811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista

Koko: px
Aloita esitys sivulta:

Download "811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista"

Transkriptio

1 811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista

2 Sisältö 1. Johdanto 2. Pikalajittelu 3. Kekolajittelu 4. Lajittelualgoritmien suorituskyvyn rajoista A TRA, Lajittelualgoritmeista 2

3 III.1 Johdanto: Miksi perehtyä lajitteluun Lajittelua käytetään osana monissa algoritmeissa: Lajittelualgoritmien tunteminen auttaa muiden ongelmien ratkaisussa Lajittelualgoritmeihin perehtymällä oppii algoritmien suunnittelutekniikoita Lajittelu on tutkituin tietojenkäsittelytieteen algoritminen ongelma: tunnetaan kymmeniä algoritmeja A TRA, Lajittelualgoritmeista 3

4 III.2 Pikalajittelu (Quicksort) Keksijä C. A. R. Hoare (Ks. Hoare: Quicksort. Computer Journal, 5(1):10 15, 1962) Käytännössä hyvin nopea lajittelualgoritmi Perustuu hajota ja hallitse -periaatteeseen (kuten lomituslajittelukin) Aineisto jaetaan kahteen osaan, joista toisessa on sarana-alkiota (pivot) arvoltaan pienemmät alkiot ja toisessa vastaavasti suuremmat Osat jaetaan edelleen samalla tavalla rekursiivisesti kahteen osaan jne. Lajittelee taulukon paikallaan Algoritmi PARTITION jakaa aineiston vaaditulla tavalla kahteen osaan A TRA, Lajittelualgoritmeista 4

5 III.2.1 Pikalajittelun algoritmi Syöte: Taulukon osa A[p,..,r] Tuloste: A[p,..,r] lajiteltuna järjestykseen pienimmästä suurimpaan QUICKSORT(A, p, r) 1. if p < r 2. q = PARTITION(A, p, r) 3. QUICKSORT(A, p, q-1) 4. QUICKSORT(A, q+1, r) A TRA, Lajittelualgoritmeista 5

6 III.2.1 Pikalajittelun algoritmi (2) Syöte: Taulukon osa A[p,..,r] Tuloste: Palautusindeksin paikalla on alkion A[r] arvo ja sen vasemmalla puolella samankokoisia tai pienempiä arvoja ja vastaavasti oikealla puolella samankokoisia tai suurempia. PARTITION(A,p,r) 1. x = A[r] 2. i = p for j = p to r 1 4. if A[j] <= x 5. i = i vaihda A[i] A[j] 7. vaihda A[i + 1] A[r] 8. return i A TRA, Lajittelualgoritmeista 6

7 III.2.2 Pikalajittelun oikeellisuus Päättyminen varmaa, koska indeksit pienenevät rekursiossa Tutkitaan graafisesti: QUICKSORT: s > s PARTITION Sarana < s s QUICKSORT QUICKSORT Lajittelu toimii, jos PARTITION toimii oikein A TRA, Lajittelualgoritmeista 7

8 III.2.2 Pikalajittelun oikeellisuus (2) Algoritmin PARTITION oikeellisuus seuraa alla olevasta kolmeosaisesta silmukkainvariantista: Rivien 3-6 silmukan jokaisen kierroksen alussa ehdot 1-3 ovat voimassa jokaiselle taulukon indeksille k 1. jos p <= k <= i, niin A[k] <= x 2. jos i+1 <= k <= j-1, niin A[k] > x 3. jos k = r, niin A[k] = x A TRA, Lajittelualgoritmeista 8

9 III.2.3 Pikalajittelun suorituskyky Taulukon koko n PARTITION lineaariaikainen, ts. jos ositetaan taulukon osa, jonka pituus k, niin suoritusaika c k, missä c vakio Pikalajittelun huonoin tapaus: sarana-alkio aina taulukon viimeisenä -> suoritusaika luokkaa 2 c n c (n -1) c n (n -1) (n ) Pikalajittelun paras tapaus: rekursioyhtälö T(n) 2 T(n/2) c n Master Theorem: T(n) (n lg(n)) Voidaan osoittaa että myös keskimääräinen tapaus luokkaa (n lg(n)) Analyysi verrattain mutkikas A TRA, Lajittelualgoritmeista 9

10 III.3 Kekolajittelu Keksijä J. W. J. Williams (Ks. Williams: Algorithm 232 (HEAPSORT). Communications of the ACM, 7(6): , 1964) Perustuu keko-tietorakenteen muokkaukseen ja ylläpitoon Nopea algoritmi Lajittelee paikallaan A TRA, Lajittelualgoritmeista 10

11 III.3.1 Binääripuut Binääripuun määritelmä (rekursiivinen): Binääripuu 1. on tyhjä tai 2. koostuu yhdestä juurisolmusta, jolla on lapsinaan kaksi binääripuuta: näitä sanotaan vasemmaksi ja oikeaksi alipuuksi Binääripuussa jokaisella solmulla on siis enintään kaksi lapsisolmua Lehtisolmu: Solmu, jolla ei ole lapsisolmuja A TRA, Lajittelualgoritmeista 11

12 III.3.1 Binääripuut (2) Binääripuu on lähes täydellinen, jos sen alimman tason lehtisolmut täyttävät solmujen paikkoja peräkkäin vasemmalta lähtien ja ylemmät tasot ovat täynnä. Esimerkki: lähes täydellinen binääripuu A TRA, Lajittelualgoritmeista 12

