Kytkentäkentät - Rekursio, Cantor-verkko

Koko: px
Aloita esitys sivulta:

Download "Kytkentäkentät - Rekursio, Cantor-verkko"

Transkriptio

1 Kytkentäkentät - Rekursio, Cantor-verkko Kertaus Estottomuus Uudelleen järjestely Tiukasti estoton Yleinen kolmiportainen verkko Closin -verkko Benes -verkko Cantor -verkko Kytkentäpisteet ja kompleksisuus Rka/ML -k00 Tiedonvälitystekniikka 7 - Kurssin kuva välitysjärjestelmästä H.33 or SIP IP SIP or ISUP CAS, R IP HLR PABX ISDN Kytkentäkenttä MAP puhetie YKM ISUP AN V5 Ohjaus INAP SCP Rka/ML -k00 Tiedonvälitystekniikka 7 - Page

2 Example An exchange with a subscriber capacity of N (each subscriber directly connected to fabric), 5: concentration ratio from subscribers to juction lines and 0% requirement for internal use requires a switching fabric with M = (N + 0.N) x. inputs and the same nrof of outputs. A one stage non-blocking switch matrix would contain: M -cross-points and the logical depth would be. M The length of each input and output bus would be M - this directly limits the feasible size of the matrix. NB: In practice, it is desirable that M = highly divisible by M Rka/ML -k00 Tiedonvälitystekniikka 7-3 Example An exchange with a capacity of N simultaneous calls, 0.7 Erlang average occupancy on lines during busy hour and 0% requirement for internal use requires a switching fabric with M = x (. x N/0.7) inputs and the same nrof of outputs. Let's take N = M = x. x 0 000/0.7 = =6 048 PCM M M Rka/ML -k00 Tiedonvälitystekniikka 7-4 Page

3 Kytkentäkentän ominaisarvoja Kytkentäpisteiden lukumäärä on ristikytkentäpisteiden lukumäärä kentässä. Looginen syvyys on signaalin kulkutiellä käytettyjen kytkinten lukumäärä. Esto määräytyy kentän rakenteesta. Kytkentäpisteen ajokyky määritellään ajettavien kytkentäpisteiden lukumäärällä. Rka/ML -k00 Tiedonvälitystekniikka 7-5 Kolmiportaisen kytkentäkentän yleinen esitystapa Kolmiportainen kytkentäkenttä, palautettuna puhtaaseen tilakytkentään, voidaan esittää tilakytkiminä, joista jokainen on kytketty seuraavan portaan jokaiseen kytkimeen. M xn M xn M 3 x M M R R R 3 M Rka/ML -k00 Tiedonvälitystekniikka 7-6 Page 3

4 Closin -verkko M xr R xr 3 R x M M R R R 3 M porras : N =R porras : M =R ja N =R 3 porras 3: M 3 =R Esim. 89 PCM, 6M = 8 x M perusnopeus: M = = 04, R =R 3 = 8*3 = 56, R = > tiukasti estoton Rka/ML -k00 Tiedonvälitystekniikka 7-7 Tiukasti estoton Closin -verkko Closin -verkko on tiukasti estoton, kun toisen portaan kytkinten lukumäärä on R => M + - Erikoistapauksena symmetrinen kytkinkenttä, jossa M = =N R => N - Rka/ML -k00 Tiedonvälitystekniikka 7-8 Page 4

5 Uudelleen järjesteltävä Clos -verkko Kolmiportainen Closin -verkko on uudelleen järjeteltävän estoton, kun R => max(m, ) Erikoistapauksena symmetrinen kytkinkenttä, jossa M = =N R => N Rka/ML -k00 Tiedonvälitystekniikka 7-9 Kytkentä kytkimestä A kytkimeen B M xr R xr 3 R x M A B M R R R 3 M Yhdelle kytkennälle on R vaihtoehtoista tietä tyhjässä kentässä. Rka/ML -k00 Tiedonvälitystekniikka 7-0 Page 5

6 Closin teoreema Closin verkko on tiukasti estoton, jos ja vain jos toisen portaan solmujen (kytkinten) lukumäärä on r m + n 3 Erityisesti symmetrinen verkko, jolle pätee m = n 3 = n, on tiukasti estoton jos ja vain jos r n. Todistus: Käytetään Paullin matriisia. -Rivia, jossa vapaa tulo ja sarake b, jossa vapaa lähtö - vapaan tulon kytkentä vapaalle lähdölle merkataan uudelle symbolilla ruutuun (a, b) - rivillä a on korkeintaan m erilaista symbolia, koska kytkimessä a on m tuloa - sarakkeessa b on korkeintaan n 3 erilaista symbolia - pahimmillaan yhteensä m +n 3 erilaista symbolia - jos meillä on yksi kytkin lisää, eli yhteensä m + n 3, kytkentä onnistuu. Välttämättömyys: Täytyy olla mahdollista tehdä seuraavat kytkennät: - yhteensä m kytkentää tulokytkimeltä a jaettuna kaikille lähtökytkimille (joka kerta erilainen symboli) - lähtökytkimeltä b kaikille tulokytkimille, paitsi a: yhteensä n 3 (joka kerta eri symboli), eli - riville a ja sarakkeeseen b tarvitaan yhteensä m + n 3 erilaista symbolia Rka/ML -k00 Tiedonvälitystekniikka 7 - Closin teoreeman välttämättömyyden visualisointi n =r =5 m =r =3 n =r 3 =4 m 3 =r =5 n 3 = m =3 a r =3 r =5 r 3 =4 b Eli r =4=(m + n 3 - ) riittää! Rka/ML -k00 Tiedonvälitystekniikka 7 - Page 6

