Capacity Utilization
|
|
- Pirkko Laakso
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Capacity Utilization Tim Schöneberg 28th November
2 Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run capacity utilization Summary Home Assignment
3 Introduction With help of capacity utilization measures we can determine if it is possible to increase some of a DMU s output and make it more efficient by increasing some inputs without worsening the other outputs
4 Fixed vs.variable input ressources Some inputs are variable and can be changed Employees, office hours Some are fixed and cannot be altered Invested capital, real estate
5 Fixed vs.variable input ressources We define for each Output vector Fixed input vector Variable input vector
6 Technical capacity utilization We solve the SBM-O restricted (Ch 4.7) For each given
7 Technical capacity utilization We get the optimal solution, With help of this solution we define The values define a point on the efficient frontier within the PPS defined by the constraints [ ]
8 Technical capacity utilization Now we introduce a new variable, the expansion rate This leads to because of )
9 Technical capacity utilization This tells us that is the average expansion rate of all In this case, means that the DMU can expand some outputs without worsening other outputs with the same inputs
10 Technical capacity utilization Now we solve SBM-O relaxed Constraints on variable inputs are removed New solution,
11 Technical capacity utilization For a given solution, We obtain variable inputs Which can be greater or less than the observed inputs from the restricted model ( ) This means, we can use more or less of the variable inputs than in the restricted model
12 Technical capacity utilization With the help of and we can define a capacity utilization measure means < Thus, there could be more outputs if more variable inputs would be used
13 Technical capacity utilization With the help of and vectors, we can define This is an capacity utilization measure for every single variable input We can now say which variable inputs can be increased
14 Price based capacity utilization measure We now assume to know the prices Profit for outputs Cost for variable inputs Prices are not identical for each DMU Revenue can be expressed as Outputs Inputs
15 Price based capacity utilization measure We have a price-based PPS with Where
16 Price based capacity utilization measure Now we solve three LP s for each DMU to determine Loss due to technical inefficiency Loss due to allocative inefficiency Loss due to capacity utilization
17 Price based capacity utilization measure Loss due to Technical inefficiency
18 Price based capacity utilization measure With the help of the optimal solution We define the efficient as This means, profits are always greater or equal and cost are always less or equal.
19 Price based capacity utilization measure In mathematical terms: and This leads to Thus, we can say that is the loss due to technical inefficiency
20 Price based capacity utilization measure Loss due to Allocative inefficiency Profit o Restricted Model (Ch 8.3.4)
21 Price based capacity utilization measure Loss due to Allocative inefficiency describes loss due to the price based input and output mix is called the loss due to allocative inefficiency
22 Price based capacity utilization measure Until now, we behaved like learned in chapter 8. But this time, we go further. We analyze how efficient the DMU could be if the variable inputs would not be restricted We relax to
23 Price based capacity utilization measure We get new relaxed profit model
24 Price based capacity utilization measure And now we can define the loss due to capacity utilization
25 Price based capacity utilization measure This leads us to the maximum Profit for this DMU and it s decomposition
26 Price based capacity utilization measure example
27 Long run and short run capacity utilization In this analysis, we have considered fixed variables as fixed This is not true in long run, because new investments can be made or new real estate can be bought To deal with this issue, we can also relax the fixed variables for long run capacity utilization
28 Long run and short run capacity utilization We get a new model
29 Long run and short run capacity utilization Now we can define the loss of profit due to the gap in long run and short run This gives us a new definition of maximum profit (Home Assignment)
30 Summary We learned the difference between fixed and variable inputs We learned how to measure capacity utilization When prices are unknown When prices are known Consider long and short run
31 Home Assignment There is one important assumption concerning returns to scale which makes this kind of analysis possible. What is it, and why is it necessary? (4P for a clear answer) Give a reasonable example for a fixed cost which can be relaxed in long run analysis. (3P for a reasonable answer) Make a decomposition of like shown on the slides for.(3p for decomposition)