13 III.3.1 Binääripuut (3) Lähes täydellisen n-solmuisen binääripuun solmut voidaan asettaa yksikäsitteisesti vastaamaan taulukon A[1,2,,n] alkioita. Solmun A[i] vasen lapsi paikassa 2i ja oikea paikassa 2i+1, esim Vasen lapsi Oikea lapsi A TRA, Lajittelualgoritmeista 13

14 III.3.1 Binääripuut (4) Binääripuun korkeus h on puun pisimmän lehtisolmusta juurisolmuun johtavan reitin sivujen lukumäärä Lähes täydellisen binääripuun solmujen lukumäärä, kun sen korkeus on h: tasolla 1 1 (=2 1-1 ) tasolla 2 2 (=2 2-1 ) tasolla h 2 h-1 tasolla h h Siis kaikkiaan solmujen määrälle n: 2 h n < 2 h+1 Edellisestä h lg(n) < h A TRA, Lajittelualgoritmeista 14

15 III.3.2 Maksimikeko Binääripuu on maksimipuu (minimipuu), jos jokaisella isäsolmulla on suurempi arvo (pienempi) kuin sen lapsisolmuilla Lähes täydellinen binääripuu on maksimikeko (minimikeko), jos se on maksimipuu (minimipuu) Kekolajittelussa käytetään maksimi- tai minimikeon esittämistä ja sen operoimista taulukossa Maksimikeosta helppo poistaa suurin, minimikeosta pienin alkio ja palauttaa nopeasti kekojärjestys Kekoon lisääminen nopeaa Tästä eteenpäin keko tarkoittaa maksimikekoa A TRA, Lajittelualgoritmeista 15

16 III.3.3 Kekolajittelualgoritmi Syöte: Taulukko A[1,,n] (n=a.length) Tuloste: Taulukko A järjestyksessä HEAPSORT(A) 1. BUILD_MAX_HEAP(A) 2. for i = A.length downto 2 3. vaihda A[1] A[i] 4. A.heap_size = A.heap_size 1 5. MAX_HEAPIFY(A, 1) BUILD_MAX_HEAP(A) Tuloste: Taulukosta A maksimikeko 1. A.heap_size = A.length 2. for i = A.length/2 downto 1 3. MAX_HEAPIFY(A, i) 16

17 III.3.3 Kekolajittelualgoritmi (2) Syöte: Taulukko A[1,..,n], indeksi i. Tuloste: Puu, jonka juuri A[i] kekojärjestyksessä jos sen vasen ja oikea alipuu kekojärjestyksessä MAX_HEAPIFY(A, i) 1. lft = LEFT(i) ( = 2*i) 2. rgt = RIGHT(i) ( = 2*i+1) 3. if lft <= A.heap_size and A[lft] > A[i] 4. largest = lft 5. else 6. largest = i 7. if rgt <= A.heap_size and A[rgt] > A[largest] 8. largest = rgt 9. if largest!= i 10. vaihda A[i] A[largest] 11. MAX_HEAPIFY(A, largest) 17

18 III.3.4 Kekolajittelun oikeellisuus: MAX_HEAPIFY Päättyminen: Algoritmia kutsutaan rekursiivisesti vain indeksiä i suuremmilla arvoilla -> indeksi kasvaa ja päättää suorituksen Oletetaan, että A[i] pienempi kuin jokin sen lapsista, mutta vasen ja oikea alipuu maksimikekoja A[i] vaihdetaan suuremman lapsen kanssa (A[largest]) -> Juuri kunnossa, indeksistä largest alkava puu voi olla rikki. Kutsutaan MAX_HEPIFY(A, largest) jne -> Kunnossa viimeistään kun päädytään lehteen Siis MAX_HEAPIFY korrekti A TRA, Lajittelualgoritmeista 18

19 III.3.4 Kekolajittelun oikeellisuus: BUILD_MAX_HEAP Päättyminen selvää koska MAX_HEAPIFY päättyy jokaisella indeksin arvolla Muu oikeellisuus seuraa silmukkainvariantista: for-silmukan jokaisen kierroksen alussa jokainen indeksien (i+1) ja n välillä oleva solmu on maksimikeon juurisolmu A TRA, Lajittelualgoritmeista 19

20 III.3.4 Kekolajittelun oikeellisuus: HEAP_SORT Päättyy, koska BUILD_MAX_HEAP ja MAX_HEAPIFY päättyvät Oikeellisuuden osoittava invariantti: for-silmukan jokaisen suorituskerran alussa alitaulukko A[1..i] on maksimikeko, joka sisältää taulukon i pienintä alkiota. Alitaulukko A[(i + 1)..n] puolestaan sisältää taulukon (n - i) suurinta alkiota lajitellussa järjestyksessä A TRA, Lajittelualgoritmeista 20

21 III.3.4 Kekolajittelun suorituskyky Mitataan suoritusaikaa suhteessa keon alkioiden lukumäärään n Tällöin keon korkeudelle h: h lg(n) < h+1 MAX_HEAPIFY: Jokainen yksittäinen kutsu vakioaikainen. Rekursiossa edetään aina keossa alemmalle tasolle -> Kompleksisuusluokka O(h) = O(lg(n)) BUILD_MAX_HEAP: Korkeintaan n kappaletta MAX_HEAPIFY-kutsuja -> luokkaa O(nlg(n)) Itse asiassa voidaan osoittaa, että O(n) HEAP_SORT: BUILD_MAX_HEAP ja korkeintaan n kappaletta MAX_HEAPIFY-kutsuja -> luokkaa O(nlg(n)) A TRA, Lajittelualgoritmeista 21

