (... oikeaan kohtaan tulostaulukkoa)

15 TIE Tietorakenteet ja algoritmit 15 Ämpäreiden toteutus: Tarvitaan operaatiot INSERT ja EXTRACT-MIN. Ämpäri on itse asiassa prioriteettijono. Ämpärien koko vaihtelee suuresti. yleensä ämpärin alkioiden määrä 1 kuitenkin jopa kaikki alkiot voivat joutua samaan ämpäriin kekoon perustuvan toteutuksen tulisi varata muistia Θ(n) jokaiselle ämpärille, yhteensä Θ(n 2 ) Toisaalta toteutuksen ei tarvitse olla kovin nopea suurille ämpäreille, koska niitä syntyy harvoin. Käytännössä ämpärit kannattaa toteuttaa listoina. INSERT linkittää tulevan alkion oikealle paikalleen listaan, aikaa kuluu Θ(listan pituus) EXTRACT-MIN poistaa ja palauttaa listan ensimmäisen, aikaa kuluu Θ(1)

16 TIE Tietorakenteet ja algoritmit 16 BUCKET-SORTIN keskimääräinen suorituskyky: Oletimme, että avainten arvot ovat jakautuneet tasan. Yhteen ämpäriin tulee siis keskimäärin yksi alkio, ja hyvin harvoin paljoa enempää. Ensimmäinen for-silmukka käy kaikki alkiot läpi, Θ(n). Toinen for-silmukka käy kaikki ämpärit läpi, Θ(n). while-silmukka käy kaikilla kierroksillaan yhteensä kaikki alkiot läpi kerran, Θ(n). INSERT on keskimäärin vakioaikainen, koska ämpärissä on keskimäärin yksi alkio. EXTRACT-MIN on vakioaikainen. Kokonaisaika on keskimäärin Θ(n). Hitaimmassa tapauksessa kaikki alkiot joutuvat samaan ämpäriin ja tulevat suuruusjärjestyksessä. INSERT kuluttaa lineaarisesti aikaa Kokonaisaika on pahimmillaan Θ(n 2 ).

17 TIE Tietorakenteet ja algoritmit Kuinka nopeasti voi järjestää? Taulukon järjestäminen itse asiassa tuottaa sen permutaation, joka tekee alkuperäisestä taulukosta täysin järjestetyn taulukon. Jos taulukon kaikki alkiot ovat erisuuret, ko. permutaatio on yksikäsitteinen. Järjestäminen vastaa kyseisen permutaation etsintää kaikkien mahdollisten permutaatioiden joukosta Esimerkiksi INSERTION-SORT, MERGE-SORT, HEAPSORT ja QUICKSORT perustuvat vertailemiseen. Ne hankkivat tietoa oikeasta permutaatiosta vain vertaamalla alkioita keskenään. Mikä on pienin määrä vertailuja, joka riittää takaamaan oikean permutaation löytymisen?

18 TIE Tietorakenteet ja algoritmit 18 n:n erisuuren alkion taulukolla on n eli n! permutaatiota. Vertailuja on suoritettava niin monta, että ainut oikea vaihtoehto tulee poimituksi niiden joukosta. Jokainen vertailu A[ i ] A[ j ] (tai A[ i ] < A[ j ]) jakaa permutaatiot kahteen ryhmään: ne, joissa A[ i ]:n ja A[ j ]:n keskinäinen järjestys on vaihdettava, ja ne, joissa ei ole, joten... yksi vertailu riittää poimimaan ainoan oikean vaihtoehdon enintään kahdesta kaksi vertailua riittää poimimaan ainoan oikean vaihtoehdon enintään neljästä... k vertailua riittää poimimaan ainoan oikean vaihtoehdon enintään 2 k :stä oikean poimimiseen x:stä vaihtoehdosta tarvitaan ainakin lg x vertailua

19 TIE Tietorakenteet ja algoritmit 19 Jos taulukon koko on n, niin permutaatiota on n! Vertailuja on suoritettava ainakin lg n! kappaletta. vertailemiseen perustuva järjestämisalgoritmi joutuu käyttämään Ω( lg n! ) aikaa. Paljonko on lg n!? lg n! lg n! = n k=1 lg k n k= n 2 lg n 2 n 2 lg n 2 = 1 2 n lg n 1 2 n = Ω(n lg n) Ω(n) = Ω(n lg n) toisaalta lg n! < n lg n + 1 = O(n lg n) lg n! = Θ(n lg n)

