Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto, tktl, k2014. H.Laine 1
|
|
- Annika Hovinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kyselyn käsittely Tiedonhakumenetelmät Ranking mitan laskenta Vektorimalli ja muut kyselytyypit Hakujärjestelmä 1 2 Kosinimitan laskennassa käytetään dokumenttien painon normalisointiin dokumentin Euclidista pituutta v t i 1 x 2 i Tutkimuksissa on havaittu, että tämä suosii jonkin verran lyhyitä dokumentteja Antaa lyhyille suhteessa jonkin verran korkeampia mittalukuja kuin pitkille dokumenteille Amit Singhal, Chris Buckley, and Mandar Mitra, \Pivoted Document Length Normalization", SIGIR Säätämällä aineistokohtaisesti normalisointitekijää kuvaavan käyrän jyrkkyyttä voidaan parantaa mittaluvun toimivuutta Pivoted document length normalization w termin paino dokumentissa (esim. TF*IDF) n u alkuperäinen normalisointitekijä (dokumenttivektorin pituus) p kääntöpiste s kääntömäärä (kulman tangentti) w p kääntönormalisoitu paino w p =w / ( (1 - s) p + s n u ) Tekijöille p ja s on esitetty approksimaatioita, mutta ne täytyy säätää aineiston perusteella Huom: Tässä ei enää lasketa kosinia! 5 6 H.Laine 1
2 Vektorimallin mukaiset tiedonhaut Vastaavuusmitan laskenta Dokumentit kuvataan termipainoista muodostuvina vektoreina Kysely tulkitaan termien painovektorina Lasketaan kyselyn ja dokumentin vastaavuutta kuvaavaksi mittaluvuksi kyselyvektorin ja dokumenttivektorin välisen kulman kosini Valitaan K suurimman mittaluvun tuottanutta dokumenttia hakutulokseen Kosini lasketaan vain dokumenteille, joissa termi esiintyy Periaatteessa tarvitaan dokumenttikohtaiset painot termiin liittyvään esiintymälistaan, käytännössä termin frekvenssi dokumentissa riittää Termin informatiivisuus (idf) voidaan laskea kun tiedetään termin sisältävien dokumenttien määrä Dokumentin pituus voidaan laskea termifrekvenssien perusteella. Ei muutu joten voidaan laskea valmiiksi. Laskenta voidaan tehdä käymällä läpi kaikki kyselyssä esiintyvien termien esiintymälistat. Niissä esiintymättömien dokumenttien mittalukuja ei tarvitse laskea. Jäljelle jääviä voi kuitenkin olla paljon >> K 7 8 Kyselytermit samanpainoisia Kyselytermit samanpainoisia Useissa hakujärjestelmissä kaikilla kyselytermeillä on sama paino Rankingin laskennassa jokainen summalausekkeen tekijä kerrottaisiin tällöin samalla vakioarvolla. Tämän voisi jättää pois ja mittalukujen suhde pysyisi samana Jokaiselle dokumentille, joka sisältää kyselytermejä siis laskettaisiin mitta a d i Q i, missä Q on kyselyn termien joukko d Olkoon kysely = {jealous gossip} q= (,1,1,) term SaS PaP WH affection jealous gossip wuthering.588 läheisyysmitta Pituusnormalisoidut painot.85, q 1 1 aiemmin , kosini 1 Vastausdokumenttien valinta Laskennan tehostaminen K:n parhaan dokumentin valinta voidaan hoitaa K- alkioisen prioriteettijonon avulla (mittaluku prioriteettina) Jos jono on täynnä uusi dokumentti lisätään mittalukunsa mukaiselle paikalle jonossa ja pienimmän mittaluvun haltija tippuu jonosta. Voidaan toteuttaa tehokkaasti vaikkapa minimikekorakenteena Koska laskettavien mittalukujen määrä voi olla suuri suhteessa tulokseen, on esitetty menetelmiä, joissa tätä määrää pyritään vähentämään Osassa menetelmistä laskentaa rajataan siten, vastausjoukko ei välttämättä sisällä mittarin kannalta K parasta vaihtoehtoa Toisaalta: Kosinimitan kannalta K parasta eivät ehkä ole käyttäjän kannalta K parasta, joten pieni virhe on hyväksyttävää H.Laine 2