22 III.3.5 Prioriteettijono (priority queue) Tietorakenne, jossa alkiojoukko S, jonka jokaisella alkiolla on oma tietty prioriteetti (key) Jonosta voidaan aina saada korkeimman prioriteetin alkio ja lisätä uusia alkioita tehokkaasti Voidaan toteuttaa keon avulla Maksimikeko -> maksimiprioriteettijono (max-priority queue) ja minimikeko -> minimiprioriteettijono (minpriority queue) A TRA, Lajittelualgoritmeista 22

23 III Maksimiprioriteettijonon operaatiot INSERT(S, x) Lisää alkion x joukkoon S MAXIMUM(S) Palauttaa joukon S prioriteetiltaan suurimman alkion EXTRACT_MAX(S) Palauttaa joukon S prioriteetiltaan suurimman alkion ja poistaa sen INCREASE_KEY(S, x, k) Päivittää alkion x prioriteetin uuteen arvoon k, jonka oletetaan olevan vähintään yhtä suuri kuin alkion x nykyinen avainarvo A TRA, Lajittelualgoritmeista 23

24 III Maksimiprioriteettijonon operaatiot (2) HEAP_MAXIMUM(A) 1. return A[1] HEAP_EXTRACT_MAX(A) 1. if A.heap_size < 1 2. error underflow 3. max = A[1] 4. A[1] = A[A.heap_size] 5. A.heap_size = A.heap_size MAX_HEAPIFY(A, 1) 7. return max A TRA, Lajittelualgoritmeista 24

25 III Maksimiprioriteettijonon operaatiot (3) PARENT(i) 1. return j/2 HEAP_INCREASE_KEY(A, i, key) 1. if key < A[i] 2. error avain liian pieni 3. A[i] = key 4. while i > 1 and A[PARENT(i)] < A[i] 5. vaihda A[i] A[PARENT(i)] 6. i = PARENT(i) A TRA, Lajittelualgoritmeista 25

26 III Maksimiprioriteettijonon operaatiot (4) HEAP_INSERT(A, key) 1 A.heap_size = A.heap_size A[A.heap_size] = - 3 HEAP_INCREASE_KEY(A, A.heap_size, key) A TRA, Lajittelualgoritmeista 26

27 III.4. Lajittelualgoritmien suorituskyvyn rajoista Lomituslajittelua, pikalajittelua ja kekolajittelua pidetään nopeina algoritmeina Onko syytä? Lajittelu voi perustua muuhunkin kuin alkioiden vertailuun Esimerkiksi tunnetaan alkioiden ylä- ja alaraja -> voidaan tehdä laskentalajittelu Tarkastellaan vertailuun perustuvia algoritmeja A TRA, Lajittelualgoritmeista 27

28 III.4.1 Vertailuun perustuva lajittelu Voidaan esittää binääripuuna, jossa solmut vastaavat vertailuja Algoritmin päätöspuu Polku juuresta lehteen kuvaa tehtyjä vertailuja Lehti kertoo mihin järjestykseen suoritetuilla vertailuilla ja niiden tuloksilla päädytään A TRA, Lajittelualgoritmeista 28

29 a 1? a 2 > a 2? a 3 a 1? a 3 > > < a 1, a 2, a 3 > a 1? a 3 < a 2, a 1, a 3 > a 2? a 3 > > < a 1, a 3, a 2 > <a 3, a 1, a 2 > < a 2, a 3, a 1 > <a 3, a 2, a 1 > Kolmen alkion (a 1,a 2,a 3 ) lajittelualgoritmin päätöspuu. Kolme alkiota voivat olla 6 eri järjestyksessä -> Puussa oltava vähintään 6 lehteä.

30 III.4.1 Vertailuun perustuva lajittelu (2) Päätöspuun syvyys S -> on olemassa syöte, jolle on tehtävä S vertailua Syvyys S -> puussa lehtiä korkeintaan 2 S Jos n alkiota järjestettävänä, ne voivat olla n! eri järjestyksessä ja jokaista järjestystä kohti on oltava lehti. Siis n! 2 S Arvioimalla saadaan S ( 1/ 2) nlg n ( n/ 2) ( n lg n) Seuraus: vertailuun perustuva lajittelualgoritmi ei voi olla nopeampi kuin luokkaa ( n lg n) A TRA, Lajittelualgoritmeista 30

31 III.4.2 Lineaariaikainen lajittelu: Laskentalajittelu Syöte: Taulukko A[1,..,n], n >= 1, luku k >= max(a) Tulostus: Taulukko B[1,..,n], jossa A:n alkiot suuruusjärjestyksessä LASKENTALAJITTELU(A,k) 1. varaa taulukko B[1,..,n] 2. varaa taulukko C[0,..k] // Väliaikainen // työtaulukko 3. for i=0 to k 4. C[i] = 0 5. for j=1 to length(a) 6. C[A[j]] = C[A[j]]+1 7. for i=1 to k 8. C[i] = C[i]+C[i-1] 9. for j = length(a) downto B[C[A[j]]] = A[j] 11. C[A[j]] = C[A[j]] return B

