Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1

Koko: px
Aloita esitys sivulta:

Download "Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1"

Transkriptio

1 Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1 Mittakaava Avainsanat: yhdenmuotoisuus, suurennos, pienennös, mittakaava, mittaaminen, pinta-ala, tilavuus, suhde Luokkataso: 3-9 Välineet: kynä, ruutupaperia, viivoitin. Tavoitteet: Tavoitteena on johdatella oppilas mittakaavan käsitteen sisäistämiseen ja huomaamaan mittakaavan vaikutus pinta-aloihin sekä tilavuuksiin. Esimerkkitoteutus:

2 Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 2 Mittakaavan johdattelu ja käyttö ONGELMA 1: Sinun pitää piirtää työpöydän kannen kuva vihkoon. Miten saat kuvan sopimaan vihkoon? Kiinnitä huomiota siihen, että kannen muoto säilyy samana. OHJE: Mittaa kannen pituus ja leveys senttimetreinä, mutta piirrä vihkoon millimetreinä. (Esim. 32 cm piirretään 32 millimetrinä.) Koska 1 cm = 10 mm saamme tästä mittakaavan, jossa 1 mm piirroksessa on 1 cm eli 10 mm luonnossa. Tämä mittakaava merkitään 1 : 10. ONGELMA 2: Piirrä seuraavaksi luokan taulun kuva vihkoon. Mitä yksikköä nyt käytät, kun mittaat taulun pituuden ja leveyden? Mitä yksikköä käytät nyt piirroksessasi? Miten kirjoitat nyt mittakaavan? Tehtävä 1 Neliönmuotoinen mansikkamaa on piirretty mittakaavassa 1 : Kuinka pitkä mansikkamaan pituus on luonnossa, kun se on 1,5 cm pitkä piirroksessa? Ohje: Koska mittakaava on 1 : 1000, tarkoittaa se sitä, että 1 cm piirroksessa on 1000 cm luonnossa. Tien pituus maastossa on 5,6 km. Kuinka pitkä se kartalla, jonka mittakaava on 1 : ? Ohje: Koska mittakaava on 1 : , se tarkoittaa, että 1 cm kartalla on cm eli 1000 m eli 1 km maastossa.

3 Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 3 Mittakaavan vaikutus pinta-alaan 1. Piirrä suorakulmio ABCD, jonka kanta AB on 4 cm pitkä ja korkeus AD 3 cm pitkä. 2. Jatka kantasivua AB 4 cm janaksi AE ja korkeussivua AD 3 cm janaksi AG. 3. Muodosta suorakulmio AEFG. 4. Kuinka moninkertainen on sivun AE pituus uudessa suorakulmiossa verrattuna alkuperäisen suorakulmion sivuun AB? sivun AG pituus uudessa suorakulmiossa verrattuna alkuperäisen suorakulmion sivuun AD? 5. Mikä on siis mittakaava? 6. Kuinka moninkertainen on pinta-ala suorakulmiossa AEFG verrattuna alkuperäiseen suorakulmioon ABCD? Johtopäätös: kun mittakaava on 1 : 2, niin sivujen pituus kaksinkertaistuu ja pinta-ala nelinkertaistuu. Tehtävä 1: Miten muuttuu pinta-ala, jos sivujen pituudet kolminkertaistuvat ( eli siis mittakaava on 1 : 3 )? Mikä on pinta-alojen suhde kuvioissa, jotka on piirretty mittakaavassa 1 : 4? Tehtävä 3 Mikä on pinta-alojen suhde kuvioissa, jotka on piirretty mittakaavassa 1 : 5? Johtopäätös: jos mittakaava on s : t, niin pinta-alojen suhde on s 2 : t 2 2 s. t

4 Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 4 Mittakaavan vaikutus tilavuuteen 1. Valmista muovailuvahasta kaksi suorakulmaisen särmiön muotoista esinettä A ja B. Tee pienempi esine A siten, että sen pituus on 4 cm, leveys 3 cm ja korkeus 1 cm Tee suurempi esine B siten, että sen pituus on 8 cm, leveys 6 cm ja korkeus 2 cm 2. Mikä on siis mittakaava, jolla pituus, leveys ja korkeus määräytyvät? 3. Leikkaa nyt esine B esineen A muotoisiksi ja kokoisiksi suorakulmaisiksi särmiöiksi? Kuinka monta särmiötä sait? 4. Kuvittele, että sinulla on suorakulmaisen särmiön muotoinen esine C, jonka pituus on 12 cm, leveys 9 cm ja korkeus 3 cm. Kuinka monta esineen A kokoista ja muotoista särmiötä esineestä C saisit leikattua? Johtopäätös: jos mittakaava on s : t, niin tilavuuksien suhde on s 3 : t 3 3 s. t