3 Laskennan tehostaminen Laskennan tehostaminen / Indeksien eliminointi Likimääräisvalinta: 1) Valitaan A:n ehdokasdokumentin joukko K< A <<N. Joukko A ei välttämättä sisällä kaikkia koko kokoelman K parhaiten rankattua, mutta todennäköisesti suuren osaan näistä. 2) Valitse A:n dokumenttien joukosta K parhaiten rankattua. Menetelminä mm: Indeksien eliminointi Huiput Laadukkuus Vaikuttavuuden mukainen poiminta Klusterihaut 13 Indeksien eliminointi termin informatiivisuuden tai dokumentin kattavuuden perusteella Tarkastellaan vain hakutermejä, joiden informatiivisuus (idf) ylittää jonkin ennalta kiinnitetyn raja-arvon ja käydään läpi näiden esiintymälistat Korkea idf => dokumenttilistat lyhempiä Monet alhaisen idf:n sanat voidaan ajatella hukkasanoiksi Esim: catcher in the rye Ei käytetä 14 Laskennan tehostaminen / Indeksien eliminointi Laskennan tehostaminen / Huiput Dokumenttien kattavuuden perusteella Lasketaan mitat vain dokumenteille, joissa esiintyy useita tai kaikki kyselyn termit (Googlen tapa) Esimerkiksi 3 /4 Voi olla, että jäädään alle K dokumentin Huiput (champions) Kullekin termille lasketaan ennalta r:n korkeimman mittaluvun saavien dokumenttien joukko, eli r korkeinta termin frekvenssiä sisältävät = huippujen lista Kyselyyn vastattaessa muodostetaan kyselytermien huippujen listoista unioni ja lasketaan vain näille mittaarvot Huippulistojen pituudet ovat oleellisia menetelmän toimivuuden kannalta. Listat voivat olla eri pituisia eri termeille. Listojen pituus tiedettävä indeksiä tehtäessä etukäteen. Voi olla, että jäädään alle K:n dokumentin Laskennan tehostaminen / Kahden kerroksen väkeä Laskennan tehostaminen/ laadukkuus Kahden kerroksen väkeä Muodostetaan kullekin termille kaksi esiintymälistaa: Huiput Muut Vastattaessa toimitaan aluksi kuten huiput-mallissa, mutta, jos vastausjoukko jää liian pieneksi, laajennetaan hakua muut-listoihin => voidaan yleistää monen kerroksen väeksi (multi tier index): 1,2,3, kerroksilla pitää olla parin kertaluokan kokoero Dokumenteille on olemassa jokin kyselyn ulkopuolinen staattinen laatuluokitus. Voi perustua esimerkiksi Kohdistuvien tai sisältyvien viittausten määrään Tiedon lähteisiin Ulkopuoliseen laaturankkaukseen Asiakaspalautteeseen Tykkäykseen, H.Laine 3
4 Laskennan tehostaminen/ laadukkuus Laskennan tehostaminen/ vaikuttavuuden mukaan Dokumenteilla laatumitta g(d) väliltä [,1] Dokumentin vastaavuusmitta: jokin yhdistelmä laatumitasta ja kosinimitasta, esimerkiksi yksinkertaisimmillaan niiden summa, mutta voi olla monimutkaisempikin Dokumentit järjestetään esiintymälistoihin laatumitan (+ dokumenttitunnuksen) perusteella laskevaan järjestykseen => yksi läpikäynti riittää yhdistelyyn Tarkastellaan vain dokumentteja, joiden laatu ylittää tietyn rajan. Esiintymälistat järjestetään laskevan esiintymäfrekvenssin perusteella Käydään läpi vain listan alkuosa Lopetetaan, kun on käyty läpi tietty määrä tai kun paino putoaa alle ennalta määritellyn rajan Termejä puolestaan käydään läpi laskevan idf arvon mukaisesti Kun dokumenttien painot eivät muutu merkittävästi voidaan lopettaa tai käydä listoista läpi pienempi määrä esiintymiä 19 2 Laskennan tehostaminen/ klusteripohjainen karsinta Laskennan tehostaminen/klusteripohjainen karsinta Valitaan satunnaisesti N dokumenttia ytimiksi (leader) Lasketaan muille dokumenteille lähin ydin Jos hyvin käy, niin kunkin ytimen ympärille syntyy noin N dokumentin kokoinen klusteri Kyselyn käsittelyssä etsitään kyselyä lähinnä oleva ydin ja haetaan K parhaiten rankattua dokumenttia valittua ydintä ympäröivästä klusterista Kysely 21 Ydin Ympäristö 22 Dokumentteihin voi liittyä metatietoa Kieli, julkaisuaika, tekijä, muoto, Arvot yksittäisiä sanoja rajatusta arvojoukosta Erilliset kenttäkohtaiset indeksit metatiedolle (kentille, field) Voidaan käyttää kyselyissä, yleensä erilliset kentät myös kyselykäyttöliittymässä voisi hoitaa myös kenttänimien avulla published: 21 title: Olioiden maihinnousu Osaavatko käyttäjät? Dokumentit voi jakaa myös vyöhykkeisiin (zone), esim. Otsake Tiivistelmä Teksti Yhteenveto Viittaukset Vyöhykkeiden sisältö on tekstitietoa Indeksointi vyöhykkeittäin Vyöhykekohtaiset painot H.Laine 4