32 III.4.2 Lineaariaikainen lajittelu: Laskentalajittelu (2) Algoritmi toimii lineaarisessa ajassa Kompleksisuusluokka ( n k) Ei siis voi perustua (pelkästään) vertailuihin Perustuu siihen, että taulukon alkiot kokonaislukuja väliltä [0,k] On olemassa myös muita lineaariajassa toimivia lajittelualgoritmeja A TRA, Lajittelualgoritmeista 32

1 Puu, Keko ja Prioriteettijono

1 Puu, Keko ja Prioriteettijono TIE-20100 Tietorakenteet ja algoritmit 1 1 Puu, Keko ja Prioriteettijono Tässä luvussa käsitellään algoritmien suunnitteluperiaatetta muunna ja hallitse (transform and conquer) Lisäksi esitellään binääripuun

Lisätiedot

3 Lajittelualgoritmeista

3 Lajittelualgoritmeista 3 Lajittelualgoritmeista Tässä osassa käsitellään edistyneempiä lajittelualgoritmeja, erityisesti keko- ja pikalajitteluja. Lisäksi perehdytään hieman lajittelualgoritmien suorituskyvyn rajoihin. Materiaali

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen

Lisätiedot

Algoritmit 2. Luento 2 Ke Timo Männikkö

Algoritmit 2. Luento 2 Ke Timo Männikkö Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento

Lisätiedot

3 Lajittelualgoritmeista

3 Lajittelualgoritmeista 3 Lajittelualgoritmeista Tässä osassa käsitellään edistyneempiä lajittelualgoritmeja, erityisesti keko- ja pikalajitteluja. Lisäksi perehdytään hieman lajittelualgoritmien suorituskyvyn rajoihin. Materiaali

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu 111A Tietoraketeet ja algoritmit, 016-017, Harjoitus, Ratkaisu Harjoitukse aiheita ovat algoritmie aikakompleksisuus ja lajittelualgoritmit Tehtävä.1 Selvitä seuraavie rekursioyhtälöide ratkaisuje kompleksisuusluokat

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017

Lisätiedot

Algoritmit 1. Luento 12 Ke Timo Männikkö

Algoritmit 1. Luento 12 Ke Timo Männikkö Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu

Lisätiedot

5. Keko. Tietorakenne keko eli kasa (heap) on tehokas toteutus abstraktille tietotyypille prioriteettijono, jonka operaatiot ovat seuraavat:

5. Keko. Tietorakenne keko eli kasa (heap) on tehokas toteutus abstraktille tietotyypille prioriteettijono, jonka operaatiot ovat seuraavat: 5. Keko Tietorakenne keko eli kasa (heap) on tehokas toteutus abstraktille tietotyypille prioriteettijono, jonka operaatiot ovat seuraavat: Insert(S, x): lisää avaimen x prioriteettijonoon S Maximum(S):

Lisätiedot

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja

811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja 811312A Tietorakenteet ja algoritmit, 2015-2016 VI Algoritmien suunnitteluparadigmoja Sisältö 1. Hajota ja hallitse-menetelmä 2. Dynaaminen taulukointi 3. Ahneet algoritmit 4. Peruuttavat algoritmit 811312A

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu 832A Tietorakenteet ja algoritmit, 204-205, Harjoitus 7, ratkaisu Hajota ja hallitse-menetelmä: Tehtävä 7.. Muodosta hajota ja hallitse-menetelmää käyttäen algoritmi TULOSTA_PUU_LASKEVA, joka tulostaa

Lisätiedot

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä

Lisätiedot

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Matti Nykänen 5. joulukuuta 2003 1 Satelliitit Muunnetaan luennoilla luonnosteltua toteutusta seuraavaksi: Korvataan puusolmun p kentät p. key ja

Lisätiedot

8. Lajittelu, joukot ja valinta

8. Lajittelu, joukot ja valinta 8. Lajittelu, joukot ja valinta Yksi tietojenkäsittelyn klassisista tehtävistä on lajittelu (järjestäminen) (sorting) jo mekaanisten tietojenkäsittelylaitteiden ajalta. Lajiteltua tietoa tarvitaan lukemattomissa

Lisätiedot

Algoritmit 2. Luento 14 Ke Timo Männikkö

Algoritmit 2. Luento 14 Ke Timo Männikkö Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

Algoritmit 1. Luento 11 Ti Timo Männikkö

Algoritmit 1. Luento 11 Ti Timo Männikkö Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PUURAKENTEET, BINÄÄRIPUU, TASAPAINOTETUT PUUT MIKÄ ON PUUTIETORAKENNE? Esim. Viereinen kuva esittää erästä puuta. Tietojenkäsittelytieteessä puut kasvavat alaspäin.

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin

Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin jaetaan muut alkiot kahteen ryhmään: L: alkiot, jotka eivät suurempia kuin pivot G : alkiot, jotka suurempia kuin pivot 6 1 4 3 7 2

Lisätiedot

Algoritmit 1. Luento 7 Ti Timo Männikkö

Algoritmit 1. Luento 7 Ti Timo Männikkö Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017

Lisätiedot

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa Kekolajittelu Prioriteettijonolla toteutettu keko InsertItem ja RemoveMinElem: O(log(n)) Lajittelu prioriteettijonolla: PriorityQueueSort(lajiteltava sekvenssi S) alusta prioriteettijono P while S.IsEmpty()

Lisätiedot

Miten käydä läpi puun alkiot (traversal)?