5 Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 5 Vastaussivu: Mittakaavan johdattelu ja käyttö ONGELMA 2: Taulun mittauksessa käytetään metrejä Vihkoon piirtäessä käytetään senttimetrejä Mittakaava on 1 : 100 Tehtävä 1 VASTAUS: Täten 1,5 cm piirroksessa on 1500 cm eli 15 metriä luonnossa. VASTAUS: Täten 5,6 km pitkä tie on kartalla 5,6 cm pitkä. Mittakaavan vaikutus pinta-alaan Kohta 5. Mikä on siis mittakaava? VASTAUS: 1 : 2 Kohta 6. Kuinka moninkertainen on pinta-ala suorakulmiossa AEFG verrattuna alkuperäiseen suorakulmioon ABCD? VASTAUS: nelinkertainen Tehtävä 1: VASTAUS: yhdeksänkertaistuu VASTAUS: 1 : 16 Tehtävä 3 VASTAUS: 1 : 25 Mittakaavan vaikutus tilavuuteen Kohta 2. Mikä on siis mittakaava, jolla pituus, leveys ja korkeus määräytyvät? VASTAUS: 1 : 2 Kohta 3. Leikkaa nyt esine B esineen A muotoisiksi ja kokoisiksi suorakulmaisiksi särmiöiksi? Kuinka monta särmiötä sait? VASTAUS: kahdeksan Kohta 4. Kuvittele, että sinulla on suorakulmaisen särmiön muotoinen esine C, jonka pituus on 12 cm, leveys 9 cm ja korkeus 3 cm. Kuinka monta esineen A kokoista ja muotoista särmiötä esineestä C saisit leikattua? VASTAUS: 27 kpl

Kolmiot ABC ja DEF ovat keskenään yhdenmuotoisia eli ABC DEF. Ratkaise. 6,0 cm. Koska vastinkulmat ovat yhtä suuret, myös kulman a suuruus on 29.

Kolmiot ABC ja DEF ovat keskenään yhdenmuotoisia eli ABC DEF. Ratkaise. 6,0 cm. Koska vastinkulmat ovat yhtä suuret, myös kulman a suuruus on 29. 1 Yhdenmuotoisuus Keskenään samanmuotoisia kuviota kutsutaan yhdenmuotoisiksi kuvioiksi. Yhdenmuotoisten kuvioiden toisiaan vastaavia kulmia kutsutaan vastinkulmiksi ja toisiaan vastaavia osia vastinosiksi.

Lisätiedot

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma OuLUMA - Jussi Tyni OuLUMA, sivu 1 Ihastellaan muotoja Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma Luokkataso: lukio Välineet: kynä, paperia, laskin Tavoitteet: Tarkoitus on arkielämään

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

MITTAAMINEN I. Käännä! matematiikkalehtisolmu.fi

MITTAAMINEN I. Käännä! matematiikkalehtisolmu.fi 1 MITTAAMINEN I Tehtävät sopivat peruskoulun alaluokille. Ne on koostettu Matematiikkalehti Solmun Matematiikkadiplomeista I IV. Sivunumerot viittaavat näiden diplomitehtävien sivuihin. Aihepiirejä: oma

Lisätiedot

Kenguru 2012 Cadet (8. ja 9. luokka)

Kenguru 2012 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Tarkastellaan neliötä, jonka sivun pituus on yksi metri. Silloinhan sen pinta-ala on 1m 1m

Tarkastellaan neliötä, jonka sivun pituus on yksi metri. Silloinhan sen pinta-ala on 1m 1m MB: Yhdenmuotoisuus luksi Tämän luvun aiheina ovat yhdenmuotoisuus sekä yhdenmuotoisuussuhde. Kaikkein tavallisimmat yhdenmuotoisuuden sovellukset ovat varmasti kartta ja pohjapiirros. loitamme tutuista

Lisätiedot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9

Lisätiedot

MATEMATIIKKA PAOJ2 Harjoitustehtävät

MATEMATIIKKA PAOJ2 Harjoitustehtävät MATEMATIIKKA PAOJ2 Harjoitustehtävät 6. Laske kuvan suorakulmion pinta-ala. ( T ) 1. Täytä taulukko m 12 1,45 0,805 2. Täytä taulukko mm 12345 4321 765 23,5 7. Laske kuvan suorakulmion pinta-ala.( T )

Lisätiedot

Apua esimerkeistä Kolmio teoriakirja. nyk/matematiikka/8_luokka/yhtalot_ yksilollisesti. Osio