7 Kytkentäkenttien vaihtoehtoinen esitystapa Kytkentäkenttä voidaan esittää käsittelyn helpoittamiseksi joko verkkona tai tasokuviona. Tasokuviossa säästytään yksittäisten yhteyksien piirtämiseltä. Verkkokuva on ymmärtämisen kannalta helpompi. Rka/ML -k00 Tiedonvälitystekniikka 7-3 Kentän rekursiivinen rakentaminen tulot N=pXq Uudelleen järjestettävästi estoton ptasoa lähdöt N=pXq qtasoa pxp qxq pxp qtasoa Kytkentäpisteitä: p q+q p+p q=qp +q p Rka/ML -k00 Tiedonvälitystekniikka 7-4 Page 7

8 Kentän rekursiivinen rakentaminen - tulot N=pXq Tiukasti estoton (p - ) tasoa lähdöt N=pXq qtasoa px(p-) (p-)xp qtasoa qxq Kytkentäpisteitä: p(p-)q + q (p-) + (p-)pq = p(p-)q + q (p-) Rka/ML -k00 Tiedonvälitystekniikka 7-5 Kytkentäkentän rekursiivinen muodostaminen Rekursiivisessa muodostamisessa kytkentäkentän rakenne välittyy eri tasoille identtisenä. Tiukasti estottoman Closin-verkon yksittäiset kytkimet muodostetaan tiukasti estottomista Closin-verkoista, jne. Tiukasti estottomista kytkimistä voidaan saada aikaa uudelleen järjestettävästi estoton kenttä (CLOSin teoreema). (Näytämme jatkossa että ) Uudelleen järjestettävästi estottomista moduuleista voidaan rakentaa tiukasti estoton kenttä! Rka/ML -k00 Tiedonvälitystekniikka 7-6 Page 8

9 Kytkentäkentän muodostamisen problematiikkaa Ihanteellinen ratkaisu: Vähän kytkentäpisteitä Pieni kompleksisuus Yksinkertainen muodostaa NxN -kytkentäkenttä, miten valita P ja Q??? Kytkentäkentän on laidoiltaan symmetrinen, joten oletuksena valitaan P mahdollisimman pieneksi (esim ) --> Q = N/P. Toisaalta tiukasti estottoman kytkentäkentän ongelma on kentän keskiportaan koon nopea kasvaminen pienillä P:n arvoilla. Tekijä q viittaa multipleksointikertoimeen --> täytyy jatkaa rekursiota niin kauan, että käytössä olevat komponentit pystyvät vastaavaan nopeuteen! Rka/ML -k00 Tiedonvälitystekniikka 7-7 x-kytkinten tapaus Mikäli kentän koko on kahden potenssi ( N = n ), voidaan kenttä muodostaa valitsemalla P= ja Q=N/ N/xN/ N/xN/ Rka/ML -k00 Tiedonvälitystekniikka 7-8 Page 9

10 Esim N=8 ) N/xN/ N/xN/ ) Baseline -verkko Käänteinen Baseline -verkko BENES -verkko Rka/ML -k00 Tiedonvälitystekniikka 7-9 Benes -verkko Benes -verkko on rekursiivisesti x -kytkimistä muodostettu uudelleen järjesteltävä verkko. -puoliverkko tunnetaan nimellä baseline -verkko -puoliverkko tunnetaan nimellä käänteinen baseline - verkko Benes -verkossa on (log N-) porrasta. Kytkentäpisteiden lukumäärä on 4(N/)(log N-) = 4Nlog N-N ~ 4Nlog N Rka/ML -k00 Tiedonvälitystekniikka 7-0 Page 0

11 Tiukasti estottoman kytkentäkentän muodostaminen rekursiolla Tiukasti estoton kytkentäkenttä voidaan muodostaa aivan vastaavasti mutta kentän koko kasvaa hyvin nopeasti. Esim. NxN -kenttä muodostettuna Nx N -kytkimistä Valitaan N = n ja n = l, jolloin kenttä rakentuu portaassa n/ kappaleesta ( n/ x n/ )-kytkimiä portaassa (x n/ -) kappaleesta ( n/ x n/ )-kytkimiä 3 portaassa n/ kappaleesta ( n/ x n/ )-kytkimiä Rka/ML -k00 Tiedonvälitystekniikka 7 - Jatkoa edelliseen Matemaattisen tarkastelun helpottamiseksi valitaan kytkinten koot hieman toisin. portaassa n/ kappaleesta ( n/ x n/+ )-kytkimiä portaassa (x n/ )kappaleesta( n/ x n/ )-kytkimiä 3 portaassa n/ kappaleesta ( n/+ x n/ )-kytkimiä ( n/ x n/+ )=( n/ x n/ ) Yhteensä 6( n/ )kappaletta( n/ x n/ )-kytkimiä Rekursiivinen palautuskaava F( n )= 6( n/ )F( n/ )=6 l ( n/+n/4+n/8+ + )F( ) ~N(log N),58 F() = 4N(log N),58 Tiukasti estoton kenttä sisältää eksponentin verran enemmän kytkimiä kuin uudelleen järjesteltävä kenttä Rka/ML -k00 Tiedonvälitystekniikka 7 - Page