Miten käydä läpi puun alkiot (traversal)? inääripuut ieman lisää aidon binääripuun ominaisuuksia lehtisolmuja on yksi enemmän kuin sisäsolmuja inääripuut tasolla d on korkeintaan 2 d solmua pätee myös epäaidolle binääripuulle taso 0: 2 0 = 1 solmu

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint.

v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint. Yleiset hakupuut 4 Monitiehakupuu: Binäärihakupuu 0 1 3 5 6 7 8 v k 1 k k 3 v v 3 v 4 k 1 k 3 k 1 k k k 3 d lapsisolmua d 1 avainta Yleinen hakupuu? Tietorakenteet, syksy 007 1 Esimerkki monitiehakupuusta

Lisätiedot

Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min

Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min Koe Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min Kokeessa saa olla mukana A4:n kokoinen kaksipuolinen käsiten tehty, itse kirjoitettu lunttilappu 1 Tärkeää ja vähemmäntärkeää Ensimmäisen

Lisätiedot

Algoritmit 2. Luento 4 Ke Timo Männikkö

Algoritmit 2. Luento 4 Ke Timo Männikkö Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4

Lisätiedot

A TIETORAKENTEET JA ALGORITMIT

A TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT LISÄÄ JÄRJESTÄMISESTÄ JÄRJESTÄMISEN TEORIAA Inversio taulukossa a[] on lukupari (a[i],a[j]) siten, että i < j mutta a[i] > a[j] Esimerkki Taulukko a[] = [2, 4, 1, 3]

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto 811312A Tietorakenteet ja algoritmit 2015-2016 I Johdanto Sisältö 1. Algoritmeista ja tietorakenteista 2. Algoritmien analyysistä 811312A TRA, Johdanto 2 I.1. Algoritmeista ja tietorakenteista I.1.1. Algoritmien

Lisätiedot

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta AVL-puut eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta pohjana jo esitetyt binäärihakupuiden operaatiot tasapainotus vie pahimmillaan lisäajan lisäys- ja

Lisätiedot

Tiraka, yhteenveto tenttiinlukua varten

Tiraka, yhteenveto tenttiinlukua varten Tiraka, yhteenveto tenttiinlukua varten TERMEJÄ Tietorakenne Tietorakenne on tapa tallettaa tietoa niin, että tietoa voidaan lisätä, poistaa, muokata ja hakea. Tietorakenteet siis säilövät tiedon niin,

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 1. Lisäysjärjestämisessä järjestetään ensin taulukon kaksi ensimmäistä lukua, sitten kolme ensimmäistä lukua, sitten neljä ensimmäistä

Lisätiedot

Tietorakenteet, laskuharjoitus 7, ratkaisuja

Tietorakenteet, laskuharjoitus 7, ratkaisuja Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9

Lisätiedot

Algoritmit 2. Luento 6 Ke Timo Männikkö

Algoritmit 2. Luento 6 Ke Timo Männikkö Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu

Lisätiedot

On annettu jono lukuja tai muita alkioita, joiden välille on määritelty suuruusjärjestys. Tehtävänä on saattaa alkiot suuruusjärjestykseen.

On annettu jono lukuja tai muita alkioita, joiden välille on määritelty suuruusjärjestys. Tehtävänä on saattaa alkiot suuruusjärjestykseen. 6. Järjestäminen On annettu jono lukuja tai muita alkioita, joiden välille on määritelty suuruusjärjestys. Tehtävänä on saattaa alkiot suuruusjärjestykseen. Tämä on eräs klassisimpia tietojenkäsittelyongelmia,

Lisätiedot

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return

Lisätiedot

1 Erilaisia tapoja järjestää

1 Erilaisia tapoja järjestää TIE-20100 Tietorakenteet ja algoritmit 1 1 Erilaisia tapoja järjestää Käsitellään seuraavaksi järjestämisalgoritmeja, jotka perustuvat muihin kuin vertailuun alkioiden oikean järjestyksen saamiseksi. Lisäksi

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit 811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi

Lisätiedot

811312A Tietorakenteet ja algoritmit II Algoritmien analyysi

811312A Tietorakenteet ja algoritmit II Algoritmien analyysi 811312A Tietoraketeet ja algoritmit 2016-2017 II Algoritmie aalyysi Sisältö 1. Algoritmie oikeellisuus 2. Algoritmie suorituskyvy aalyysi 3. Master Theorem 811312A TRA, Algoritmie aalyysi 2 II.1. Algoritmie

Lisätiedot

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin.