20 TIE Tietorakenteet ja algoritmit 20 Jokainen vertailemiseen perustuva järjestämisalgoritmi joutuu siis käyttämään hitaimmassa tapauksessa Ω(n lg n) aikaa. Toisaalta HEAPSORT ja MERGE-SORT ovat hitaimmassakin tapauksessa O(n lg n). Vertailemiseen perustuva järjestäminen on mahdollista hitaimmassa tapauksessa ajassa Θ(n lg n), mutta ei yhtään nopeammin. HEAPSORT ja MERGE-SORT ovat hitaimman tapauksen ajan kulutukseltaan asymptoottisesti optimaalisia. Järjestäminen on aidosti asymptoottisesti työläämpää kuin esim. mediaanin etsintä, joka onnistuu hitaimmassakin tapauksessa ajassa O(n).

21 TIE Tietorakenteet ja algoritmit Algoritmin valinta Merkittävin algoritmin valintaan vaikuttava tekijä on yleensä sen suorituskyky käyttötilanteessa. Muitakin perusteita kuitenkin on: toteutuksen helppous onko valmiina saatavilla sopivaa algoritmia? onko tehokkuuden parannuksesta saatava lisähyöty monimutkaisemman algoritmin toteuttamisen tuottavan lisätyön arvoinen? yksinkertaiseen koodiin ei ehkä jää yhtä helposti virheitä yksinkertaista ratkaisua on helpompi ylläpitää tulosten tarkkuus liukuluvuilla laskettaessa pyöristysvirheiden kertyminen saattaa olla merkittävä ongelma suoritusajan vaihtelu esim. usein signaalinkäsittelyssä suoritusaika ei saa vaihdella yhtään

22 TIE Tietorakenteet ja algoritmit 22 Myös ohjelmointiympäristö saattaa asettaa rajoituksia: monet kielet vaativat, että taulukoille määritellään maksimikoko taulukoihin perustuville algoritmeille tulee käännösaikainen, keinotekoinen yläraja listarakenteilla saadaan algoritmi toimimaan niin kauan, kuin koneessa riittää muistia listarakenteilla muisti voi loppua yllättäen, kiinteillä taulukoilla ei listarakenteet eivät aina sopivia esim. sulautettuihin sovelluksiin joissakin koneissa rekursiolle varattu muistitila on paljon pienempi kuin muu datatila jos muistia kulutetaan paljon, on valittava ei-rekursiivinen algoritmi (tai toteutus)

23 TIE Tietorakenteet ja algoritmit 23 Mikäli suorituskykyä päätetään pitää primäärisenä valintaperusteena, kannattaa pohtia ainakin seuraavia asioita: Onko syöteaineisto niin iso, että asymptoottinen tehokkuus antaa oikean kuvan suorituskyvystä? Saako hitain tapaus olla hidas, jos keskimääräinen suorituskyky on hyvä? Onko muistin käyttö olennainen tekijä? Onko syöteaineistossa säännöllisyyttä, jota voidaan käyttää hyväksi yhdellä ajokerralla? usealla ajokerralla? Onko syöteaineistossa säännöllisyyttä, joka aiheuttaa huonoimman tapauksen realisoitumisen usein jollakin algoritmilla?

24 TIE Tietorakenteet ja algoritmit 24 Esimerkki: yhteystiedot operaatiot tilaajan numeron kysely nimen perusteella uuden tilaajan liittäminen luetteloon vanhan tilaajan poisto oletuksia lisäyksiä ja poistoja tarvitaan harvoin kyselyjä tarvitaan usein lisäykset ja poistot tulevat ryhminä

25 TIE Tietorakenteet ja algoritmit yritelmä: järjestämätön taulukko Virtanen Järvinen Lahtinen n Lisätään uudet tilaajat loppuun: O(1). Etsitään selaamalla alusta (tai lopusta): O(n). Poistetaan siirtämällä viimeinen alkio poistettavan päälle: O(1) + etsintäkulut = O(n). Ratkaisu ei ole hyvä, koska usein tarvittavat operaatiot ovat hitaita.

26 TIE Tietorakenteet ja algoritmit yritelmä: järjestetty taulukko, 1. versio Lisätään uudet tilaajat suoraan järjestyksen mukaiseen paikkaan, ja siirretään loppuja alkioita taaksepäin: O(n). Poistetaan siirtämällä loppuja alkioita eteenpäin O(n). Käytetään etsinnässä puolitushakua: O(lgn). Nyt usein käytetty etsintä on tehokas, mutta poisto on edelleen hidas, samoin lisäys. Ratkaisu vaikuttaa kuitenkin paremmalta kuin ensimmäinen yritelmä, mikäli alkuperäinen oletuksemme siitä, että hakuja tapahtuu selvästi useammin kuin lisäyksiä ja poistoja, pitää paikkansa.