12 Cantor -verkko on tapa muodostaa tiukasti estottomia kenttiä pienemmällä kytkentäpiste määrällä Peruspalikkana on BENES -verkko. Rka/ML -k00 Tiedonvälitystekniikka 7-3 Cantor -verkko Cantor -verkko on tapa muodostaa tiukasti estottomia kenttiä pienemmällä kytkentäpiste määrällä. Log N rinnakkaista Benes verkkoa Ntuloa N lähtöä Log Nlähtöä Rka/ML -k00 Tiedonvälitystekniikka 7-4 Page

13 Cantor verkon ominaisuuksia Kytkentäpisteiden lkm = 4 Nlog N log N = 4N(log N) jos kanavointilaitteita ei lasketa. Cantor verkko on tiukasti estoton! Todistus: Merkataan rinnakkaisten Benes verkkojen määrää m ja Benes portaan numeroa k ja A(k) - portaassa k yhdestä Cantor verkon tulosta ilman uudelleen järjestelyä saavutettavien Benes -kytkinten määrä. A() = m. A() = A(). A(3) = A(). A(k) =A(k ) k = A(k ) k = k- A() (k ) k A(logN) = logn m (logν ) logn 4 = Nm (logν )Ν Rka/ML -k00 Tiedonvälitystekniikka 7-5 Cantor todistus jatkuu Nm (logn )N > Nm 4 ÿ m > logn. Eli jos rinnakkaisia Benes verkkoja on logn kappaletta, Cantor verkko on tiukasti estoton. Ts. Tiukasti estoton Cantor verkko muodostuu laittamalla rinnan logn kappaletta uudelleen järjestettävästi estottomia Benes verkkoja. Rka/ML -k00 Tiedonvälitystekniikka 7-6 Page 3

14 Cantor-verkossa saavutettavien kytkinten määrä Log N rinnakkaista Benes verkkoa Ntuloa N lähtöä Log Nlähtöä A() = A() (ilman uudelleen järjestelyä) Kytkimestä saavutettavien lähtöjen määrä Rka/ML -k00 Tiedonvälitystekniikka 7-7 Numeerinen esimerkki Cantor verkosta N = 3 x 048 = m=logn=6 Demultiplekseissa lähtöjä = 6 kappaletta Multipleksereissa tuloja = 6 kappaletta Muxeja = kappaletta Demuxeja = kappaletta Benes verkkoja = 6 kappaletta Benes verkoissa portaita = logn - = x6- = 3 kappaletta Benes verkoissa kytkimiä = Nlog N= 6 *3 M. kussakin Rka/ML -k00 Tiedonvälitystekniikka 7-8 Page 4

15 Kytkentöjen kokonaismäärä kentässä I O I O Yksi yhteen C ={(i,o) i I, o O} (i,o) C ja (i,o ) C ÿ o = o (i,o) C ja (i,o) C ÿ i = i Yksi moneen C ={(i,n i ) i I, n i O} C - Kytkentöjen kuvaus tai yksi kentän tila Rka/ML -k00 Tiedonvälitystekniikka 7-9 Kytkentäkentän kompleksisuus Kytkentäkentän kompleksisuus on likimain sama kuin kytkentäpisteiden lukumäärä. G on kytkentäkentän erilaisten, sallittujen kytkentöjen C{i,o} kuvaus. ζ(g) on log (G) eli logaritmi erilaisten, sallittujen kytkentöjen määrästä. ( ~ kytkentäpisteiden lukumäärä) ζ(g) käytetään kytkentäkentän kompleksisuuden aproksimoinnissa, sillä NxN -ristikytkentämatriisi sisältää suurimman määrän kytkentäpisteitä vastaavan kokoisista kytkentäkentistä. Mikäli ristikytkentämatriisissa on R-kytkentäpistettä, on siinä maksimissaan R erillistä tilaa (jokaisen kytkentäpisteen auki/kiinni -tila), minkä takia ζ <= R (osa ratkaisuista ei ole sallittuja). Rka/ML -k00 Tiedonvälitystekniikka 7-30 Page 5

16 Kompleksisuuden alaraja Oletetaan että kytkentäkenttä on NxN ja sen rakenne on täysiulotteinen. G=N! ζ = log (N!) ~ Nlog (N) -,44N + ½log (N) Benes -verkkolle on ζ ~ (N/)(log N-) = Nlog (N)-½N eli likimain minimimäärä kytkimiä. Rka/ML -k00 Tiedonvälitystekniikka 7-3 Benes -verkon kasvu Kytkinten lukumäärä BENES -verkko = N/ Baseline verkko Käänteinen baseline verkko Porrasten lukumäärä = log N - Kytkentäpisteiden lukumäärä on porrasten lukumäärä kytkinten lkm portaassa = 4 N/ (log ( N -) 4N log N Rka/ML -k00 Tiedonvälitystekniikka 7-3 Page 6

Kytkentäkentät - Rekursio, Cantor-verkko. Kytkentäkentän ominaisarvoja

Kytkentäkentät - Rekursio, Cantor-verkko. Kytkentäkentän ominaisarvoja Kytkentäkentät - Rekursio, Cantor-verkko Kertaus Estottomuus Uudelleen järjestely Tiukasti estoton Yleinen kolmiportainen verkko Closin -verkko Benes -verkko Cantor -verkko Kytkentäpisteet ja kompleksisuus