32 Thank you for Listening!
The CCR Model and Production Correspondence
The CCR Model and Production Correspondence Tim Schöneberg The 19th of September Agenda Introduction Definitions Production Possiblity Set CCR Model and the Dual Problem Input excesses and output shortfalls
Capacity utilization
Mat-2.4142 Seminar on optimization Capacity utilization 12.12.2007 Contents Summary of chapter 14 Related DEA-solver models Illustrative examples Measure of technical capacity utilization Price-based measure
16. Allocation Models
16. Allocation Models Juha Saloheimo 17.1.27 S steemianalsin Optimointiopin seminaari - Sks 27 Content Introduction Overall Efficienc with common prices and costs Cost Efficienc S steemianalsin Revenue
Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu
Returns to Scale II Contents Most Productive Scale Size Further Considerations Relaxation of the Convexity Condition Useful Reminder Theorem 5.5 A DMU found to be efficient with a CCR model will also be
Efficiency change over time
Efficiency change over time Heikki Tikanmäki Optimointiopin seminaari 14.11.2007 Contents Introduction (11.1) Window analysis (11.2) Example, application, analysis Malmquist index (11.3) Dealing with panel
Alternative DEA Models
Mat-2.4142 Alternative DEA Models 19.9.2007 Table of Contents Banker-Charnes-Cooper Model Additive Model Example Data Home assignment BCC Model (Banker-Charnes-Cooper) production frontiers spanned by convex
Other approaches to restrict multipliers
Other approaches to restrict multipliers Heikki Tikanmäki Optimointiopin seminaari 10.10.2007 Contents Short revision (6.2) Another Assurance Region Model (6.3) Cone-Ratio Method (6.4) An Application of
Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)
Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
Mat Seminar on Optimization. Data Envelopment Analysis. Economies of Scope S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
Mat-2.4142 Seminar on Optimization Data Envelopment Analysis Economies of Scope 21.11.2007 Economies of Scope Introduced 1982 by Panzar and Willing Support decisions like: Should a firm... Produce a variety
The Viking Battle - Part Version: Finnish
The Viking Battle - Part 1 015 Version: Finnish Tehtävä 1 Olkoon kokonaisluku, ja olkoon A n joukko A n = { n k k Z, 0 k < n}. Selvitä suurin kokonaisluku M n, jota ei voi kirjoittaa yhden tai useamman
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
anna minun kertoa let me tell you
anna minun kertoa let me tell you anna minun kertoa I OSA 1. Anna minun kertoa sinulle mitä oli. Tiedän että osaan. Kykenen siihen. Teen nyt niin. Minulla on oikeus. Sanani voivat olla puutteellisia mutta
Tarua vai totta: sähkön vähittäismarkkina ei toimi? 11.2.2015 Satu Viljainen Professori, sähkömarkkinat
Tarua vai totta: sähkön vähittäismarkkina ei toimi? 11.2.2015 Satu Viljainen Professori, sähkömarkkinat Esityksen sisältö: 1. EU:n energiapolitiikka on se, joka ei toimi 2. Mihin perustuu väite, etteivät
Returns to Scale Chapters
Return to Scale Chapter 5.1-5.4 Saara Tuurala 26.9.2007 Index Introduction Baic Formulation of Retur to Scale Geometric Portrayal in DEA BCC Return to Scale CCR Return to Scale Summary Home Aignment Introduction
Information on preparing Presentation
Information on preparing Presentation Seminar on big data management Lecturer: Spring 2017 20.1.2017 1 Agenda Hints and tips on giving a good presentation Watch two videos and discussion 22.1.2017 2 Goals
Network to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi
Network to Get Work Tehtäviä opiskelijoille Assignments for students www.laurea.fi Ohje henkilöstölle Instructions for Staff Seuraavassa on esitetty joukko tehtäviä, joista voit valita opiskelijaryhmällesi
11. Models With Restricted Multipliers Assurance Region Method
. Models With Restricted Mltipliers Assrance Region Method Kimmo Krki 3..27 Esitelmä - Kimmo Krki Contents Introdction to Models With Restricted Mltipliers (Ch 6.) Assrance region method (Ch 6.2) Formlation