Apua esimerkeistä Kolmio teoriakirja.  nyk/matematiikka/8_luokka/yhtalot_ yksilollisesti. Osio Aloita A:sta Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan. Merkitse pisteet sinulle jaettavaan tehtävä- ja arviointilappuun. Kun olet saanut riittävästi pisteitä (6)

Lisätiedot

Mb02 Koe 26.1.2015 Kuopion Lyseon lukio (KK) sivu 1/1

Mb02 Koe 26.1.2015 Kuopion Lyseon lukio (KK) sivu 1/1 Mb0 Koe 6.1.015 Kuopion Lyseon lukio (KK) sivu 1/1 Kokeessa on kolme osiota: A, B1 ja B. Osiossa A et saa käyttää laskinta. Palautettuasi Osion A ratkaisut, saat laskimen pöydältä. Taulukkokirjaa voit

Lisätiedot

[MATEMATIIKKA, KURSSI 8]

[MATEMATIIKKA, KURSSI 8] 2015 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 8] Trigometrian ja avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille Sisällysluettelo 8.1 PYTHAGORAAN LAUSE... 3 8.1.1 JOHDANTOTEHTÄVÄT 1-6...

Lisätiedot

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus K1. a) Ratkaistaan suorakulmaisen kolmion kateetin pituus x tangentin avulla. tan9 x,5,5 x,5 tan 9 x 2,8... x» 2,8 (cm) Kateetin pituus x on 2,8 cm. b) Ratkaistaan vinokulmaisen kolmion sivun pituus

Lisätiedot

Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4

Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4 Mb03 Koe 2..20 Kuopion Lyseon lukio (KK) sivu /4 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.

Lisätiedot

Tehtävät on koostettu Matematiikkalehti Solmun Matematiikkadiplomista V. Sivunumerot viittaavat sen diplomitehtävien sivuihin.

Tehtävät on koostettu Matematiikkalehti Solmun Matematiikkadiplomista V. Sivunumerot viittaavat sen diplomitehtävien sivuihin. 1 MITTAAMINEN II Tehtävät on koostettu Matematiikkalehti Solmun Matematiikkadiplomista V. Sivunumerot viittaavat sen diplomitehtävien sivuihin. Aihepiirejä: Suomen maantieto, nopeus, matka ja aika, erilaisten

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan.

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan. MAB: Koordinaatisto geometrian apuna Aluksi Geometriassa tulee silloin tällöin eteen tilanne, jossa piirroksen tekeminen koordinaatistoon yksinkertaistaa laskuja. Toisinaan taas tilanne on muuten vaan

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä

Lisätiedot

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia Kolmioitten harjoituksia Piirrä kolmio, jonka sivujen pituudet ovat 4cm, 5 cm ja 10 cm. Minkä yleisen kolmion sivujen pituuksia ja niitten eroja koskevan johtopäätöksen vedät? Määritä huippukulman α suuruus,

Lisätiedot

A. Desimaalilukuja kymmenjärjestelmän avulla

A. Desimaalilukuja kymmenjärjestelmän avulla 1(8) Kymmenjärjestelmä desimaalilukujen ja mittayksiköiden muunnosten pohjana A. Miten saadaan desimaalilukuihin ymmärrystä 10-järjestelmän avulla? B. Miten saadaan mittayksiköiden muunnoksiin ymmärrystä

Lisätiedot

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää! MAA Koe 4.4.011 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää! 1 Selitä ja piirrä seuraavat lyhyesti: a) Vieruskulmat b) Tangentti kulmasta Katsottuna.

Lisätiedot

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella. Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA7 Derivaatta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Derivaatta (MAA7) Pikatesti ja kertauskokeet Tehtävien ratkaisut Pikatesti

Lisätiedot

Suorakulmainen kolmio

Suorakulmainen kolmio Suorakulmainen kolmio 1. Määritä terävä kulma α, β ja γ, kun sinα = 0,5782, cos β = 0,745 ja tanγ = 1,222. π 2. Määritä trigonometristen funktioiden sini, kosini ja tangentti, kun kulma α = ja 3 β = 73,2

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen.

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen. MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ. Isto Jokinen 013 SISÄLTÖ 1.Pinta-alojen laskeminen.tilavuuksien laskeminen PINTA-ALOJEN LASKEMINEN Pintakäsittelyalan työtehtävissä on pinta-alojen

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen.