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin. 3. Hakupuut Hakupuu on listaa tehokkaampi dynaamisen joukon toteutus. Erityisesti suurilla tietomäärillä hakupuu kannattaa tasapainottaa, jolloin päivitysoperaatioista tulee hankalampia toteuttaa mutta

Lisätiedot

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n)) Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia

Lisätiedot

Algoritmi on periaatteellisella tasolla seuraava:

Algoritmi on periaatteellisella tasolla seuraava: Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun:

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun: Tietorakenteet ja algoritmit, kevät 201 Kurssikoe 1, ratkaisuja 1. Tehtävästä sai yhden pisteen per kohta. (a) Invariantteja voidaan käyttää algoritmin oikeellisuustodistuksissa Jokin väittämä osoitetaan

Lisätiedot

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:

Lisätiedot

Algoritmit 2. Luento 5 Ti Timo Männikkö

Algoritmit 2. Luento 5 Ti Timo Männikkö Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti

Lisätiedot

TAMPEREEN TEKNILLINEN YLIOPISTO

TAMPEREEN TEKNILLINEN YLIOPISTO TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja Tietokonetekniikan laitos TKT-3200 Tietokonetekniikka ASSEMBLER: QSORT 11.08.2010 Ryhmä 00 nimi1 email1 opnro1 nimi2 email2 opnro2 nimi3 email3 opnro3 1. TEHTÄVÄ

Lisätiedot

58131 Tietorakenteet (kevät 2008) 1. kurssikoe, ratkaisuja

58131 Tietorakenteet (kevät 2008) 1. kurssikoe, ratkaisuja 1 Tietorakenteet (kevät 08) 1. kurssikoe, ratkaisuja Tehtävän 1 korjasi Mikko Heimonen, tehtävän 2 Jaakko Sorri ja tehtävän Tomi Jylhä-Ollila. 1. (a) Tehdään linkitetty lista kaikista sukunimistä. Kuhunkin

Lisätiedot

Algoritmit 1. Luento 3 Ti Timo Männikkö

Algoritmit 1. Luento 3 Ti Timo Männikkö Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu 1312A Tietorakenteet ja algoritmit, 2016-2017, Harjoitus 5, Ratkaisu Harjoituksen aihe ovat hash-taulukot ja binääriset etsintäpuut Tehtävä 5.1 Tallenna avaimet 10,22,31,4,15,28,17 ja 59 hash-taulukkoon,

Lisätiedot

1.1 Tavallinen binäärihakupuu

1.1 Tavallinen binäärihakupuu TIE-20100 Tietorakenteet ja algoritmit 1 1 Puurakenteet http://imgur.com/l77fy5x Tässä luvussa käsitellään erilaisia yleisiä puurakenteita. ensin käsitellään tavallinen binäärihakupuu sitten tutustutaan

Lisätiedot

A TIETORAKENTEET JA ALGORITMIT KORVAAVAT HARJOITUSTEHTÄVÄT 3, DEADLINE KLO 12:00

A TIETORAKENTEET JA ALGORITMIT KORVAAVAT HARJOITUSTEHTÄVÄT 3, DEADLINE KLO 12:00 A274101 TIETORAKENTEET JA ALGORITMIT KORVAAVAT HARJOITUSTEHTÄVÄT 3, DEADLINE 9.2.2005 KLO 12:00 PISTETILANNE: www.kyamk.fi/~atesa/tirak/harjoituspisteet-2005.pdf Kynätehtävät palautetaan kirjallisesti

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 1. Avaimet 1, 2, 3 ja 4 mahtuvat samaan lehtisolmuun. Tässä tapauksessa puussa on vain yksi solmu, joka on samaan aikaan juurisolmu

Lisätiedot

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko

Lisätiedot

4. Joukkojen käsittely

4. Joukkojen käsittely 4 Joukkojen käsittely Tämän luvun jälkeen opiskelija osaa soveltaa lomittuvien kasojen operaatioita tuntee lomittuvien kasojen toteutuksen binomi- ja Fibonacci-kasoina sekä näiden totetutusten analyysiperiaatteet

Lisätiedot

8. Lajittelu, joukot ja valinta

8. Lajittelu, joukot ja valinta 8. Lajittelu, joukot ja valinta Yksi tietojenkäsittelyn klassisista tehtävistä on lajittelu (järjestäminen) (sorting) jo mekaanisten tietojenkäsittelylaitteiden ajalta. Lajiteltua tietoa tarvitaan lukemattomissa

Lisätiedot

Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja

Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja 58053-7 Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja Malliratkaisut ja pisteytysohje: Jyrki Kivinen Tentin arvostelu: Jouni Siren (tehtävät 1 ja 2) ja Jyrki Kivinen (tehtävät

Lisätiedot

Anna Kuikka Pyöräkatu 9 B Kuopio GSM: Opiskelijanro: 60219K. Prioriteettijonot

Anna Kuikka Pyöräkatu 9 B Kuopio GSM: Opiskelijanro: 60219K. Prioriteettijonot Anna Kuikka Pyöräkatu 9 B 68 70600 Kuopio GSM: 040-734 9266 akuikka@cc.hut.fi Opiskelijanro: 60219K Prioriteettijonot PRIORITEETTIJONOT...1 1. JOHDANTO...3 2. TOTEUTUKSET...3 1.2 Keon toteutus...4 1.3

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

1.1 Pino (stack) Koodiluonnos. Graafinen esitys ...

1.1 Pino (stack) Koodiluonnos. Graafinen esitys ... 1. Tietorakenteet Tietorakenteet organisoivat samankaltaisten olioiden muodostaman tietojoukon. Tämä järjestys voidaan saada aikaan monin tavoin, esim. Keräämällä oliot taulukkoon. Liittämällä olioihin

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

CS-A1140 Tietorakenteet ja algoritmit

CS-A1140 Tietorakenteet ja algoritmit CS-A1140 Tietorakenteet ja algoritmit Kierros 3: Puut Tommi Junttila Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Syksy 2016 Sisältö Puut yleisesti Matemaattinen määrittely Puiden läpikäynti