MRI-sovellukset. Ryhmän 6 LH:t (8.22 & 9.25)
MRI-sovellukset Ryhmän 6 LH:t (8.22 & 9.25) Ex. 8.22 Ex. 8.22 a) What kind of image artifact is present in image (b) Answer: The artifact in the image is aliasing artifact (phase aliasing) b) How did Joe
National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007
National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007 Chapter 2.4 Jukka Räisä 1 WATER PIPES PLACEMENT 2.4.1 Regulation Water pipe and its
Results on the new polydrug use questions in the Finnish TDI data
Results on the new polydrug use questions in the Finnish TDI data Multi-drug use, polydrug use and problematic polydrug use Martta Forsell, Finnish Focal Point 28/09/2015 Martta Forsell 1 28/09/2015 Esityksen
make and make and make ThinkMath 2017
Adding quantities Lukumäärienup yhdistäminen. Laske yhteensä?. Countkuinka howmonta manypalloja ballson there are altogether. and ja make and make and ja make on and ja make ThinkMath 7 on ja on on Vaihdannaisuus
Operatioanalyysi 2011, Harjoitus 2, viikko 38
Operatioanalyysi 2011, Harjoitus 2, viikko 38 H2t1, Exercise 1.1. H2t2, Exercise 1.2. H2t3, Exercise 2.3. H2t4, Exercise 2.4. H2t5, Exercise 2.5. (Exercise 1.1.) 1 1.1. Model the following problem mathematically:
Miksi Suomi on Suomi (Finnish Edition)
Miksi Suomi on Suomi (Finnish Edition) Tommi Uschanov Click here if your download doesn"t start automatically Miksi Suomi on Suomi (Finnish Edition) Tommi Uschanov Miksi Suomi on Suomi (Finnish Edition)
FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL
FinFamily PostgreSQL 1 Sisällys / Contents FinFamily PostgreSQL... 1 1. Asenna PostgreSQL tietokanta / Install PostgreSQL database... 3 1.1. PostgreSQL tietokannasta / About the PostgreSQL database...
DATA ENVELOPMENT ANALYSIS
Mat-2.4142 Seminar n Optimizatin DATA ENVELOPMENT ANALYSIS Scale Elasticity and Cngestin 14.11.2007 Cntents Intrductin Scale Elasticity in Prductin Cngestin Strng Cngestin Hme Assignment Cntents Intrductin
19. Statistical Approaches to. Data Variations Tuomas Koivunen S ysteemianalyysin. Laboratorio. Optimointiopin seminaari - Syksy 2007
19. Statistical Approaches to Data Variations Tuomas Koivunen 24.10.2007 Contents 1. Production Function 2. Stochastic Frontier Regressions 3. Example: Study of Texas Schools 4. Example Continued: Simulation
Kvanttilaskenta - 1. tehtävät
Kvanttilaskenta -. tehtävät Johannes Verwijnen January 9, 0 edx-tehtävät Vastauksissa on käytetty edx-kurssin materiaalia.. Problem False, sillä 0 0. Problem False, sillä 0 0 0 0. Problem A quantum state
MUSEOT KULTTUURIPALVELUINA
Elina Arola MUSEOT KULTTUURIPALVELUINA Tutkimuskohteena Mikkelin museot Opinnäytetyö Kulttuuripalvelujen koulutusohjelma Marraskuu 2005 KUVAILULEHTI Opinnäytetyön päivämäärä 25.11.2005 Tekijä(t) Elina
Categorical Decision Making Units and Comparison of Efficiency between Different Systems
Categorical Decision Making Units and Comparison of Efficiency between Different Systems Mat-2.4142 Optimointiopin Seminaari Source William W. Cooper, Lawrence M. Seiford, Kaoru Tone: Data Envelopment
Nuku hyvin, pieni susi -????????????,?????????????????. Kaksikielinen satukirja (suomi - venäjä) (www.childrens-books-bilingual.com) (Finnish Edition)
Nuku hyvin, pieni susi -????????????,?????????????????. Kaksikielinen satukirja (suomi - venäjä) (www.childrens-books-bilingual.com) (Finnish Edition) Click here if your download doesn"t start automatically
TAMPEREEN TEKNILLINEN YLIOPISTO Teollisuustalous
Muista merkita nimesi Ja opiskeliianumerosi iokaiseen paperiin. Myös optiseen lomakkeeseen. Älii irroita papereita nipusta. Kaikki paperit on palautettava. TAMPEREEN 290 10 10 Tuotannonohjauksen tentti
Tietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Taulukon edut Taulukon haitat Taulukon haittojen välttäminen Dynaamisesti linkattu lista Linkatun listan solmun määrittelytavat Lineaarisen listan toteutus dynaamisesti linkattuna
Toppila/Kivistö 10.01.2013 Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä.