Lisätiedot

Kytkentäkentät, luento 2 - Kolmiportaiset kentät

Kytkentäkentät, luento 2 - Kolmiportaiset kentät Kytkentäkentät, luento - Kolmiportaiset kentät Kolmiportaiset kytkentäkentät - esitystapoja ja esimerkkejä Kytkentäkenttien vertailuperusteet ƒ Estottomuus, looginen syvyys, ajokyky Closin -verkko Paull

Lisätiedot

Kytkentäkentät, luento 2 - Kolmiportaiset kentät

Kytkentäkentät, luento 2 - Kolmiportaiset kentät Kytkentäkentät, luento - Kolmiportaiset kentät Kolmiportaiset kytkentäkentät - esitystapoja ja esimerkkejä Kytkentäkenttien vertailuperusteet Estottomuus, looginen syvyys, ajokyky Closin -verkko Paull

Lisätiedot

Kytkentäfunktioiden monimutkaisuuden alaraja, Copy-funktio, Itsereitittävyys

Kytkentäfunktioiden monimutkaisuuden alaraja, Copy-funktio, Itsereitittävyys Kytkentäfunktioiden monimutkaisuuden alaraja, Copy-funktio, tsereitittävyys Rka/ML -k2 Tiedonvälitystekniikka 8-1 Kurssin kuva välitysjärjestelmästä H.323 or SP P SP or SUP PABX CAS, R2 SD Kytkentäkenttä

Lisätiedot

Kytkentäfunktioiden monimutkaisuuden alaraja, Copy-funktio, Itsereitittävyys

Kytkentäfunktioiden monimutkaisuuden alaraja, Copy-funktio, Itsereitittävyys Kytkentäfunktioiden monimutkaisuuden alaraja, Copy-funktio, tsereitittävyys Rka/ML -k99 Tiedonvälitystekniikka 12-1 Luentoaikataulu 18.2.99 Kytkentäkenttien monimutkaisuus, itsereitittävyys 25.2.99 Kytkentäkenttien

Lisätiedot

Kytkentäfunktioiden monimutkaisuuden alaraja, Copy-funktio, Itsereitittävyys

Kytkentäfunktioiden monimutkaisuuden alaraja, Copy-funktio, Itsereitittävyys Kytkentäfunktioiden monimutkaisuuden alaraja, Copy-funktio, tsereitittävyys Rka/ML -k98 Tiedonvälitystekniikka 12-1 Kopioiden muodostus binääriverkolla Kopiointi toteutetaan verkkoa edeltävällä levityspuulla,

Lisätiedot

Piirikytkentäiset kytkentäkentät

Piirikytkentäiset kytkentäkentät Piirikytkentäiset kytkentäkentät Mitä ja miksi Tilakytkentä Aikakytkentä Analogiat Tila-tila Aika-tila Kaksiportaiset kytkentäkentät AA AT TA TT Rka/ML -k00 Tiedonvälitystekniikka I 4 - Kurssin kuva välitysjärjestelmästä

Lisätiedot

Kytkentäkentän teknologia

Kytkentäkentän teknologia Kytkentäkentän teknologia Kertaus kentän rakenteeseen vaikuttavat teknologiset tekijät Huom. tätä ei löydy kirjasta! Rka/ML -k00 Tiedonvälitystekniikka 9 - Kurssin kuva välitysjärjestelmästä H.33 or SIP

Lisätiedot

Piirikytkentäiset kytkentäkentät. Kapeakaistakenttä kytkee PCM-aikavälejä

Piirikytkentäiset kytkentäkentät. Kapeakaistakenttä kytkee PCM-aikavälejä Piirikytkentäiset kytkentäkentät Mitä ja miksi Aikakytkentä Tilakytkentä Analogiat Tila-tila Aika-tila AA AT TA TT Rka/ML -k000 Tiedonvälitystekniikka I 4 - Kapeakaistakenttä kytkee PCM-aikavälejä PCM30

Lisätiedot

Kytkentäkentän teknologia

Kytkentäkentän teknologia Kytkentäkentän teknologia Kertaus kentän rakenteeseen vaikuttavat teknologiset tekijät Huom. tätä ei löydy kirjasta! Rka/ML -k99 Tiedonvälitystekniikka I 0 - Kertaus - Tilaporras - esimerkki Tilakytkin

Lisätiedot

Kytkentäkentän teknologia

Kytkentäkentän teknologia Kytkentäkentän teknologia Kertaus kentän rakenteeseen vaikuttavat teknologiset tekijät Huom. tätä ei löydy kirjasta! Rka/ML -k000 Tiedonvälitystekniikka I 9 - Kertaus - Tilaporras - esimerkki Tilakytkin

Lisätiedot

Televerkon synkronointi

Televerkon synkronointi Televerkon synkronointi ITU-T:n suositukset G.810, G.811, G.812, G.823 Rka/ML -k2002 Tiedonvälitystekniikka 5a - 1 Kurssin kuva välitysjärjestelmästä H.323 or SIP IP SIP or ISUP PABX CAS, R2 ISDN Kytkentäkenttä