27 TIE Tietorakenteet ja algoritmit yritelmä: melkein järjestetty taulukko Pidetään suurin osa taulukosta järjestettynä, lopussa pieni järjestämätön alue (koko l). vertaa puhelinluettelo + lisälehdet Lisäykset tehdään loppualueelle: O(1). Etsintä tapahtuu ensin puolitushaulla järjestyksessä olevasta alkuosasta ja tarvittaessa selaamalla loppuosasta: O(lg n) + O(l). Poisto suoritetaan jättämällä nimi paikalleen ja asettamalla numeroksi 0: O(1) + etsintäkulut = O(lg n) + O(l). Kun loppualue on kasvanut liian suureksi, järjestetään koko taulukko: Θ(n lg n). Kohtalainen ratkaisu, mutta Θ(l) voi olla iso ajoittainen järjestäminen maksaa

28 TIE Tietorakenteet ja algoritmit yritelmä: järjestetty taulukko, 2. versio Hyödynnetään tietoa siitä, että poistot ja lisäykset tulevat ryhminä. Järjestetään lisättävien ja poistettavien ryhmät. Lomitetaan (samaan tapaan kuin MERGE) taulukko ja lisättävien ryhmä siten, että samalla poistetaan poistettavien ryhmään kuuluvat. Nyt haku on edelleen logaritmista. Lisäys- ja poistotoimenpide kuluttaa aikaa O(l lg l) + O(p lg p) + O(n), kun l on lisättävien määrä ja p poistettavien määrä. Melko hyvä ratkaisu! Lisäksi ongelman voisi ratkaista myöhemmin kurssilla käsiteltävien dynaamisen joukon tietorakenteiden tai C++:n Standardikirjaston säiliöiden avulla.

9 Erilaisia tapoja järjestää

9 Erilaisia tapoja järjestää TIE-20100 Tietorakenteet ja algoritmit 198 9 Erilaisia tapoja järjestää Käsitellään seuraavaksi järjestämisalgoritmeja, jotka perustuvat muihin kuin vertailuun alkioiden oikean järjestyksen saamiseksi.

Lisätiedot

Tämä on helpompi ymmärtää, kun tulkitaan keko täydellisesti tasapainotetuksi binääripuuksi, jonka juuri on talletettu taulukon paikkaan

Tämä on helpompi ymmärtää, kun tulkitaan keko täydellisesti tasapainotetuksi binääripuuksi, jonka juuri on talletettu taulukon paikkaan TIE-20100 Tietorakenteet ja algoritmit 178 Keko Taulukko A[1... n] on keko, jos A[i] A[2i] ja A[i] A[2i + 1] aina kun 1 i n 2 (ja 2i + 1 n). Tämä on helpompi ymmärtää, kun tulkitaan keko täydellisesti

Lisätiedot

4 Tehokkuus ja algoritmien suunnittelu

4 Tehokkuus ja algoritmien suunnittelu TIE-20100 Tietorakenteet ja algoritmit 52 4 Tehokkuus ja algoritmien suunnittelu Tässä luvussa pohditaan tehokkuuden käsitettä ja esitellään kurssilla käytetty kertaluokkanotaatio, jolla kuvataan algoritmin

Lisätiedot

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:

Lisätiedot

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n)) Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia

Lisätiedot

Tiraka, yhteenveto tenttiinlukua varten

Tiraka, yhteenveto tenttiinlukua varten Tiraka, yhteenveto tenttiinlukua varten TERMEJÄ Tietorakenne Tietorakenne on tapa tallettaa tietoa niin, että tietoa voidaan lisätä, poistaa, muokata ja hakea. Tietorakenteet siis säilövät tiedon niin,

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

5 Kertaluokkamerkinnät

5 Kertaluokkamerkinnät TIE-20100 Tietorakenteet ja algoritmit 75 5 Kertaluokkamerkinnät Tässä luvussa käsitellään asymptoottisessa analyysissa käytettyjä matemaattisia merkintätapoja Määritellään tarkemmin Θ, sekä kaksi muuta

Lisätiedot

9.3 Algoritmin valinta

9.3 Algoritmin valinta TIE-20100 Tietorakenteet ja algoritmit 218 9.3 Algoritmin valinta Merkittävin algoritmin valintaan vaikuttava tekijä on yleensä sen suorituskyky käyttötilanteessa. Muitakin perusteita kuitenkin on: toteutuksen