..23 Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla -6 pistettä. Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (a) Lineaarisen kokonaislukutehtävän
SIMULINK S-funktiot. SIMULINK S-funktiot
S-funktio on ohjelmointikielellä (Matlab, C, Fortran) laadittu oma algoritmi tai dynaamisen järjestelmän kuvaus, jota voidaan käyttää Simulink-malleissa kuin mitä tahansa valmista lohkoa. S-funktion rakenne
Salasanan vaihto uuteen / How to change password
Salasanan vaihto uuteen / How to change password Sisällys Salasanakäytäntö / Password policy... 2 Salasanan vaihto verkkosivulla / Change password on website... 3 Salasanan vaihto matkapuhelimella / Change
Gap-filling methods for CH 4 data
Gap-filling methods for CH 4 data Sigrid Dengel University of Helsinki Outline - Ecosystems known for CH 4 emissions; - Why is gap-filling of CH 4 data not as easy and straight forward as CO 2 ; - Gap-filling
Travel Getting Around
- Location Olen eksyksissä. Not knowing where you are Voisitko näyttää kartalta missä sen on? Asking for a specific location on a map Mistä täällä on? Asking for a specific...wc?...pankki / rahanvaihtopiste?...hotelli?...huoltoasema?...sairaala?...apteekki?...tavaratalo?...ruokakauppa?...bussipysäkki?
C++11 seminaari, kevät Johannes Koskinen
C++11 seminaari, kevät 2012 Johannes Koskinen Sisältö Mikä onkaan ongelma? Standardidraftin luku 29: Atomiset tyypit Muistimalli Rinnakkaisuus On multicore systems, when a thread writes a value to memory,
AYYE 9/ HOUSING POLICY
AYYE 9/12 2.10.2012 HOUSING POLICY Mission for AYY Housing? What do we want to achieve by renting apartments? 1) How many apartments do we need? 2) What kind of apartments do we need? 3) To whom do we
1. Liikkuvat määreet
1. Liikkuvat määreet Väitelauseen perussanajärjestys: SPOTPA (subj. + pred. + obj. + tapa + paikka + aika) Suora sanajärjestys = subjekti on ennen predikaattia tekijä tekeminen Alasääntö 1: Liikkuvat määreet
Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL
Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL Ville Liljeström, Micha Matusewicz, Kari Pirkkalainen, Jussi-Petteri Suuronen and Ritva Serimaa 13.3.2012
MEETING PEOPLE COMMUNICATIVE QUESTIONS
Tiistilän koulu English Grades 7-9 Heikki Raevaara MEETING PEOPLE COMMUNICATIVE QUESTIONS Meeting People Hello! Hi! Good morning! Good afternoon! How do you do? Nice to meet you. / Pleased to meet you.