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen. MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ. Isto Jokinen 013 SISÄLTÖ 1.Pinta-alojen laskeminen.tilavuuksien laskeminen PINTA-ALOJEN LASKEMINEN Pintakäsittelyalan työtehtävissä on pinta-alojen

Lisätiedot

Kertausosan ratkaisut. 1. Kulma α on 37 suurempi kuin kulma eli 37. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli

Kertausosan ratkaisut. 1. Kulma α on 37 suurempi kuin kulma eli 37. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli Kertausosa 1. Kulma α on 7 suurempi kuin kulma eli 7. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli 180 7 180 14 : 71,5 Siis 7 71,5 7 108, 5 Vastaus: 108,5, 71, 5. Kuvaan merkityt kulmat

Lisätiedot

MATEMATIIKKA JA TAIDE I

MATEMATIIKKA JA TAIDE I 1 MATEMATIIKKA JA TAIDE I Tehtävät sopivat peruskoulun alaluokille. Ne on koostettu Matematiikkalehti Solmun Matematiikkadiplomeista I VI. Sivunumerot viittaavat näiden diplomitehtävien sivuihin. Aihepiirejä:

Lisätiedot

M 1 ~M 2, jos monikulmioiden vastinkulmat ovat yhtä suuret ja vastinsivujen pituuksien suhteet ovat yhtä suuret eli vastinsivut ovat verrannolliset

M 1 ~M 2, jos monikulmioiden vastinkulmat ovat yhtä suuret ja vastinsivujen pituuksien suhteet ovat yhtä suuret eli vastinsivut ovat verrannolliset Yhdenmuotoisuus ja mittakaava Tasokuvioiden yhdenmuotoisuus tarkoittaa havainnollisesti sitä, että kuviot ovat samanmuotoiset mutta eivät välttämättä samankokoiset. Kahdella yhdenmuotoisella kuviolla täytyy

Lisätiedot

Avainsanat: salaus, ympyrä, pyörästö, motivaatio, toiminnallisuus, eriyttäminen, geometria

Avainsanat: salaus, ympyrä, pyörästö, motivaatio, toiminnallisuus, eriyttäminen, geometria Timo Perälä OuLUMA, sivu 1 SEIKKAILU PULMIEN MAAILMASSA Avainsanat: salaus, ympyrä, pyörästö, motivaatio, toiminnallisuus, eriyttäminen, geometria Luokkataso: 6-9 Välineet: A4 kokoisia paperi- tai kartonkiliuskoja,

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

Tehnyt 9B Tarkistanut 9A

Tehnyt 9B Tarkistanut 9A Tehnyt 9B Tarkistanut 9A Kuitinmäen koulu Syksy 2006 Avaruusgeometrian soveltavia tehtäviä... 3 1. Päästäänkö uimaan?... 3 2. Mummon kahvipaketti... 3 3. Tiiliseinä... 4 4. SISUSTUSTA... 5 5. Kirkon torni...

Lisätiedot

Koostaneet Juulia Lahdenperä ja Rami Luisto. Kochin lumihiutale

Koostaneet Juulia Lahdenperä ja Rami Luisto. Kochin lumihiutale Kochin lumihiutale Avainsanat: fraktaalit Luokkataso: 3.-5. luokka, 6.-9. luokka, lukio Välineet: kynä, viivoitin, (sakset), (teippiä) Kuvaus: Tehdään oma fraktaali! Kochin lumihiutaleen voi toteuttaa

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä

Lisätiedot

3 Avaruusgeometria. Lieriö. 324. a) V = 30 20 12 = 7 200 (cm 3 ) 7 200 cm 3 = 7,2 dm 3 = 7,2 l. b) V = A p h = 30 15 = 450 (cm 3 )

3 Avaruusgeometria. Lieriö. 324. a) V = 30 20 12 = 7 200 (cm 3 ) 7 200 cm 3 = 7,2 dm 3 = 7,2 l. b) V = A p h = 30 15 = 450 (cm 3 ) Avaruusgeometria Lieriö 4. a) 0 0 1 7 00 (cm ) 7 00 cm 7, dm 7, l b) A p h 0 15 450 (cm ) 5. Kuution särmän pituus on a 1, cm. a) a 1, 1,78 1,7 (cm ) b) A 6a 6 1, 8,64 8,6 (cm ) 16 6. r d 8 (cm) A p h

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4. Koe 8.5.0 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa säilyttäen pitkin tason T suljettua käyrää (käyrä ei leikkaa itseään). Tällöin suora s piirtää avaruuteen

Lisätiedot

Mittaamisen opettamisesta

Mittaamisen opettamisesta Mittaamisen opettamisesta Vesa-Matti Sarenius Oulun LUMA-keskus Johdatus aiheeseen Keskustele vierustovereidesi kanssa seuraavista asioista: 1. Mitä mittaaminen tarkoittaa? 2. Mitä mittaamisen opettamiseen