Lisätiedot

TCAP - Transaction Capabilities Sovellusosaa käyttävät

TCAP - Transaction Capabilities Sovellusosaa käyttävät AP - Transaction Capabilities Sovellusosaa käyttävät Mobiilipalvelut (tilaajien roamaus) Älyverkkopalvelut Puhejohdoista riippumattomat palvelut (look-ahead ) O&M sovellukset jne AP tarjoaa geneerisiä

Lisätiedot

Algoritmit 2. Luento 8 To Timo Männikkö

Algoritmit 2. Luento 8 To Timo Männikkö Algoritmit 2 Luento 8 To 4.4.2019 Timo Männikkö Luento 8 Algoritmien analysointi Algoritmien suunnittelu Rekursio Osittaminen Rekursioyhtälöt Rekursioyhtälön ratkaiseminen Master-lause Algoritmit 2 Kevät

Lisätiedot

Puhetie, PCM järjestelmä, johtokoodi

Puhetie, PCM järjestelmä, johtokoodi Puhetie, PCM järjestelmä, johtokoodi PCM ~ Pulse Code Modulation Näytteenotto Kvantisointi ÿ Lineaarinen ÿ Epälineaarinen Kvantisointisärö TDM-kanavointi PCM-kehysrakenne, CRC -ylikehys PCM, PCM, PCM 8,

Lisätiedot

Verkon värittämistä hajautetuilla algoritmeilla

Verkon värittämistä hajautetuilla algoritmeilla Verkon värittämistä hajautetuilla algoritmeilla 5 12 30 19 72 34 Jukka Suomela 15 77 18 4 9. tammikuuta 2012 19 2 68 Verkko 2 Verkko solmu 3 Verkko solmu kaari 4 Hajautettu järjestelmä solmu (tietokone)

Lisätiedot

Capacity Utilization

Capacity Utilization Capacity Utilization Tim Schöneberg 28th November Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run

Lisätiedot

Tiedonvälitystekniikka 1-3 ov. Kurssin sisältö ja tavoite

Tiedonvälitystekniikka 1-3 ov. Kurssin sisältö ja tavoite Tiedonvälitystekniikka 1-3 ov Luennoitsija: Ma prof. Raimo Kantola raimo.kantola@hut.fi, SG 210 ke 10-12 Assistentti: Erik. Tutkija Mika Ilvesmäki (lynx@tct.hut.fi) Tiedotus: http://www.tct.hut.fi/opetus/s38110/...

Lisätiedot

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot

Lisätiedot

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit 811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi

Lisätiedot

Nopea kertolasku, Karatsuban algoritmi

Nopea kertolasku, Karatsuban algoritmi Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa

Lisätiedot

Estojärjestelmä (loss system, menetysjärjestelmä)

Estojärjestelmä (loss system, menetysjärjestelmä) J. Virtamo 38.3143 Jonoteoria / Estojärjestelmä 1 Estojärjestelmä (loss system, menetysjärjestelmä) Tarkastellaan perinteistä puhdasta estojärjestelmää, jossa on annettu n = johtojen (varattavien elementtien)

Lisätiedot

Efficiency change over time

Efficiency change over time Efficiency change over time Heikki Tikanmäki Optimointiopin seminaari 14.11.2007 Contents Introduction (11.1) Window analysis (11.2) Example, application, analysis Malmquist index (11.3) Dealing with panel

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

Puhetie, PCM järjestelmä, johtokoodi

Puhetie, PCM järjestelmä, johtokoodi Puhetie, PCM järjestelmä, johtokoodi PCM~PulseCodeModulation Näytteenotto Kvantisointi ÿ Lineaarinen ÿ Epälineaarinen Kvantisointisärö TDM-kanavointi PCM-kehysrakenne, CRC -ylikehys PCM, PCM, PCM 8, PCM

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015)

58131 Tietorakenteet ja algoritmit (syksy 2015) 58131 Tietorakenteet ja algoritmit (syksy 2015) Harjoitus 2 (14. 18.9.2015) Huom. Sinun on tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. 1. Erään algoritmin suoritus vie 1 ms, kun syötteen

Lisätiedot

Tiedonvälitystekniikka 1

Tiedonvälitystekniikka 1 Tiedonvälitystekniikka 1-3 ov Luennoitsija: Ma prof. Raimo Kantola raimo.kantola@hut.fi, SE 323 ke 10-12 Assistentti: Erikoistutkija Mika Ilvesmäki (lynx@tct.hut.fi) Tiedotus: http://www.tct.hut.fi/opetus/s38110/...

Lisätiedot

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:

Lisätiedot

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n)) Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia

Lisätiedot

Tutkimusmenetelmät-kurssi, s-2004

Tutkimusmenetelmät-kurssi, s-2004 Algoritmitutkimuksen menetelmistä Tutkimusmenetelmät-kurssi, s-2004 Pekka Kilpeläinen Kuopion yliopisto Tietojenkäsittelytieteen laitos Algoritmitutkimuksen menetelmistä p.1/20 Sisällys Tänään Tietojenkäsittelytiede

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

Digitaalilaitteen signaalit

Digitaalilaitteen signaalit Digitaalitekniikan matematiikka Luku 3 Sivu 3 (9) Digitaalilaitteen signaalit Digitaalilaitteeseen tai -piiriin tulee ja siitä lähtee digitaalisia signaaleita yksittäisen signaalin arvo on kunakin hetkenä

Lisätiedot

1.4 Funktioiden kertaluokat

1.4 Funktioiden kertaluokat 1.4 Funktioiden kertaluokat f on kertaluokkaa O(g), merk. f = O(g), jos joillain c > 0, m N pätee f(n) cg(n) aina kun n m f on samaa kertaluokkaa kuin g, merk. f = Θ(g), jos joillain a, b > 0, m N pätee

Lisätiedot

Similaarisuus. Määritelmä. Huom.