Bounds on non-surjective cellular automata
Bounds on non-surjective cellular automata Jarkko Kari Pascal Vanier Thomas Zeume University of Turku LIF Marseille Universität Hannover 27 august 2009 J. Kari, P. Vanier, T. Zeume (UTU) Bounds on non-surjective
Hankkeiden vaikuttavuus: Työkaluja hankesuunnittelun tueksi
Ideasta projektiksi - kumppanuushankkeen suunnittelun lähtökohdat Hankkeiden vaikuttavuus: Työkaluja hankesuunnittelun tueksi Erasmus+ -ohjelman hakuneuvonta ammatillisen koulutuksen kumppanuushanketta
812336A C++ -kielen perusteet, 21.8.2010
812336A C++ -kielen perusteet, 21.8.2010 1. Vastaa lyhyesti seuraaviin kysymyksiin (1p kaikista): a) Mitä tarkoittaa funktion ylikuormittaminen (overloading)? b) Mitä tarkoittaa jäsenfunktion ylimääritys
ECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin. Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana
ECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana Taustaa KAO mukana FINECVET-hankeessa, jossa pilotoimme ECVETiä
Operatioanalyysi 2011, Harjoitus 4, viikko 40
Operatioanalyysi 2011, Harjoitus 4, viikko 40 H4t1, Exercise 4.2. H4t2, Exercise 4.3. H4t3, Exercise 4.4. H4t4, Exercise 4.5. H4t5, Exercise 4.6. (Exercise 4.2.) 1 4.2. Solve the LP max z = x 1 + 2x 2
21~--~--~r--1~~--~--~~r--1~
- K.Loberg FYSE420 DIGITAL ELECTRONICS 13.05.2011 1. Toteuta alla esitetyn sekvenssin tuottava asynkroninen pun. Anna heratefunktiot, siirtotaulukko ja kokonaistilataulukko ( exitation functions, transition
Mitä Master Class:ssa opittiin?
Mitä Master Class:ssa opittiin? Tutkimuskoordinaattori Kaisa Korhonen-Kurki, Helsingin yliopisto Tutkija Katriina Soini, Helsingin yliopisto Yliopistopedagogi Henna Asikainen, Helsingin yliopisto Tausta
LYTH-CONS CONSISTENCY TRANSMITTER
LYTH-CONS CONSISTENCY TRANSMITTER LYTH-INSTRUMENT OY has generate new consistency transmitter with blade-system to meet high technical requirements in Pulp&Paper industries. Insurmountable advantages are
The role of 3dr sector in rural -community based- tourism - potentials, challenges
The role of 3dr sector in rural -community based- tourism - potentials, challenges Lappeenranta, 5th September 2014 Contents of the presentation 1. SEPRA what is it and why does it exist? 2. Experiences
A DEA Game II. Juha Saloheimo S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
A DEA Game II Juha Salohemo 12.12.2007 Content Recap of the Example The Shapley Value Margnal Contrbuton, Ordered Coaltons, Soluton to the Example DEA Mn Game Summary Home Assgnment Recap of the Example
S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖKNKKA A KONKKA. välikoe 2..2008. Saat vastata vain neljään tehtävään!. aske jännite U. = 4 Ω, 2 = Ω, = Ω, = 2, 2 =, = A, 2 = U 2 2 2 2. ännitelähde tuottaa hetkestä t = t < 0 alkaen kaksiportaisen
Akateemiset fraasit Tekstiosa
- Väitteen hyväksyminen Broadly speaking, I agree with because Samaa mieltä jostakin näkökulmasta One is very much inclined to agree with because Samaa mieltä jostakin näkökulmasta Yleisesti ottaen olen
EUROOPAN PARLAMENTTI
EUROOPAN PARLAMENTTI 2004 2009 Kansalaisvapauksien sekä oikeus- ja sisäasioiden valiokunta 2008/0101(CNS) 2.9.2008 TARKISTUKSET 9-12 Mietintöluonnos Luca Romagnoli (PE409.790v01-00) ehdotuksesta neuvoston
Innovative and responsible public procurement Urban Agenda kumppanuusryhmä. public-procurement
Innovative and responsible public procurement Urban Agenda kumppanuusryhmä https://ec.europa.eu/futurium/en/ public-procurement Julkiset hankinnat liittyvät moneen Konsortio Lähtökohdat ja tavoitteet Every
Increase of opioid use in Finland when is there enough key indicator data to state a trend?