Lisätiedot

Vastaukset 1. A = (-4,3) B = (6,1) C = (4,8) D = (-7,-1) E = (-1,0) F = (3,-3) G = (7,-9) 3. tämä on ihan helppoa

Vastaukset 1. A = (-4,3) B = (6,1) C = (4,8) D = (-7,-1) E = (-1,0) F = (3,-3) G = (7,-9) 3. tämä on ihan helppoa Vastaukset 1. A = (4,3) B = (6,1) C = (4,8) D = (7,1) E = (1,0) F = (3,3) G = (7,9) 2. 3. tämä on ihan helppoa 4. 5. a) (0, 0) b) Kolmannessa c) Ensimmäisessä d) toisessa ja neljännessä 117 6. 7. 8. esimerkiksi

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

[MATEMATIIKKA, KURSSI 9]

[MATEMATIIKKA, KURSSI 9] 2016 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 9] Avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille 1 SISÄLLYSLUETTELO 9. KURSSIN SISÄLTÖ... 3 9.0.1 MALLIKOE 1... 4 9.0.2 MALLIKOE 2...

Lisätiedot

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti! A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim

Lisätiedot

Kaupunkisuunnittelua

Kaupunkisuunnittelua Kaupunkisuunnittelua Avainsanat: geometria, monikulmio, pinta-ala, tasogeometria, diagrammit Luokkataso: 6.-9. luokka, lukio Välineet: kynä, paperi, viivoitin, harppi tai kulmaviivain Kuvaus: Voronoi diagrammien

Lisätiedot

LUKUJONOT. 1) Jatka lukujonoja. 0, 1, 2,,,, 6, 8, 10,,,, 8, 12, 16,,,, 18, 15, 12,,,, 30, 25, 20,,,, 2) Täydennä lukujonoihin puuttuvat luvut.

LUKUJONOT. 1) Jatka lukujonoja. 0, 1, 2,,,, 6, 8, 10,,,, 8, 12, 16,,,, 18, 15, 12,,,, 30, 25, 20,,,, 2) Täydennä lukujonoihin puuttuvat luvut. LUKUJONOT 2 1) Jatka lukujonoja. 0, 1, 2,,,, 6, 8, 10,,,, 8, 12, 16,,,, 18, 15, 12,,,, 30, 25, 20,,,, 2) Täydennä lukujonoihin puuttuvat luvut. 2, 4,, 8,, 12,,, 7,, 3, 1 3) Keksi oma lukujono ja kerro

Lisätiedot

Monikulmiot. 1. a) Kulman ovat vieruskulmia, joten α = 180 25 = 155.

Monikulmiot. 1. a) Kulman ovat vieruskulmia, joten α = 180 25 = 155. Monikulmiot 1. Kulmia 1. a) Kulman ovat vieruskulmia, joten α = 180 5 = 155. b) Kulmat ovat ristikulmia, joten α = 8.. Kulma α ja 47 kulma ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia,

Lisätiedot

AVOIN MATEMATIIKKA Osio 2: pinta-aloja

AVOIN MATEMATIIKKA Osio 2: pinta-aloja Marika Toivola ja Tiina Härkönen AVOIN MATEMATIIKKA Osio : pinta-aloja Sisältö on lisensoitu avoimella CC BY 3.0 -lisenssillä. 1 SI-järjestelmä ja ISO Päivittäiseen elämäämme liittyy paljon mittaamista.

Lisätiedot

OSA 3: GEOMETRIAA. Alkupala. Kokoa neljästä alla olevasta palasesta M kirjain.

OSA 3: GEOMETRIAA. Alkupala. Kokoa neljästä alla olevasta palasesta M kirjain. OSA 3: GEOMETRIAA Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Kokoa neljästä alla olevasta palasesta M kirjain. G. GEOMETRIAA Hannu ja

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 80. Kolmannen kulman suuruus on 80 85 0 85. Kolmiossa on kaksi 85 :n kulmaa, joten se on tasakylkinen.

Lisätiedot

Neeviikuu 5A: opettajan oppaan liitteet

Neeviikuu 5A: opettajan oppaan liitteet Neeviikuu 5A: opettajan oppaan liitteet KOPIOINTIPOHJAT 1. Kymmenjärjestelmäalusta 2 2. Lukusuoria 3 3. Lukusuoria 4 4. Lukukortit 5 5. Sataruutu 6 6. Rahat 7 7. Ostokset ja pyramidit 8 8. Tiliote 9 9.