Lisätiedot

1 Puu, Keko ja Prioriteettijono

1 Puu, Keko ja Prioriteettijono TIE-20100 Tietorakenteet ja algoritmit 1 1 Puu, Keko ja Prioriteettijono Tässä luvussa käsitellään algoritmien suunnitteluperiaatetta muunna ja hallitse (transform and conquer) Lisäksi esitellään binääripuun

Lisätiedot

Algoritmit 1. Luento 12 Ti Timo Männikkö

Algoritmit 1. Luento 12 Ti Timo Männikkö Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit

Lisätiedot

Algoritmit 1. Luento 12 Ke Timo Männikkö

Algoritmit 1. Luento 12 Ke Timo Männikkö Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu

Lisätiedot

8. Lajittelu, joukot ja valinta

8. Lajittelu, joukot ja valinta 8. Lajittelu, joukot ja valinta Yksi tietojenkäsittelyn klassisista tehtävistä on lajittelu (järjestäminen) (sorting) jo mekaanisten tietojenkäsittelylaitteiden ajalta. Lajiteltua tietoa tarvitaan lukemattomissa

Lisätiedot

Algoritmit 2. Luento 2 Ke Timo Männikkö

Algoritmit 2. Luento 2 Ke Timo Männikkö Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento

Lisätiedot

Algoritmit 1. Luento 10 Ke Timo Männikkö

Algoritmit 1. Luento 10 Ke Timo Männikkö Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot

Lisätiedot

Algoritmit 2. Luento 2 To Timo Männikkö

Algoritmit 2. Luento 2 To Timo Männikkö Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento

Lisätiedot

Algoritmit 1. Luento 3 Ti Timo Männikkö

Algoritmit 1. Luento 3 Ti Timo Männikkö Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 20.3.2018 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2018 Luento 3 Ti 20.3.2018

Lisätiedot

Algoritmit 1. Luento 11 Ti Timo Männikkö

Algoritmit 1. Luento 11 Ti Timo Männikkö Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja

811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja 811312A Tietorakenteet ja algoritmit, 2015-2016 VI Algoritmien suunnitteluparadigmoja Sisältö 1. Hajota ja hallitse-menetelmä 2. Dynaaminen taulukointi 3. Ahneet algoritmit 4. Peruuttavat algoritmit 811312A

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu 811312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 3, Ratkaisu Harjoituksessa käsitellään algoritmien aikakompleksisuutta. Tehtävä 3.1 Kuvitteelliset algoritmit A ja B lajittelevat syötteenään

Lisätiedot

811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista

811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista 811312A Tietorakenteet ja algoritmit 2016-2017 III Lajittelualgoritmeista Sisältö 1. Johdanto 2. Pikalajittelu 3. Kekolajittelu 4. Lajittelualgoritmien suorituskyvyn rajoista 811312A TRA, Lajittelualgoritmeista

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT ALGORITMIEN ANALYYSISTÄ 1.ratkaisu Laskentaaika hakkeri - optimoitu ALGORITMIANALYYSIÄ hyvä algoritmi hakkeri -optimoitu hyvä algoritmi Tehtävän koko Kuva mukailtu

Lisätiedot

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu

Lisätiedot

Algoritmit 2. Luento 1 Ti Timo Männikkö

Algoritmit 2. Luento 1 Ti Timo Männikkö Algoritmit 2 Luento 1 Ti 14.3.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin valinta Algoritmin analysointi Algoritmin suoritusaika Peruskertaluokkia Kertaluokkamerkinnät Kertaluokkien ominaisuuksia

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

Algoritmit 2. Demot Timo Männikkö

Algoritmit 2. Demot Timo Männikkö Algoritmit 2 Demot 1 27.-28.3.2019 Timo Männikkö Tehtävä 1 (a) 4n 2 + n + 4 = O(n 2 ) c, n 0 > 0 : 0 4n 2 + n + 4 cn 2 n n 0 Vasen aina tosi Oikea tosi, jos (c 4)n 2 n 4 0, joten oltava c > 4 Kokeillaan

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

TIE Tietorakenteet ja algoritmit 25

TIE Tietorakenteet ja algoritmit 25 TIE-20100 Tietorakenteet ja algoritmit 25 Tällä kurssilla keskitytään algoritmien ideoihin ja algoritmit esitetään useimmiten pseudokoodina ilman laillisuustarkistuksia, virheiden käsittelyä yms. Otetaan