5 Vyöhyke sanastossa / esiintymälistassa Vyöhyke voidaan ottaa mukaan sanastotermiin tai liittää eräänlaisena paikkatietona esiintymälistan alkioihin Termin painot vyöhykekohtaisesti Vyöhykkeiden väliset painot dokumentin haussa? onko termin esiintyminen otsakkeessa merkittävämpi osuman kannalta kuin perustekstissä? Paljonko? Hakujärjestelmä voi mahdollistaa eksplisiittisen viittauksen vyöhykkeeseen tai käsitellä ne implisiittisesti esim. eri painoilla Lähekkäiset sanat Kyselyn jäsentäjä Kyselyssä useampia sanoja Hakija olettaa sanojen olevan lähellä toisiaan dokumentissa ja ehkä samassa järjestyksessä kuin kyselyssä. Läheisyysikkunan koko =kuinka lähellä toisiaan dokumentissa, edellyttää dokumenttien paikkatietoa esiintymälistaan Onko kyseessä fraasi? Vapaamuotoisissa kyselyissä käyttäjä antaa joukon termejä, jotka pitäisi tulkita yhdeksi tai useammaksi kyselyksi Tarkastellaan esimerkkinä kyselyä rising interest rates Aluksi käsitellään fraasina rising interest rates, lasketaan tähän liittyen painot kullekin termille Jos löytyy liian vähän fraasin sisältäviä osumia (ei pystytä päättelemään pelkkien termipainojen avulla) puretaan kysely kahdeksi fraasiksi rising interest ja interest rates ja lasketaan näille Jos edelleen liian vähän puretaan yksittäisiksi termeiksi Voidaan joutua käyttämään useita erilaisia rakenteita Tulosten yhdistely ei ole täysin suoraviivaista Hakujärjestelmä Vektorimalli tukee vapaamuotoisia kyselyitä. Perusajatuksena: dokumentti voi olla relevantti, jos ainakin yksi kyselyn termeistä esiintyy dokumentissa, painot ratkaisevat kuinka hyvä Monessa nykyjärjestelmässä esim. Googlessa tulkintana on kuitenkin hakutermien konjunktio, kaikki tai lähes kaikki pitää löytyä ja vasta näiden kesken lasketaan paremmuus 29 3 H.Laine 5
6 Vektorimallia voi käyttää Boolen kyselyihin vastaamiseen. Paino >, jos termi esiintyy dokumentissa AND ei aiheuta mitään ongelmia AND NOT karsii laskettavia OR pakottaisi laskemaan painot perinteisen mallin mukaan Koska painoilla on merkitystä, ei OR yhdistettyjä termejä välttämättä tule lainkaan mukaan tulokseen Pelkkä NOT haluaako joku todella sellaista Jos indeksointi on tehty Boolen kyselyitä silmälläpitäen, indeksistä puuttuu vektorimallissa painojen laskentaan tarvittava frekvenssitieto. Vektorimalli ja jokerikyselyt edellyttävät erilaisia indeksejä. Yksinkertaisten jokereiden kohdalla esim. rom* restaurant jokerimerkin sisältävä termi voidaan korvata kaikilla sanastosta löytyvillä soveltuvilla termeillä (rome, roman, romantic, romanian, ). Tämä on mahdollista vain mikäli OR on sallittu ja silloinkin ehkä vääristää painotuksia Tarkoitushan olikin hakea romantic roman restaurant in rome Fraasikyselyiden käsittelyssä on ongelmana se, että vektorimallissa hukataan sanojen järjestys dokumentissa. Jos mukaan otetaan sanapari-indeksi ja sanaparit otetaan ulottuvuuksiksi, termien painot vääristyvät sillä parin termit laskettaisiin moneen ulottuvuuteen. Ei voida taata, että fraasi esiintyy vaikka yksittäisten termien suhteen tulos on hyvä 33 H.Laine 6
Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Rankkaukseen perustuva tiedonhaku.