Lisätiedot

1. Lasketaan käyttäen kymmenjärjestelmävälineitä

1. Lasketaan käyttäen kymmenjärjestelmävälineitä Turun MATIKKAKAHVILA 22.09.2016 Teija Laine 1. OTTEITA UUDESTA OPETUSSUUNNITELMASTA: "Vuosiluokkien 3 6 matematiikan opetuksessa tarjotaan kokemuksia, joita oppilaat hyödyntävät matemaattisten käsitteiden

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja

Lisätiedot

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 17.10.016 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ 1. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 180. Kolmannen kulman

Lisätiedot

Kenguru 2015 Student (lukiosarja)

Kenguru 2015 Student (lukiosarja) sivu 1 / 9 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Valitse vain kuusi tehtävää! Tee etusivun yläreunaan pisteytysruudukko! Kaikkiin tehtäviin tarvittavat välivaiheet esille!

Valitse vain kuusi tehtävää! Tee etusivun yläreunaan pisteytysruudukko! Kaikkiin tehtäviin tarvittavat välivaiheet esille! 5.4.013 Jussi Tyni 1. Selitä ja piirrä seuraavat lyhyesti: a) Kehäkulma ja keskikulma b) Todista, että kolmion kulmien summa on 180 astetta. Selitä päätelmiesi perustelut.. a) Suorakulmaisen kolmion kateetit

Lisätiedot

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE - kykenee keskittymään matematiikan opiskeluun - kykenee kertomaan suullisesti matemaattisesta ajattelustaan

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Kenguru 2012 Cadet (8. ja 9. luokka) Ratkaisut.

Kenguru 2012 Cadet (8. ja 9. luokka) Ratkaisut. sivu 1 / 16 3 pistettä 1. Kello laitetaan pöydälle viisaripuoli ylöspäin juuri silloin, kun minuuttiviisari osoittaa etelään. Kuinka monen minuutin kuluttua minuuttiviisari seuraavan kerran osoittaa itään?

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu 22..204 Ratkaisuita. Laske 23 45. a) 4000 b) 4525 c) 4535 d) 5525 e) 5535 Ratkaisu. Lasketaan allekkain: 45 23 35 90 45 5535 2. Yhden maalipurkin sisällöllä

Lisätiedot

Tehtävä 1 2 3 4 5 6 7 Vastaus

Tehtävä 1 2 3 4 5 6 7 Vastaus Kenguru Benjamin, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi,

Lisätiedot

Tässä osassa ei käytetä laskinta. Selitä päätelmäsi lyhyesti tai perustele ratkaisusi laskulausekkeella, kuviolla tms.

Tässä osassa ei käytetä laskinta. Selitä päätelmäsi lyhyesti tai perustele ratkaisusi laskulausekkeella, kuviolla tms. OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Selitä päätelmäsi lyhyesti tai perustele ratkaisusi laskulausekkeella, kuviolla tms. 1. Mikä on suurin kokonaisluku, joka toteuttaa

Lisätiedot

Pyramidi 3 Geometria tehtävien ratkaisut sivu a)

Pyramidi 3 Geometria tehtävien ratkaisut sivu a) Pyramidi 3 Geometria tehtävien ratkaisut sivu 8 501 a) Kolmiossa C kaksi yhtä pitkää sivua kuin kolmiossa DEF ja näiden sivujen väliset kulmat ovat yhtä suuret, joten kolmiot ovat yhtenevät yhtenevyyslauseen

Lisätiedot

Peruskoulun matematiikkakilpailu Loppukilpailu 2010 Ratkaisuja OSA 1

Peruskoulun matematiikkakilpailu Loppukilpailu 2010 Ratkaisuja OSA 1 Peruskoulun matematiikkakilpailu Loppukilpailu 010 Ratkaisuja OSA 1 1. Mikä on suurin kokonaisluku, joka toteuttaa seuraavat ehdot? Se on suurempi kuin 100. Se on pienempi kuin 00. Kun se pyöristetään

Lisätiedot

Kappaleiden tilavuus. Suorakulmainensärmiö.

Kappaleiden tilavuus. Suorakulmainensärmiö. Kappaleiden tilavuus Suorakulmainensärmiö. Tilavuus (volyymi) V = pohjan ala kertaa korkeus. Tankomaisista kappaleista puhuttaessa nimitetään korkeutta tangon pituudeksi. Pohjan ala A = b x h Korkeus (pituus)

Lisätiedot

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan.

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. MAA Koe..05 Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko. konseptin yläreunaan. A-osio. Ilman laskinta! MAOL:in taulukkokirja saa olla käytössä. Laske kaikki tehtävät. Vastaa tälle paperille.