Lisätiedot

Lähteet. OHJ-2010 TIETORAKENTEIDEN KÄYTTÖ lukuvuosi 2012-2013 Terhi Kilamo

Lähteet. OHJ-2010 TIETORAKENTEIDEN KÄYTTÖ lukuvuosi 2012-2013 Terhi Kilamo OHJ-2010 Tietorakenteiden käyttö 1 OHJ-2010 TIETORAKENTEIDEN KÄYTTÖ lukuvuosi 2012-2013 Terhi Kilamo OHJ-2010 Tietorakenteiden käyttö 2 Lähteet Luentomoniste pohjautuu vahvasti Antti Valmarin luentomonisteeseen

Lisätiedot

Algoritmit 1. Luento 5 Ti Timo Männikkö

Algoritmit 1. Luento 5 Ti Timo Männikkö Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti

Lisätiedot

Tutkimusmenetelmät-kurssi, s-2004

Tutkimusmenetelmät-kurssi, s-2004 Algoritmitutkimuksen menetelmistä Tutkimusmenetelmät-kurssi, s-2004 Pekka Kilpeläinen Kuopion yliopisto Tietojenkäsittelytieteen laitos Algoritmitutkimuksen menetelmistä p.1/20 Sisällys Tänään Tietojenkäsittelytiede

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 1. Lisäysjärjestämisessä järjestetään ensin taulukon kaksi ensimmäistä lukua, sitten kolme ensimmäistä lukua, sitten neljä ensimmäistä

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen

Lisätiedot

TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen)

TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen) TKT0001 Tietorakenteet ja algoritmit Erilliskoe 5.1.01, malliratkaisut (Jyrki Kivinen) 1. [1 pistettä] (a) Esitä algoritmi, joka poistaa kahteen suuntaan linkitetystä järjestämättömästä tunnussolmullisesta

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PUURAKENTEET, BINÄÄRIPUU, TASAPAINOTETUT PUUT MIKÄ ON PUUTIETORAKENNE? Esim. Viereinen kuva esittää erästä puuta. Tietojenkäsittelytieteessä puut kasvavat alaspäin.

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

Algoritmit 2. Luento 8 To Timo Männikkö

Algoritmit 2. Luento 8 To Timo Männikkö Algoritmit 2 Luento 8 To 4.4.2019 Timo Männikkö Luento 8 Algoritmien analysointi Algoritmien suunnittelu Rekursio Osittaminen Rekursioyhtälöt Rekursioyhtälön ratkaiseminen Master-lause Algoritmit 2 Kevät

Lisätiedot

1.1 Tavallinen binäärihakupuu

1.1 Tavallinen binäärihakupuu TIE-20100 Tietorakenteet ja algoritmit 1 1 Puurakenteet http://imgur.com/l77fy5x Tässä luvussa käsitellään erilaisia yleisiä puurakenteita. ensin käsitellään tavallinen binäärihakupuu sitten tutustutaan

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 31.1.-1.2.2018 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka tutkii onko kokonaisluku tasan jaollinen jollain toisella kokonaisluvulla siten, että ei käytetä lainkaan jakolaskuja Jaettava

Lisätiedot

Algoritmi on periaatteellisella tasolla seuraava:

Algoritmi on periaatteellisella tasolla seuraava: Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2018-2019 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen

Lisätiedot

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit

Lisätiedot

Luku 3. Listankäsittelyä. 3.1 Listat

Luku 3. Listankäsittelyä. 3.1 Listat Luku 3 Listankäsittelyä Funktio-ohjelmoinnin tärkein yksittäinen tietorakenne on lista. Listankäsittely on paitsi käytännöllisesti oleellinen aihe, se myös valaisee funktio-ohjelmoinnin ideaa. 3.1 Listat

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

Algoritmit 2. Luento 14 Ke Timo Männikkö

Algoritmit 2. Luento 14 Ke Timo Männikkö Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan

Lisätiedot

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return

Lisätiedot

A TIETORAKENTEET JA ALGORITMIT

A TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT LISÄÄ JÄRJESTÄMISESTÄ JÄRJESTÄMISEN TEORIAA Inversio taulukossa a[] on lukupari (a[i],a[j]) siten, että i < j mutta a[i] > a[j] Esimerkki Taulukko a[] = [2, 4, 1, 3]

Lisätiedot

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Matti Nykänen 5. joulukuuta 2003 1 Satelliitit Muunnetaan luennoilla luonnosteltua toteutusta seuraavaksi: Korvataan puusolmun p kentät p. key ja

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2 Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,