Increase of opioid use in Finland when is there enough key indicator data to state a trend? Martta Forsell, Finnish Focal Point 28.9.2015 Esityksen nimi / Tekijä 1 Martta Forsell Master of Social Sciences
Alueellinen yhteistoiminta
Alueellinen yhteistoiminta Kokemuksia alueellisesta toiminnasta Tavoitteet ja hyödyt Perusterveydenhuollon yksikön näkökulmasta Matti Rekiaro Ylilääkäri Perusterveydenhuollon ja terveyden edistämisen yksikkö
Curriculum. Gym card
A new school year Curriculum Fast Track Final Grading Gym card TET A new school year Work Ethic Detention Own work Organisation and independence Wilma TMU Support Services Well-Being CURRICULUM FAST TRACK
Statistical design. Tuomas Selander
Statistical design Tuomas Selander 28.8.2014 Introduction Biostatistician Work area KYS-erva KYS, Jyväskylä, Joensuu, Mikkeli, Savonlinna Work tasks Statistical methods, selection and quiding Data analysis
Hankkeen toiminnot työsuunnitelman laatiminen
Hankkeen toiminnot työsuunnitelman laatiminen Hanketyöpaja LLP-ohjelman keskitettyjä hankkeita (Leonardo & Poikittaisohjelma) valmisteleville11.11.2011 Työsuunnitelma Vastaa kysymykseen mitä projektissa
Kielenkäytön näkökulma oppimisvuorovaikutukseen
Kielenkäytön näkökulma oppimisvuorovaikutukseen Tarja Nikula Soveltavan kielentutkimuksen keskus tarja.nikula@jyu.fi Kiinnostuksen kohteena Luokkahuonevuorovaikutus vieraalla kielellä englannin kielen
Green Growth Sessio - Millaisilla kansainvälistymismalleilla kasvumarkkinoille?
Green Growth Sessio - Millaisilla kansainvälistymismalleilla kasvumarkkinoille? 10.10.01 Tuomo Suortti Ohjelman päällikkö Riina Antikainen Ohjelman koordinaattori 10/11/01 Tilaisuuden teema Kansainvälistymiseen
Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto
Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto If you are searched for a book by Miikka Poikselkä;Harri Holma;Jukka Hongisto Voice over LTE (VoLTE) in pdf form, then you have come
A DEA Game I Chapters
A DEA Game I Chapters 5.-5.3 Saara Tuurala 2.2.2007 Agenda Introducton General Formulaton Assumpton on the Game and Far Dvson Coalton and Characterstc Functon Summary Home Assgnment Introducton /5 A DEA
TIETEEN PÄIVÄT OULUSSA 1.-2.9.2015
1 TIETEEN PÄIVÄT OULUSSA 1.-2.9.2015 Oulun Yliopisto / Tieteen päivät 2015 2 TIETEEN PÄIVÄT Järjestetään Oulussa osana yliopiston avajaisviikon ohjelmaa Tieteen päivät järjestetään saman konseptin mukaisesti
Valuation of Asian Quanto- Basket Options
Valuation of Asian Quanto- Basket Options (Final Presentation) 21.11.2011 Thesis Instructor and Supervisor: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta
Opiskelijat valtaan! TOPIC MASTER menetelmä lukion englannin opetuksessa. Tuija Kae, englannin kielen lehtori Sotungin lukio ja etälukio
Opiskelijat valtaan! TOPIC MASTER menetelmä lukion englannin opetuksessa Tuija Kae, englannin kielen lehtori Sotungin lukio ja etälukio Päättääkö opettaja ohjelmasta? Vai voisivatko opiskelijat itse suunnitella
1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.