Lisätiedot

Cadets 2004 - Sivu 1 RATKAISUT

Cadets 2004 - Sivu 1 RATKAISUT Cadets 2004 - Sivu 1 3 pistettä 1/ Laske 2004 4 200 A 400800 B 400000 C 1204 1200 E 2804 2004 4 200= 2004 800= 1204 2/ Tasasivuista kolmiota AC kierretään vastapäivään pisteen A ympäri. Kuinka monta astetta

Lisätiedot

AMMATIKKA top 16.11.2006

AMMATIKKA top 16.11.2006 AMMATIKKA top 16.11.2006 Toisen asteen ammatillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU Nimi Oppilaitos Koulutusala Luokka Sarjat: MERKITSE OMA SARJA 1. Tekniikka ja liikenne: O 2.

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7 1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Kenguru 2010 Cadet (8. ja 9. luokka) sivu 1 / 5

Kenguru 2010 Cadet (8. ja 9. luokka) sivu 1 / 5 Kenguru 2010 Cadet (8. ja 9. luokka) sivu 1 / 5 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + =

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + = Mikä X? Esimerkki: Merkitse yhtä puuta kirjaimella ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3 + 2 = 5 + = 5 + = 1. Merkitse yhtä päärynää kirjaimella ja kirjoita yhtälöksi? Mikä tulee vastaukseksi?

Lisätiedot

5 Kertaus: Geometria. 5.1 Kurssin keskeiset asiat. 1. a) Merkitään suorakulmion sivuja 3x ja 4x. Piirretään mallikuva.

5 Kertaus: Geometria. 5.1 Kurssin keskeiset asiat. 1. a) Merkitään suorakulmion sivuja 3x ja 4x. Piirretään mallikuva. 5 Kertaus: Geometria 5.1 Kurssin keskeiset asiat 1. a) Merkitään suorakulmion sivuja 3x ja 4x. Piirretään mallikuva. 4x 3x 10 cm Muodostetaan Pythagoraan lause ja ratkaistaan sen avulla x. (3 x) (4 x)

Lisätiedot

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei. PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja

Lisätiedot

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2008

Preliminäärikoe Pitkä Matematiikka 5.2.2008 Preliminäärikoe Pitkä Matematiikka 5..008 Kokeessa saa vastata enintään kymmeneen tehtävään. Tähdellä (*) merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. Ratkaise

Lisätiedot

KERTAUSHARJOITUKSIA KULMA. 316. a) Samankohtaisista kulmista. b) Kolmion kulmien summa on x 2 ( 180 3x) Vastaus: a) 108 o b) 72 o.

KERTAUSHARJOITUKSIA KULMA. 316. a) Samankohtaisista kulmista. b) Kolmion kulmien summa on x 2 ( 180 3x) Vastaus: a) 108 o b) 72 o. KERTAUSHARJOITUKSIA KULMA 45 l 6. a) Samankohtaisista kulmista 80( 80456) 08 b) Kolmion kulmien summa on ( 80) 80 6 l 5 80 :( 5) 6 Kysytty kulma 80 8067 Vastaus: a) 08 o b) 7 o 7. Kulmien summa on ( )

Lisätiedot

Kenguru 2016 Benjamin (6. ja 7. luokka)

Kenguru 2016 Benjamin (6. ja 7. luokka) sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan.

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan. Tekijä Pitkä matematiikka 4 9.1.016 168 a) Lasketaan vektorien a ja b pistetulo. a b = (3i + 5 j) (7i 3 j) = 3 7 + 5 ( 3) = 1 15 = 6 Koska pistetulo a b 0, niin vektorit eivät ole kohtisuorassa toisiaan

Lisätiedot

MAB2. Kertaustehtävien ratkaisut. 120. a) α = 15 16 1. β = 95 58 45. 95 o 58. b) α = 11,9872 0,9872 = 0,9872 60 = 59,232 0,232 = 0,232 60 = 13,92

MAB2. Kertaustehtävien ratkaisut. 120. a) α = 15 16 1. β = 95 58 45. 95 o 58. b) α = 11,9872 0,9872 = 0,9872 60 = 59,232 0,232 = 0,232 60 = 13,92 MAB Kertaustehtävien ratkaisut 10. a) α = 15 16 1 16 1 15 60 β = 95 58 45 600 15,669 95 58 45 95,979 60 600 b) α = 11,987 0,987 = 0,987 60 = 59, 0, = 0, 60 = 1,9 α = 11 59 1,9 = 11 59 14 β = 95,4998 0,