Lisätiedot

811312A Tietorakenteet ja algoritmit II Perustietorakenteet

811312A Tietorakenteet ja algoritmit II Perustietorakenteet 811312A Tietorakenteet ja algoritmit 2017-2018 II Perustietorakenteet Sisältö 1. Johdanto 2. Pino 3. Jono 4. Lista 811312A TRA, Perustietorakenteet 2 II.1. Johdanto Tietorakenne on tapa, jolla algoritmi

Lisätiedot

A TIETORAKENTEET JA ALGORITMIT

A TIETORAKENTEET JA ALGORITMIT A274105 TIETORAKENTEET JA ALGORITMIT HARJOITUSTEHTÄVÄT 6 DEADLINE 1.4.2009 KLO 9:00 Kynätehtävät tehdään kirjallisesti ja esitetään harjoituksissa. Välivaiheet näkyviin! Ohjelmointitehtävät sähköisesti

Lisätiedot

useampi ns. avain (tai vertailuavain) esim. opiskelijaa kuvaavassa alkiossa vaikkapa opintopistemäärä tai opiskelijanumero

useampi ns. avain (tai vertailuavain) esim. opiskelijaa kuvaavassa alkiossa vaikkapa opintopistemäärä tai opiskelijanumero Alkioiden avaimet Usein tietoalkioille on mielekästä määrittää yksi tai useampi ns. avain (tai vertailuavain) esim. opiskelijaa kuvaavassa alkiossa vaikkapa opintopistemäärä tai opiskelijanumero 80 op

Lisätiedot

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan

Lisätiedot

1. Algoritmi 1.1 Sisällys Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. Muuttujat ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] = = T [i + 1] 4 return True 5

Lisätiedot

TAMPEREEN TEKNILLINEN YLIOPISTO

TAMPEREEN TEKNILLINEN YLIOPISTO TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja Tietokonetekniikan laitos TKT-3200 Tietokonetekniikka ASSEMBLER: QSORT 11.08.2010 Ryhmä 00 nimi1 email1 opnro1 nimi2 email2 opnro2 nimi3 email3 opnro3 1. TEHTÄVÄ

Lisätiedot

811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu

811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu 811312A Tietorakenteet ja algoritmit 2017-2018, Harjoitus 2 ratkaisu Harjoituksen aiheena on algoritmien oikeellisuus. Tehtävä 2.1 Kahvipurkkiongelma. Kahvipurkissa P on valkoisia ja mustia kahvipapuja,

Lisätiedot

etunimi, sukunimi ja opiskelijanumero ja näillä

etunimi, sukunimi ja opiskelijanumero ja näillä Sisällys 1. Algoritmi Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.1 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu 81112A Tietoraketeet ja algoritmit, 217-218, Harjoitus 4, Ratkaisu Harjoitukse aiheita ovat algoritmie aikakompleksisuus ja lajittelualgoritmit Tehtävä 4.1 Selvitä seuraavie rekursioyhtälöide ratkaisuje

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 2 7.-8.2.2018 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: etsipienin(t, n) { pnn = t[0]; for (i = 1; i < n; i++) { pnn = min(pnn, t[i]); return pnn; Silmukka suoritetaan

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Algoritmit 2. Demot Timo Männikkö

Algoritmit 2. Demot Timo Männikkö Algoritmit 2 Demot 4 24.-25.4.2019 Timo Männikkö Tehtävä 1 (a) int laske(n) { if (n

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto 811312A Tietorakenteet ja algoritmit 2015-2016 I Johdanto Sisältö 1. Algoritmeista ja tietorakenteista 2. Algoritmien analyysistä 811312A TRA, Johdanto 2 I.1. Algoritmeista ja tietorakenteista I.1.1. Algoritmien

Lisätiedot

4. Algoritmien tehokkuus

4. Algoritmien tehokkuus 4. Algoritmien tehokkuus (Harel luku 6) vastaa jo minulle! [Psalmi 69:18] Kuinka paljon suoritusaikaa tai -tilaa algoritmin suoritus vaatii? Keskitymme lähinnä aikavaativuuden tarkasteluun. Myös algoritmien

Lisätiedot

Algoritmianalyysin perusteet

Algoritmianalyysin perusteet Tietorakenteet ja algoritmit Algoritmianalyysin perusteet Ari Korhonen 1 5. ALGORITMIANALYYSI 5.1 Johdanto 5.2 Tavoitteet 5.3 Algoritmien luokittelu 5.4 Kertaluokkamerkinnät (Big Oh Notation) 5.5 Kertaluokkamerkinnöillä