Similaarisuus. Määritelmä. Huom. Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP

Lisätiedot

Introduction to exterior routing

Introduction to exterior routing Introduction to exterior routing CIDR-1 Autonomous Systems AS Autonomous System on Internetin hallinnollinen alue, eli osa verkosta, jolla on yksi omistaja. AS:lla käytössä on yleensä yksi (sisäinen) reititysprotokolla,

Lisätiedot

Matriisit. Määritelmä 1 Reaaliluvuista a ij, missä i = 1,..., k ja j = 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A =

Matriisit. Määritelmä 1 Reaaliluvuista a ij, missä i = 1,..., k ja j = 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A = 1 / 21 Määritelmä 1 Reaaliluvuista a ij, missä i 1,..., k ja j 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A... a k1 a k2 a kn sanotaan k n matriisiksi. Usein merkitään A [a ij ]. Lukuja

Lisätiedot

Tiedonvälitystekniikka 1

Tiedonvälitystekniikka 1 Tiedonvälitystekniikka 1-3 ov Luennoitsija: Prof. Raimo Kantola raimo.kantola@hut.fi, SE 323 ke 10-12 Assistentit: Piia Pulkkinen (pulkkine@tct.hut.fi) Erikoistutkija Mika Ilvesmäki (lynx@tct.hut.fi) Tiedotus:

Lisätiedot

Diskreetin matematiikan perusteet Esimerkkiratkaisut 3 / vko 10

Diskreetin matematiikan perusteet Esimerkkiratkaisut 3 / vko 10 Diskreetin matematiikan perusteet Esimerkkiratkaisut / vko 0 Tuntitehtävät - lasketaan alkuviikon harjoituksissa ja tuntitehtävät - loppuviikon harjoituksissa. Kotitehtävät - tarkastetaan loppuviikon harjoituksissa.

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta AVL-puut eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta pohjana jo esitetyt binäärihakupuiden operaatiot tasapainotus vie pahimmillaan lisäajan lisäys- ja

Lisätiedot

16. Allocation Models

16. Allocation Models 16. Allocation Models Juha Saloheimo 17.1.27 S steemianalsin Optimointiopin seminaari - Sks 27 Content Introduction Overall Efficienc with common prices and costs Cost Efficienc S steemianalsin Revenue

Lisätiedot

Alternative DEA Models

Alternative DEA Models Mat-2.4142 Alternative DEA Models 19.9.2007 Table of Contents Banker-Charnes-Cooper Model Additive Model Example Data Home assignment BCC Model (Banker-Charnes-Cooper) production frontiers spanned by convex

Lisätiedot

TCAP - Transaction Capabilities Sovellusosaa käyttävät

TCAP - Transaction Capabilities Sovellusosaa käyttävät AP - Transaction Capabilities Sovellusosaa käyttävät Mobiilipalvelut (tilaajien roamaus) Älyverkkopalvelut Puhejohdoista riippumattomat palvelut (look-ahead ) O&M sovellukset jne AP tarjoaa geneerisiä

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 30. syyskuuta 015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä30.

Lisätiedot

Vuonohjaus: ikkunamekanismi

Vuonohjaus: ikkunamekanismi J. Virtamo 38.3141 Teleliikenneteoria / Ikkunointiin perustuva vuonohjaus 1 Vuonohjaus: ikkunamekanismi Kuittaamattomina liikkeellä olevien segmenttien (data unit) lkm W (ikkuna) Lähetyslupien kokonaismäärä

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

Digitaalitekniikan matematiikka Luku 3 Sivu 1 (19) Kytkentäfunktiot ja perusporttipiirit

Digitaalitekniikan matematiikka Luku 3 Sivu 1 (19) Kytkentäfunktiot ja perusporttipiirit Digitaalitekniikan matematiikka Luku 3 Sivu (9) && Digitaalitekniikan matematiikka Luku 3 Sivu 2 (9) Johdanto Tässä luvussa esitetään digitaalilaitteen signaalit ja digitaalipiirien perustyypit esitellään

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 0. syyskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä0. ym.,

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A00 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 0. syyskuuta 0 Joukko-oppi ja logiikka Todistukset logiikassa Predikaattilogiikka Induktioperiaate Relaatiot

Lisätiedot

Kombinatorisen logiikan laitteet

Kombinatorisen logiikan laitteet Kombinatorisen logiikan laitteet Kombinatorinen logiikka tarkoittaa logiikkaa, jossa signaali kulkee suoraan sisääntuloista ulostuloon Sekventiaalisessa logiikassa myös aiemmat syötteet vaikuttavat ulostuloon

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

Algoritmit 1. Luento 13 Ma Timo Männikkö

Algoritmit 1. Luento 13 Ma Timo Männikkö Algoritmit 1 Luento 13 Ma 26.2.2018 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward. START START SIT 1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward. This is a static exercise. SIT STAND 2. SIT STAND. The

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

Algoritmit 2. Luento 14 Ke Timo Männikkö

Algoritmit 2. Luento 14 Ke Timo Männikkö Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Algoritmit 1. Luento 12 Ti Timo Männikkö