Lisätiedot

YLIOPPILASTUTKINTO 22. 3. 2000 MATEMATIIKAN KOE - PITKÄ OPPIMÄÄRÄ

YLIOPPILASTUTKINTO 22. 3. 2000 MATEMATIIKAN KOE - PITKÄ OPPIMÄÄRÄ INTERNETIX Ylioppilaskirjoitusten tehtävät Page YLIOPPILSTUTINTO MTEMTIIN OE PITÄ OPPIMÄÄRÄ okeessa saa vastata enintään kymmeneen tehtävään Eräät tehtävät sisältävät useita osia [merkittynä a), b) jne],

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 15.11.2012 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen 1) Maan muodon selvittäminen Nykyään on helppo sanoa, että maa on pallon muotoinen olet todennäköisesti itsekin nähnyt kuvia maasta avaruudesta kuvattuna. Mutta onko maapallomme täydellinen pallo? Tutki

Lisätiedot

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26

Lisätiedot

Kenguru 2016 Student lukiosarja

Kenguru 2016 Student lukiosarja sivu 1 / 9 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

4. Varastossa on 24, 23, 17 ja 16 kg:n säkkejä. Miten voidaan toimittaa täsmälleen 100 kg:n tilaus avaamatta yhtään säkkiä?

4. Varastossa on 24, 23, 17 ja 16 kg:n säkkejä. Miten voidaan toimittaa täsmälleen 100 kg:n tilaus avaamatta yhtään säkkiä? Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 3.2.2012 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.

Lisätiedot

b) Kun vähenevä on 1000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava 180. Mikä on toinen?

b) Kun vähenevä on 1000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava 180. Mikä on toinen? LASKUTOIMITUKSET Nimi: ) Muista laskutoimituksissa käytettävät nimet. a) Mikä on lukujen 650 ja 70 summa erotus b) Kun vähenevä on 000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava

Lisätiedot

Copyright Isto Jokinen 2013 MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. Isto Jokinen 2013 SISÄLTÖ. Pinta-alojen laskeminen

Copyright Isto Jokinen 2013 MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. Isto Jokinen 2013 SISÄLTÖ. Pinta-alojen laskeminen Copyright Isto Jokinen 01 MTEMTIIKK Matematiikkaa pintakäsittelijöille POJ. Isto Jokinen 01 SISÄLTÖ Pinta-alojen laskeminen Tilavuuksien laskeminen Prosenttilaskut Käyttö opetuksessa tekijän luvalla 1

Lisätiedot

Kenguru 2013 Student sivu 1 / 7 (lukion 2. ja 3. vuosi)

Kenguru 2013 Student sivu 1 / 7 (lukion 2. ja 3. vuosi) Kenguru 2013 Student sivu 1 / 7 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! MAA7 7.1 Koe Jussi Tyni 9.1.01 1. Laske raja-arvot: a) 5 lim 5 10 b) lim 9 71. a) Määritä erotusosamäärän avulla funktion f (). f ( ) derivaatta 1 b) Millä välillä funktio f ( ) 9 on kasvava? Perustele

Lisätiedot

MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014

MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014 MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014 KOE 2: Ympäristöekonomia KANSANTALOUSTIEDE JA MATEMATIIKKA Sekä A- että B-osasta tulee saada vähintään 10 pistettä. Mikäli A-osan pistemäärä on vähemmän

Lisätiedot

OULUN YLIOPISTO, BIOLOGIAN LAITOS Puututkimus

OULUN YLIOPISTO, BIOLOGIAN LAITOS Puututkimus OULUN YLIOPISTO, BIOLOGIAN LAITOS Puututkimus Puu on yksilö, lajinsa edustaja, eliöyhteisönsä jäsen, esteettinen näky ja paljon muuta. Tässä harjoituksessa lähestytään puuta monipuolisesti ja harjoitellaan

Lisätiedot

Aluksi. Avaruuskappaleista. Lieriö. MAB2: Avaruuskappaleita

Aluksi. Avaruuskappaleista. Lieriö. MAB2: Avaruuskappaleita MAB: Avaruuskappaleita Aluksi Tässä luvussa emme tyydy enää pelkkään tasoon. Aiheena ovat nyt avaruuskappaleet eli kolmiulotteiset kappaleet. Tarkastelemme lieriötä eli sylinteriä, kartiota, särmiötä,

Lisätiedot

MAA 2 - POLYNOMIFUNKTIOT

MAA 2 - POLYNOMIFUNKTIOT MAA MAA - POLYNOMIFUNKTIOT 1 On annettu muuttujan x polynomi P(x) = x + x + Mitkä ovat sen termien kertoimet, luettele kaikki neljä (?) Mitä astelukua polynomi on? Mikä on polynomin arvo, kun x = 0 Entä

Lisätiedot