Lisätiedot

4. Joukkojen käsittely

4. Joukkojen käsittely 4 Joukkojen käsittely Tämän luvun jälkeen opiskelija osaa soveltaa lomittuvien kasojen operaatioita tuntee lomittuvien kasojen toteutuksen binomi- ja Fibonacci-kasoina sekä näiden totetutusten analyysiperiaatteet

Lisätiedot

1.4 Funktioiden kertaluokat

1.4 Funktioiden kertaluokat 1.4 Funktioiden kertaluokat f on kertaluokkaa O(g), merk. f = O(g), jos joillain c > 0, m N pätee f(n) cg(n) aina kun n m f on samaa kertaluokkaa kuin g, merk. f = Θ(g), jos joillain a, b > 0, m N pätee

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 2 1.-2.2.2017 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: laskesumma(t, n) sum = t[0]; for (i = 1; i < n; i++) sum = sum + t[i]; return sum; Silmukka suoritetaan n 1 kertaa

Lisätiedot

10. Painotetut graafit

10. Painotetut graafit 10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 25.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 25.2.2009 1 / 34 Syötteessä useita lukuja samalla rivillä Seuraavassa esimerkissä käyttäjä antaa useita lukuja samalla

Lisätiedot

Tietorakenteet, laskuharjoitus 7, ratkaisuja

Tietorakenteet, laskuharjoitus 7, ratkaisuja Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9

Lisätiedot

On annettu jono lukuja tai muita alkioita, joiden välille on määritelty suuruusjärjestys. Tehtävänä on saattaa alkiot suuruusjärjestykseen.

On annettu jono lukuja tai muita alkioita, joiden välille on määritelty suuruusjärjestys. Tehtävänä on saattaa alkiot suuruusjärjestykseen. 6. Järjestäminen On annettu jono lukuja tai muita alkioita, joiden välille on määritelty suuruusjärjestys. Tehtävänä on saattaa alkiot suuruusjärjestykseen. Tämä on eräs klassisimpia tietojenkäsittelyongelmia,

Lisätiedot

7.4 Sormenjälkitekniikka

7.4 Sormenjälkitekniikka 7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan

Lisätiedot

Ehto- ja toistolauseet

Ehto- ja toistolauseet Ehto- ja toistolauseet 1 Ehto- ja toistolauseet Uutena asiana opetellaan ohjelmointilauseet / rakenteet, jotka mahdollistavat: Päätösten tekemisen ohjelman suorituksen aikana (esim. kyllä/ei) Samoja lauseiden

Lisätiedot

LOAD R1, =2 Sijoitetaan rekisteriin R1 arvo 2. LOAD R1, 100

LOAD R1, =2 Sijoitetaan rekisteriin R1 arvo 2. LOAD R1, 100 Tiedonsiirtokäskyt LOAD LOAD-käsky toimii jälkimmäisestä operandista ensimmäiseen. Ensimmäisen operandin pitää olla rekisteri, toinen voi olla rekisteri, vakio tai muistiosoite (myös muuttujat ovat muistiosoitteita).

Lisätiedot

Tietorakenteet ja algoritmit. Järjestäminen. Ari Korhonen

Tietorakenteet ja algoritmit. Järjestäminen. Ari Korhonen Tietorakenteet ja algoritmit Järjestäminen Ari Korhonen 6.10.2015 1 6. Järjestäminen (sor0ng) 6.1 Johdanto 6.2 Yksinkertaiset menetelmät 6.2.1 Valintajärjestäminen 6.2.2 Lisäysjärjestäminen 6.3 Lomitusjärjestäminen

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT HAJAUTUS, JÄRJESTÄMISESTÄ HAJAUTTAMISEN IDEA Jos avaimet (tai data) ovat kokonaislukuja välillä 1 N, voidaan niitä käyttää suoraan indeksointiin Järkevä rakenne on

Lisätiedot

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella

Lisätiedot

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin.

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin. 3. Hakupuut Hakupuu on listaa tehokkaampi dynaamisen joukon toteutus. Erityisesti suurilla tietomäärillä hakupuu kannattaa tasapainottaa, jolloin päivitysoperaatioista tulee hankalampia toteuttaa mutta

Lisätiedot

13 Lyhimmät painotetut polut

13 Lyhimmät painotetut polut TIE-20100 Tietorakenteet ja algoritmit 297 13 Lyhimmät painotetut polut BFS löytää lyhimmän polun lähtösolmusta graafin saavutettaviin solmuihin. Se ei kuitenkaan enää suoriudu tehtävästä, jos kaarien