Algoritmit 1. Luento 12 Ti Timo Männikkö Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit

Lisätiedot

Lineaarialgebra a, kevät 2018 Harjoitusta 5 Maplella

Lineaarialgebra a, kevät 2018 Harjoitusta 5 Maplella Lineaarialgebra a, kevät 2018 Harjoitusta 5 Maplella Tehtävä 1. Determinantti = 0, kun 2 samaa saraketta restart; with(linalg): Induktiotodistus matriisin koon ( ) suhteen. Väite. Jos ja n x n -matriisissa

Lisätiedot

Digitaalitekniikan matematiikka Luku 5 Sivu 1 (22) Lausekkeiden sieventäminen F C F = B + A C. Espresso F = A (A + B) = A A + A B = A B

Digitaalitekniikan matematiikka Luku 5 Sivu 1 (22) Lausekkeiden sieventäminen F C F = B + A C. Espresso F = A (A + B) = A A + A B = A B igitaalitekniikan matematiikka Luku 5 Sivu (22).9.2 e = + = ( + ) = + = Espresso igitaalitekniikan matematiikka Luku 5 Sivu 2 (22).9.2 e Johdanto Tässä luvussa esitetään perusteet lausekemuodossa esitettyjen

Lisätiedot

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1 Tietorakenteet ja algoritmit syksy 2012 Laskuharjoitus 1 1. Tietojenkäsittelijä voi ajatella logaritmia usein seuraavasti: a-kantainen logaritmi log a n kertoo, kuinka monta kertaa luku n pitää jakaa a:lla,

Lisätiedot

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 81122P (4 ov.) 30.5.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan

Lisätiedot

Rinnakkaistietokoneet luento S

Rinnakkaistietokoneet luento S Rinnakkaistietokoneet luento 3 521475S Rinnakkaiset Numeeriset Algoritmit Silmukattomat algoritmit Eivät sisällä silmukka lauseita kuten DO,FOR tai WHILE Nopea suorittaa Yleisimmässä muodossa koostuu peräkkäisistä

Lisätiedot

4 Matemaattinen induktio

4 Matemaattinen induktio 4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla

Lisätiedot

Capacity utilization

Capacity utilization Mat-2.4142 Seminar on optimization Capacity utilization 12.12.2007 Contents Summary of chapter 14 Related DEA-solver models Illustrative examples Measure of technical capacity utilization Price-based measure

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

Työmäärän arviointi. Vaihtoehtoja. Sami Kollanus TJTA330 Ohjelmistotuotanto

Työmäärän arviointi. Vaihtoehtoja. Sami Kollanus TJTA330 Ohjelmistotuotanto Työmäärän arviointi Sami Kollanus TJTA330 Ohjelmistotuotanto 20.3. Vaihtoehtoja Arvioidaan projektin jälkeen (onnistuu varmasti) Verrataan karkeasti samanlaisiin aiempiin projekteihin Ositetaan projekti

Lisätiedot

Työmäärän arviointi. Vaihtoehtoja. Arviointiprosessi. Sami Kollanus TJTA330 Ohjelmistotuotanto

Työmäärän arviointi. Vaihtoehtoja. Arviointiprosessi. Sami Kollanus TJTA330 Ohjelmistotuotanto Työmäärän arviointi Sami Kollanus TJTA330 Ohjelmistotuotanto 20.3. Vaihtoehtoja Arvioidaan projektin jälkeen (onnistuu varmasti) Verrataan karkeasti samanlaisiin aiempiin projekteihin Ositetaan projekti

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A

Lisätiedot

Tietorakenteet (syksy 2013)

Tietorakenteet (syksy 2013) Tietorakenteet (syksy 2013) Harjoitus 1 (6.9.2013) Huom. Sinun on osallistuttava perjantain laskuharjoitustilaisuuteen ja tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. Näiden laskuharjoitusten

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä

Lisätiedot

PAVIRO End Of Line Slave Module

PAVIRO End Of Line Slave Module PAVIRO End Of Line Slave PVA-1WEOL fi Huomautuksia asennuksesta PAVIRO End Of Line Slave Sisällysluettelo fi 3 Sisällysluettelo 1 Tietoja lyhyesti 4 2 Asennus 5 3 Tekniset tiedot 9 4 Standardit ja yhteensopivuus

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNKK LKTRONKK. välikoe 0.3.006. Saat vastata vain neljään tehtävään!. Laske jännite U. R = =Ω, R 3 =3Ω, = =4V, 3 =6V, = + R + R 3 + U 3. Konkka on varautunut jännitteeseen u C (0) =. Kytkin

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 30. syyskuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, 30.

Lisätiedot

Potenssi eli potenssiin korotus on laskutoimitus, jossa luku kerrotaan itsellään useita kertoja. Esimerkiksi 5 4 = Yleisesti.