START START SIT 1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward. This is a static exercise. SIT STAND 2. SIT STAND. The
7.4 Variability management
7.4 Variability management time... space software product-line should support variability in space (different products) support variability in time (maintenance, evolution) 1 Product variation Product
Choose Finland-Helsinki Valitse Finland-Helsinki
Write down the Temporary Application ID. If you do not manage to complete the form you can continue where you stopped with this ID no. Muista Temporary Application ID. Jos et onnistu täyttää lomake loppuun
VAASAN YLIOPISTO Humanististen tieteiden kandidaatin tutkinto / Filosofian maisterin tutkinto
VAASAN YLIOPISTO Humanististen tieteiden kandidaatin tutkinto / Filosofian maisterin tutkinto Tämän viestinnän, nykysuomen ja englannin kandidaattiohjelman valintakokeen avulla Arvioidaan viestintävalmiuksia,
1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä
OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 81122P (4 ov.) 30.5.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan
( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145
OX2 9 x N131 x HH145 Rakennuskanta Asuinrakennus Lomarakennus Liike- tai julkinen rakennus Teollinen rakennus Kirkko tai kirkollinen rak. Muu rakennus Allas Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 2 km
You can check above like this: Start->Control Panel->Programs->find if Microsoft Lync or Microsoft Lync Attendeed is listed
Online Meeting Guest Online Meeting for Guest Participant Lync Attendee Installation Online kokous vierailevalle osallistujalle Lync Attendee Asennus www.ruukki.com Overview Before you can join to Ruukki
7. Product-line architectures
7. Product-line architectures 7.1 Introduction 7.2 Product-line basics 7.3 Layered style for product-lines 7.4 Variability management 7.5 Benefits and problems with product-lines 1 Short history of software
Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija
Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija 1 Asemoitumisen kuvaus Hakemukset parantuneet viime vuodesta, mutta paneeli toivoi edelleen asemoitumisen
FinFamily Installation and importing data (11.1.2016) FinFamily Asennus / Installation
FinFamily Asennus / Installation 1 Sisällys / Contents FinFamily Asennus / Installation... 1 1. Asennus ja tietojen tuonti / Installation and importing data... 4 1.1. Asenna Java / Install Java... 4 1.2.
Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a
, Tuulivoimahanke Layout 9 x N131 x HH145 Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 km 2 SHADOW - Main Result Assumptions for shadow calculations
Methods S1. Sequences relevant to the constructed strains, Related to Figures 1-6.
Methods S1. Sequences relevant to the constructed strains, Related to Figures 1-6. A. Promoter Sequences Gal4 binding sites are highlighted in the color referenced in Figure 1A when possible. Site 1: red,
HARJOITUS- PAKETTI A
Logistiikka A35A00310 Tuotantotalouden perusteet HARJOITUS- PAKETTI A (6 pistettä) TUTA 19 Luento 3.Ennustaminen County General 1 piste The number of heart surgeries performed at County General Hospital
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
BLOCKCHAINS AND ODR: SMART CONTRACTS AS AN ALTERNATIVE TO ENFORCEMENT
UNCITRAL EMERGENCE CONFERENCE 13.12.2016 Session I: Emerging Legal Issues in the Commercial Exploitation of Deep Seabed, Space and AI BLOCKCHAINS AND ODR: SMART CONTRACTS AS AN ALTERNATIVE TO ENFORCEMENT
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
Oma sininen meresi (Finnish Edition)
Oma sininen meresi (Finnish Edition) Hannu Pirilä Click here if your download doesn"t start automatically Oma sininen meresi (Finnish Edition) Hannu Pirilä Oma sininen meresi (Finnish Edition) Hannu Pirilä
Ajettavat luokat: SM: S1 (25 aika-ajon nopeinta)
SUPERMOTO SM 2013 OULU Lisämääräys ja ohje Oulun Moottorikerho ry ja Oulun Formula K-125ry toivottaa SuperMoto kuljettajat osallistumaan SuperMoto SM 2013 Oulu osakilpailuun. Kilpailu ajetaan karting radalla
Metsälamminkankaan tuulivoimapuiston osayleiskaava
VAALAN KUNTA TUULISAIMAA OY Metsälamminkankaan tuulivoimapuiston osayleiskaava Liite 3. Varjostusmallinnus FCG SUUNNITTELU JA TEKNIIKKA OY 12.5.2015 P25370 SHADOW - Main Result Assumptions for shadow calculations
Korkeakoulujen tietohallinto ja tutkimus: kumpi ohjaa kumpaa?