Boolen haut Tiedonhakumenetelmät Rankkaukseen perustuva tiedonhaku Boolen haussa dokumentti joko täyttää hakuehdon tai ei täytä hakuehtoa Hakuehdon täyttäviä vastauksia voi olla runsaasti (tuhansia - miljoonia)
Tiedonhakumenetelmät Tiedonhakumenetelmät, Helsingin yliopisto, tktk, k2014. H.Laine 1. Tiedonhaku Boolen haku Indeksit. Tiedonhaku?
Tiedonhaku? Tiedonhakumenetelmät Tiedonhaku Boolen haku Indeksit Tiedonhaku (information retrieval, IR) Tietotarpeen tyydyttävän pääasiallisesti jäsentämättömän (tyypillisesti tekstimuotoisen) materiaalin
Algoritmit 1. Luento 10 Ke Timo Männikkö
Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot
Web of ScienceTM Core Collection (1987-present)
Tampereen yliopiston kirjasto 2014 Web of ScienceTM Core Collection (1987-present) Science Citation Index Expanded (1987-present): Monitieteinen tietokanta, joka sisältää 8,500 tieteellistä lehteä luonnontieteiden,
Algoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017
Algoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 20.3.2018 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2018 Luento 3 Ti 20.3.2018
Suomi.fi-verkkopalvelu
Suomi.fi-verkkopalvelu Haun toiminta Suomi.fi-verkkopalvelussa Tuuli Krekelä, Suomi.fi-verkkotoimitus Janne Murtonen, Gofore 14.12.2018 Koulutus nauhoitetaan Agenda 1. Suomi.fi-haun periaatteet 2. Mikä
Cantorin joukon suoristuvuus tasossa
Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja
Algoritmit 2. Luento 2 To Timo Männikkö
Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento
Ovid Medline käyttöohjeita (10/2010)
Ovid Medline käyttöohjeita (10/2010) Sisältö 1. Pikahaku - Basic Search:... - 1-2. Tarkennettu haku asiasanoilla - Advanced Ovid Search... - 1-3. Tulosjoukkojen yhdistely... - 5-4. Vapaasanahaku yksittäisellä
Algoritmit 2. Luento 4 To Timo Männikkö
Algoritmit 2 Luento 4 To 21.3.2019 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2019 Luento 4
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 10.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 10.2.2010 1 / 43 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin
T Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1
T-61.281 Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti 10.2.2004, 8:30-10:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:
Etsintä verkosta (Searching from the Web) T Datasta tietoon Heikki Mannila, Jouni Seppänen
Etsintä verkosta (Searching from the Web) T-61.2010 Datasta tietoon Heikki Mannila, Jouni Seppänen 12.12.2007 Webin lyhyt historia http://info.cern.ch/proposal.html http://browser.arachne.cz/screen/
T Luonnollisten kielten tilastollinen käsittely
T-61.281 Luonnollisten kielten tilastollinen käsittely Vastaukset 3, ti 11.2.2003, 16:15-18:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 11.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 11.2.2009 1 / 33 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin
Ohjelmoinnin peruskurssi Y1
Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.
Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö
Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu
ARVO - verkkomateriaalien arviointiin
ARVO - verkkomateriaalien arviointiin Arvioitava kohde: Jenni Rikala: Aloittavan yrityksen suunnittelu, Arvioija: Heli Viinikainen, Arviointipäivämäärä: 12.3.2010 Osa-alue 1/8: Informaation esitystapa
Reaalilukuvälit, leikkaus ja unioni (1/2)
Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut
Algoritmit 2. Luento 4 Ke Timo Männikkö
Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4
Algoritmit 1. Luento 9 Ti Timo Männikkö
Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward
Pistetulo eli skalaaritulo
Pistetulo eli skalaaritulo VEKTORIT, MAA4 Pistetulo on kahden vektorin välinen tulo. Tarkastellaan ensin kahden vektorin välistä kulmaa. Vektorien a ja, kun a 0, välinen kulma on (kuva) kovera kun a vektorit
Algoritmit 2. Luento 2 Ke Timo Männikkö
Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento
Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin
Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin
Relevanssipalautteen toimivuus lyhyillä, eritasoisesti onnistuneilla aloituskyselyillä. Jari Friman
Relevanssipalautteen toimivuus lyhyillä, eritasoisesti onnistuneilla aloituskyselyillä Jari Friman Tampereen yliopisto Informaatiotutkimuksen laitos Pro gradu -tutkielma Syyskuu 2008 TIIVISTELMÄ TAMPEREEN
Algoritmit 1. Luento 5 Ti Timo Männikkö
Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 1.4.2009 T-106.1208 Ohjelmoinnin perusteet Y 1.4.2009 1 / 56 Tentti Ensimmäinen tenttimahdollisuus on pe 8.5. klo 13:00 17:00 päärakennuksessa. Tämän jälkeen
Algoritmit 2. Luento 7 Ti Timo Männikkö
Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26
MS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Käytännön asiat Jonot Sarjat 1.1 Opettajat luennoitsija Riikka Korte
useampi ns. avain (tai vertailuavain) esim. opiskelijaa kuvaavassa alkiossa vaikkapa opintopistemäärä tai opiskelijanumero
Alkioiden avaimet Usein tietoalkioille on mielekästä määrittää yksi tai useampi ns. avain (tai vertailuavain) esim. opiskelijaa kuvaavassa alkiossa vaikkapa opintopistemäärä tai opiskelijanumero 80 op
Luku 8. Aluekyselyt. 8.1 Summataulukko
Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).