Potenssi eli potenssiin korotus on laskutoimitus, jossa luku kerrotaan itsellään useita kertoja. Esimerkiksi 5 4 = Yleisesti. x 3 = x x x Potenssi eli potenssiin korotus on laskutoimitus, jossa luku kerrotaan itsellään useita kertoja. Esimerkiksi 4 = Yleisesti a n = a a a n kappaletta a n eksponentti kuvaa tuloa, jossa a kerrotaan

Lisätiedot

Käänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla

Käänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla Käänteismatriisi, L5 1 Tässä kalvosarjassa käsittelemme neliömatriiseja. Ilman asian jatkuvaa toistamista oletamme seuraavassa, että kaikki käsittelemämme matriisit ovat neliömatriiseja. Määritelmä. Olkoon

Lisätiedot

ADAP-KOOL System Manager 350 - uusi m2 F O O D R E T A I L

ADAP-KOOL System Manager 350 - uusi m2 F O O D R E T A I L ADAP-KOOL System Manager 350 - uusi m2 Sisällys 1. Järjestelmä yleisesti 2. Hyödyt ja edut 1. Käyttökohteet 2. Käyttäjät 3. SM350 faktat 1. Toiminnot 2. Säätimien tuki 3. MMI 4. Eri järjestelmä vaihtoehtoja

Lisätiedot

Laskuharjoitus 2 ( ): Tehtävien vastauksia

Laskuharjoitus 2 ( ): Tehtävien vastauksia TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 2 (11.9.2013): Tehtävien vastauksia 1. Eräässä kuvitteellisessa radioverkossa yhdessä radiokanavassa voi olla menossa samanaikaisesti

Lisätiedot

4 Tehokkuus ja algoritmien suunnittelu

4 Tehokkuus ja algoritmien suunnittelu TIE-20100 Tietorakenteet ja algoritmit 52 4 Tehokkuus ja algoritmien suunnittelu Tässä luvussa pohditaan tehokkuuden käsitettä ja esitellään kurssilla käytetty kertaluokkanotaatio, jolla kuvataan algoritmin

Lisätiedot

S Merkinannot (1)

S Merkinannot (1) S38.110 Merkinannot (1) Merkinantojen mallinnus Signaalivuokaaviona Tilakoneena Päätelaitemerkinanto Pulssikoodi Äänitaajuuskoodi Verkkomerkinanto Rekisterimerkit Johtomerkit R2 Rka/ML -k2002 Tiedonvälitystekniikka

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

Suunnittelu / Asennusohjeet

Suunnittelu / Asennusohjeet Suunnittelu / Asennusohjeet Versio 1.0 (041110) Sisältö 1 PERUSTA 2 2 SUUNNITTELU 2 2.1 Esisuunnittelu 2 2.1.1 Järjestelmän laajuus 2 2.1.2 Toimintakuvaukset 2 2.2 Komponenttien sijoitukset 3 2.2.1 Tasopiirustukset

Lisätiedot

ELEKTRONISET TOIMINNOT

ELEKTRONISET TOIMINNOT LUENTO 2 ALUKSI OLI... EHKÄ MIELENKIINTOISIN SUUNNITTELIJAN TEHTÄVÄ ON TOTEUTTAA LAITE (JA EHKÄ MENETELMÄKIN) JONKIN ONGELMAN RATKAISEMISEEN PUHTAALTA PÖYDÄLTÄ EI (AINAKAAN SAMALLA PERIAATTEELLA) VALMIITA

Lisätiedot

Algoritmi on periaatteellisella tasolla seuraava:

Algoritmi on periaatteellisella tasolla seuraava: Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Introduction to exterior routing

Introduction to exterior routing Introduction to exterior routing CIDR-1 Autonomous Systems AS - Autonomous System on Internetin hallinnollinen alue, eli osa verkosta, jolla on yksi omistaja. AS:lla käytössä on yleensä yksi (sisäinen)

Lisätiedot

Other approaches to restrict multipliers

Other approaches to restrict multipliers Other approaches to restrict multipliers Heikki Tikanmäki Optimointiopin seminaari 10.10.2007 Contents Short revision (6.2) Another Assurance Region Model (6.3) Cone-Ratio Method (6.4) An Application of

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

C C. x 2. x 3 x 3. Lause 3SAT p m VC Todistus. Olk. φ = C 1 C 2 C m 3-cnf-kaava, jossa esiintyvät muuttujat. φ toteutuva:

C C. x 2. x 3 x 3. Lause 3SAT p m VC Todistus. Olk. φ = C 1 C 2 C m 3-cnf-kaava, jossa esiintyvät muuttujat. φ toteutuva: Lause 3SAT p m VC Todistus. Olk. φ = C 1 C C m 3-cnf-kaava, jossa esiintyvät muuttujat x 1,..., x n. Vastaava solmupeiteongelman tapaus G, k muodostetaan seuraavasti. G:ssä on solmu kutakin literaalia

Lisätiedot

1. Esitä rekursiivinen määritelmä lukujonolle

1. Esitä rekursiivinen määritelmä lukujonolle Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)

Lisätiedot

Introduction to exterior routing

Introduction to exterior routing Introduction to exterior routing CIDR-1 Autonomous Systems AS Autonomous System on Internetin hallinnollinen alue, eli osa verkosta, jolla on yksi omistaja. AS:lla käytössä on yleensä yksi (sisäinen) reititysprotokolla,

Lisätiedot

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten

Lisätiedot

Harjoitus 1 -- Ratkaisut

Harjoitus 1 -- Ratkaisut Kun teet harjoitustyöselostuksia Mathematicalla, voit luoda selkkariin otsikon (ja mahdollisia alaotsikoita...) määräämällä soluille erilaisia tyylejä. Uuden solun tyyli määrätään painamalla ALT ja jokin

Lisätiedot