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

TAMPEREEN TEKNILLINEN YLIOPISTO

TAMPEREEN TEKNILLINEN YLIOPISTO TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja Tietokonetekniikan laitos TKT-3200 Tietokonetekniikka ASSEMBLER: QSORT 06.09.2005 Ryhmä 00 nimi1 email1 opnro1 nimi2 email2 opnro2 nimi3 email3 opnro3 1. TEHTÄVÄ

Lisätiedot

Tietorakenteet ja algoritmit. Kertaus. Ari Korhonen

Tietorakenteet ja algoritmit. Kertaus. Ari Korhonen Tietorakenteet ja algoritmit Kertaus Ari Korhonen 1.12.2015 Tietorakenteet ja algoritmit - syksy 2015 1 Presemosta: 12. Kertaus» Mitkä tekijät, miten ja miksi vaiku1avat algoritmien nopeuteen» Rekursiohistoriapuut

Lisätiedot

Kysymyksiä koko kurssista?

Kysymyksiä koko kurssista? Kysymyksiä koko kurssista? Lisää kysymyksesi osoitteessa slido.com syötä event code: #8777 Voit myös pyytää esimerkkiä jostain tietystä asiasta Vastailen kysymyksiin luennon loppupuolella Tätä luentoa

Lisätiedot

Algoritmit 2. Luento 11 Ti Timo Männikkö

Algoritmit 2. Luento 11 Ti Timo Männikkö Algoritmit 2 Luento 11 Ti 25.4.2017 Timo Männikkö Luento 11 Peruutusmenetelmä Osajoukon summa Pelipuut Pelipuun läpikäynti Rajoitehaku Kapsäkkiongelma Algoritmit 2 Kevät 2017 Luento 11 Ti 25.4.2017 2/29

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 2 1.-2.2.2017 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: laskesumma(t, n) sum = t[0]; for (i = 1; i < n; i++) sum = sum + t[i]; return sum; Silmukka suoritetaan n 1 kertaa

Lisätiedot

Datatähti 2000: alkukilpailun ohjelmointitehtävä

Datatähti 2000: alkukilpailun ohjelmointitehtävä Datatähti 2000: alkukilpailun ohjelmointitehtävä 1 Lyhyt tehtävän kuvaus Tehtävänä on etsiä puurakenteen esiintymiä kirjaintaulukosta. Ohjelmasi saa syötteenä kirjaintaulukon ja puun, jonka jokaisessa

Lisätiedot

Algoritmit 1. Luento 5 Ti Timo Männikkö

Algoritmit 1. Luento 5 Ti Timo Männikkö Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti

Lisätiedot

CS-A1140 Tietorakenteet ja algoritmit

CS-A1140 Tietorakenteet ja algoritmit CS-A1140 Tietorakenteet ja algoritmit Kierros 4: Binäärihakupuut Tommi Junttila Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Syksy 2016 Sisältö Binäärihakupuut Avainten lisääminen,

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku

Lisätiedot

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

Tietorakenteet, laskuharjoitus 3, ratkaisuja

Tietorakenteet, laskuharjoitus 3, ratkaisuja Tietorakenteet, laskuharjoitus 3, ratkaisuja 1. (a) Toistolauseen runko-osassa tehdään yksi laskuoperaatio, runko on siis vakioaikainen. Jos syöte on n, suoritetaan runko n kertaa, eli aikavaativuus kokonaisuudessaan

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Rekursio Rekursion käyttötapauksia Rekursio määritelmissä Rekursio ongelmanratkaisussa ja ohjelmointitekniikkana Esimerkkejä taulukolla Esimerkkejä linkatulla listalla Hanoin

Lisätiedot

Tietorakenteet, laskuharjoitus 6,

Tietorakenteet, laskuharjoitus 6, Tietorakenteet, laskuharjoitus, 23.-2.1 1. (a) Kuvassa 1 on esitetty eräät pienimmistä AVL-puista, joiden korkeus on 3 ja 4. Pienin h:n korkuinen AVL-puu ei ole yksikäsitteinen juuren alipuiden keskinäisen

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 1, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 1, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 1, 25.2.2013, vastauksia 1. (a) O-merkintä Ω-merkintä: Kyseessä on (aika- ja tila-) vaativuuksien kertalukumerkinnästä. O-merkintää käytetään ylärajan

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi

Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi Imperatiivisen ohjelmoinnin peruskäsitteet muuttuja muuttujissa oleva data voi olla yksinkertaista eli primitiivistä (esim. luvut ja merkit) tai rakenteista jolloin puhutaan tietorakenteista. puhuttaessa

Lisätiedot

Tietorakenteet ja algoritmit. Järjestäminen. Ari Korhonen

Tietorakenteet ja algoritmit. Järjestäminen. Ari Korhonen Tietorakenteet ja algoritmit Järjestäminen Ari Korhonen 6.10.2015 1 6. Järjestäminen (sor0ng) 6.1 Johdanto 6.2 Yksinkertaiset menetelmät 6.2.1 Valintajärjestäminen 6.2.2 Lisäysjärjestäminen 6.3 Lomitusjärjestäminen