Korkeakoulujen tietohallinto ja tutkimus: kumpi ohjaa kumpaa? Kerro meille datastasi työpaja 10.4.2013 Antti Auer Tietohallintopäällikkö Jyväskylän yliopisto Strateginen kehittäminen Johtamista, tutkimushallintoa
Uusia kokeellisia töitä opiskelijoiden tutkimustaitojen kehittämiseen
The acquisition of science competencies using ICT real time experiments COMBLAB Uusia kokeellisia töitä opiskelijoiden tutkimustaitojen kehittämiseen Project N. 517587-LLP-2011-ES-COMENIUS-CMP This project
Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus
AS-84.327 Paikannus- ja navigointimenetelmät Ratkaisut 2.. a) Kun kuvan ajoneuvon kumpaakin pyörää pyöritetään tasaisella nopeudella, ajoneuvon rata on ympyränkaaren segmentin muotoinen. Hitaammin kulkeva
Ohjelmointikielet ja -paradigmat 5op. Markus Norrena
Ohjelmointikielet ja -paradigmat 5op Markus Norrena Kotitehtävä 6, toteuttakaa alla olevan luokka ja attribuutit (muuttujat) Kotitehtävä 6, toteuttakaa alla olevan luokka ja attribuutit (muuttujat) Huom!
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.9.269
KMTK lentoestetyöpaja - Osa 2
KMTK lentoestetyöpaja - Osa 2 Veijo Pätynen 18.10.2016 Pasila YHTEISTYÖSSÄ: Ilmailun paikkatiedon hallintamalli Ilmailun paikkatiedon hallintamalli (v0.9 4.3.2016) 4.4 Maanmittauslaitoksen rooli ja vastuut...
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 5.11.2013 16:44 / 1 Minimum
HOITAJAN ROOLI TEKNOLOGIAVÄLITTEISESSÄ POTILASOHJAUKSESSA VÄITÖSKIRJATUTKIJA JENNI HUHTASALO
HOITAJAN ROOLI TEKNOLOGIAVÄLITTEISESSÄ POTILASOHJAUKSESSA VÄITÖSKIRJATUTKIJA JENNI HUHTASALO Tutkimusintressit Asiantuntijuus ja teknologia: Hoitajan rooli teknologiavälitteisessä potilasohjauksessa Opettajan
T Statistical Natural Language Processing Answers 6 Collocations Version 1.0
T-61.5020 Statistical Natural Language Processing Answers 6 Collocations Version 1.0 1. Let s start by calculating the results for pair valkoinen, talo manually: Frequency: Bigrams valkoinen, talo occurred
Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition)
Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition) Esko Jalkanen Uusi Ajatus Löytyy
Sähköjärjestelmän käyttövarmuus & teknologia Käyttövarmuuspäivä 25.11.2014
Sähköjärjestelmän käyttövarmuus & teknologia Käyttövarmuuspäivä 25.11.2014 Jarmo Partanen, professori, Lappeenrannan yliopisto jarmo.partanen@lut.fi +358 40 5066 564 Electricity Market, targets Competitive