Lisätiedot

3 Lajittelualgoritmeista

3 Lajittelualgoritmeista 3 Lajittelualgoritmeista Tässä osassa käsitellään edistyneempiä lajittelualgoritmeja, erityisesti keko- ja pikalajitteluja. Lisäksi perehdytään hieman lajittelualgoritmien suorituskyvyn rajoihin. Materiaali

Lisätiedot

58131 Tietorakenteet Erilliskoe , ratkaisuja (Jyrki Kivinen)

58131 Tietorakenteet Erilliskoe , ratkaisuja (Jyrki Kivinen) 58131 Tietorakenteet Erilliskoe 11.11.2008, ratkaisuja (Jyrki Kivinen) 1. (a) Koska halutaan DELETEMAX mahdollisimman nopeaksi, käytetään järjestettyä linkitettyä listaa, jossa suurin alkio on listan kärjessä.

Lisätiedot

Algoritmit 1. Luento 4 Ke Timo Männikkö

Algoritmit 1. Luento 4 Ke Timo Männikkö Algoritmit 1 Luento 4 Ke 18.1.2017 Timo Männikkö Luento 4 Tietorakenteet Pino Pinon toteutus Jono Jonon toteutus Lista Listaoperaatiot Algoritmit 1 Kevät 2017 Luento 4 Ke 18.1.2017 2/29 Pino Pino, stack,

Lisätiedot

Luento 5. Timo Savola. 28. huhtikuuta 2006

Luento 5. Timo Savola. 28. huhtikuuta 2006 UNIX-käyttöjärjestelmä Luento 5 Timo Savola 28. huhtikuuta 2006 Osa I Shell-ohjelmointi Ehtolause Lausekkeet suoritetaan jos ehtolausekkeen paluuarvo on 0 if ehtolauseke then lauseke

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 2 To 8.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 2 To 8.9.2011 p. 1/33 p. 1/33 Lukujen tallennus Kiintoluvut (integer) tarkka esitys aritmeettiset operaatiot

Lisätiedot

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun:

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun: Tietorakenteet ja algoritmit, kevät 201 Kurssikoe 1, ratkaisuja 1. Tehtävästä sai yhden pisteen per kohta. (a) Invariantteja voidaan käyttää algoritmin oikeellisuustodistuksissa Jokin väittämä osoitetaan

Lisätiedot

Nopea kertolasku, Karatsuban algoritmi

Nopea kertolasku, Karatsuban algoritmi Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa

Lisätiedot

Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten,

Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten, Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten, että se pystyy suorittamaan kaikki mahdolliset algoritmit?

Lisätiedot

Tietorakenteet, laskuharjoitus 3, ratkaisuja

Tietorakenteet, laskuharjoitus 3, ratkaisuja Tietorakenteet, laskuharjoitus 3, ratkaisuja 1. (a) Toistolauseen runko-osassa tehdään yksi laskuoperaatio, runko on siis vakioaikainen. Jos syöte on n, suoritetaan runko n kertaa, eli aikavaativuus kokonaisuudessaan

Lisätiedot

TAMPEREEN TEKNILLINEN YLIOPISTO

TAMPEREEN TEKNILLINEN YLIOPISTO TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja Tietokonetekniikan laitos TKT-3200 Tietokonetekniikka ASSEMBLER: QSORT 06.09.2005 Ryhmä 00 nimi1 email1 opnro1 nimi2 email2 opnro2 nimi3 email3 opnro3 1. TEHTÄVÄ

Lisätiedot

Olkoon S(n) kutsun merge-sort(a, p, q) tilavaativuus kun p q + 1 = n. Oletetaan merge toteutetuksi vakiotyötilassa (ei-triviaalia mutta mahdollista).

Olkoon S(n) kutsun merge-sort(a, p, q) tilavaativuus kun p q + 1 = n. Oletetaan merge toteutetuksi vakiotyötilassa (ei-triviaalia mutta mahdollista). Esimerkki Lomitusjärjestäminen merge-sort(a, p, q): var k % paikallinen muuttuja, vakiotila 1. if p < q then 2. r := (p + q)/2 3. merge-sort(a, p, r) 4. merge-sort(a, r + 1, q) 5. merge(a, p, r, q) Olkoon

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Verkon värittämistä hajautetuilla algoritmeilla

Verkon värittämistä hajautetuilla algoritmeilla Verkon värittämistä hajautetuilla algoritmeilla 5 12 30 19 72 34 Jukka Suomela 15 77 18 4 9. tammikuuta 2012 19 2 68 Verkko 2 Verkko solmu 3 Verkko solmu kaari 4 Hajautettu järjestelmä solmu (tietokone)

Lisätiedot