Lisätiedot

10. Painotetut graafit

10. Painotetut graafit 10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä

Lisätiedot

Tutkimusmenetelmät-kurssi, s-2004

Tutkimusmenetelmät-kurssi, s-2004 Algoritmitutkimuksen menetelmistä Tutkimusmenetelmät-kurssi, s-2004 Pekka Kilpeläinen Kuopion yliopisto Tietojenkäsittelytieteen laitos Algoritmitutkimuksen menetelmistä p.1/20 Sisällys Tänään Tietojenkäsittelytiede

Lisätiedot

811312A Tietorakenteet ja algoritmit IV Perustietorakenteet

811312A Tietorakenteet ja algoritmit IV Perustietorakenteet 811312A Tietorakenteet ja algoritmit 2016-2017 IV Perustietorakenteet Sisältö 1. Johdanto 2. Pinot, jonot ja listat 3. Hash-taulukot 4. Binääriset etsintäpuut 5. Puna-mustat puut 6. Tietorakenteiden täydentäminen

Lisätiedot

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] = = T [i + 1] 4 return True 5

Lisätiedot

Oppijan saama palaute määrää oppimisen tyypin

Oppijan saama palaute määrää oppimisen tyypin 281 5. KONEOPPIMINEN Älykäs agentti voi joutua oppimaan mm. seuraavia seikkoja: Kuvaus nykytilan ehdoilta suoraan toiminnolle Maailman relevanttien ominaisuuksien päätteleminen havaintojonoista Maailman

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, 652013, vastauksia 1 [6 pistettä] Vastaa jokaisesta alla olevasta väittämästä onko se tosi vai epätosi ja anna lyhyt perustelu Jokaisesta kohdasta

Lisätiedot

2 Haku ja lajittelu. 2.1 Luvun hakeminen taulukosta X?? n-1. Haku ja lajittelu 35

2 Haku ja lajittelu. 2.1 Luvun hakeminen taulukosta X?? n-1. Haku ja lajittelu 35 Haku ja lajittelu 35 2 Haku ja lajittelu Tässä luvussa käsitellään tiedon hakemista taulukosta sekä taulukon lajittelua. Useista erilaisista lajittelumenetelmistä on kirjaan otettu suurehko osa. Lajittelumenetelmien

Lisätiedot

Oikeasta tosi-epätosi -väittämästä saa pisteen, ja hyvästä perustelusta toisen.

Oikeasta tosi-epätosi -väittämästä saa pisteen, ja hyvästä perustelusta toisen. Tietorakenteet, kevät 2012 Kurssikoe 2, mallivastaukset 2. (a) Järjestämistä ei voi missään tilanteessa suorittaa nopeammin kuin ajassa Θ(n log n), missä n on järjestettävän taulukon pituus. Epätosi: Yleisessä

Lisätiedot

TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 9. marraskuuta 2009

TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 9. marraskuuta 2009 TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe D tiistai 10.11. klo 10 välikielen generointi Vaihe E tiistai

Lisätiedot

4. Perustietorakenteet

4. Perustietorakenteet 4. Perustietorakenteet Tässä osassa käsitellään erilaisia tietorakenteita, joita algoritmit käyttävät toimintansa perustana. Aluksi käydään läpi tietorakenteen abstrakti määritelmä. Tämän jälkeen käsitellään

Lisätiedot

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin Mediaanisuodattimet Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että niiden ominaisuudet tunnetaan hyvin niiden analysointiin on olemassa vakiintuneita menetelmiä

Lisätiedot

REKURSIO. Rekursiivinen ohjelma Kutsuu itseään. Rekursiivinen rakenne. Rakenne sisältyy itseensä. Rekursiivinen funktio. On määritelty itsensä avulla

REKURSIO. Rekursiivinen ohjelma Kutsuu itseään. Rekursiivinen rakenne. Rakenne sisältyy itseensä. Rekursiivinen funktio. On määritelty itsensä avulla REKURSIO Rekursiivinen ohjelma Kutsuu itseään Rekursiivinen rakenne Rakenne sisältyy itseensä Rekursiivinen funktio On määritelty itsensä avulla Esim. Fibonacci-luvut: X(i) = X(i-1) + X(i-2), X(0) = X(1)

Lisätiedot

Muita linkattuja rakenteita

Muita linkattuja rakenteita 1 Muita linkattuja rakenteita Johdanto Aikaisemmin on käsitelty listan, jonon ja pinon toteutus dynaamisesti linkattuna rakenteena. Dynaamisella linkkauksella voidaan toteuttaa mitä moninaisimpia rakenteita.

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy 2015. Antti-Juhani Kaijanaho. 3. joulukuuta 2015

TIEA241 Automaatit ja kieliopit, syksy 2015. Antti-Juhani Kaijanaho. 3. joulukuuta 2015 TIEA241 Automaatit ja, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. joulukuuta 2015 Sisällys Formaalisti Määritelmä Nelikko G = (V, Σ, P, S) on kontekstiton kielioppi (engl. context-free

Lisätiedot

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti. Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen

Lisätiedot

Algoritmit 1. Luento 6 Ke Timo Männikkö

Algoritmit 1. Luento 6 Ke Timo Männikkö Algoritmit 1 Luento 6 Ke 25.1.2017 Timo Männikkö Luento 6 Järjestetty lista Listan toteutus dynaamisesti Linkitetyn listan operaatiot Vaihtoehtoisia listarakenteita Puurakenteet Binääripuu Järjestetty

Lisätiedot