766334A Ydin- ja hiukkasfysiikka
1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen
Yleistä. Nyt käsitellään vain taulukko (array), joka on saman tyyppisten muuttujien eli alkioiden (element) kokoelma.
2. Taulukot 2.1 Sisältö Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko operaation parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 2.2 Yleistä
oheishakemistoja voi tiedostoon liittyä useita eri perustein muodostettuja
Tietokantojen hakemistorakenteet Hakemistorakenteiden (indeksien) tarkoituksena on nopeuttaa tietojen hakua tietokannasta. Hakemisto voi olla ylimääräinen oheishakemisto (secondary index), esimerkiksi
13 Lyhimmät painotetut polut
TIE-20100 Tietorakenteet ja algoritmit 297 13 Lyhimmät painotetut polut BFS löytää lyhimmän polun lähtösolmusta graafin saavutettaviin solmuihin. Se ei kuitenkaan enää suoriudu tehtävästä, jos kaarien
Taulukot. Jukka Harju, Jukka Juslin 2006 1
Taulukot Jukka Harju, Jukka Juslin 2006 1 Taulukot Taulukot ovat olioita, jotka auttavat organisoimaan suuria määriä tietoa. Käsittelylistalla on: Taulukon tekeminen ja käyttö Rajojen tarkastus ja kapasiteetti
CINAHL(EBSCO) käyttöohjeita (10/2010)
CINAHL(EBSCO) käyttöohjeita (10/2010) Sisältö 1. Katkaisumerkki, sanojen yhdistely, fraasihaku... - 1-2. Advanced Search haku vapailla hakusanoilla... - 1-3. Haku asiasanoilla (CINAHL Headings)... - 2-4.
TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto
Indeksin luonti ja hävitys TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto Komentoa ei ole standardoitu ja niinpä sen muoto vaihtelee järjestelmäkohtaisesti Indeksi voidaan
ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2
Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,
Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77
Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)
Tietotekniikan valintakoe
Jyväskylän yliopisto Tietotekniikan laitos Tietotekniikan valintakoe 2..22 Vastaa kahteen seuraavista kolmesta tehtävästä. Kukin tehtävä arvostellaan kokonaislukuasteikolla - 25. Jos vastaat useampaan
Jatkuvat satunnaismuuttujat
Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään
HELIA 1 (11) Outi Virkki Tiedonhallinta 4.11.2000
HELIA 1 (11) Access 1 ACCESS...2 Yleistä...2 Access-tietokanta...3 Perusobjektit...3 Taulu...5 Kysely...7 Lomake...9 Raportti...10 Makro...11 Moduli...11 HELIA 2 (11) ACCESS Yleistä Relaatiotietokantatyyppinen
Algoritmit 1. Luento 6 Ke Timo Männikkö
Algoritmit 1 Luento 6 Ke 25.1.2017 Timo Männikkö Luento 6 Järjestetty lista Listan toteutus dynaamisesti Linkitetyn listan operaatiot Vaihtoehtoisia listarakenteita Puurakenteet Binääripuu Järjestetty
Linkit webbihauissa / PageRank
Linkit Tiedonhakumenetelmät Webbisivuilta voi viitata toisille sivuille (hyper)linkeillä Linkit webbihauissa / Anchor to B Otsikko (vähän käytetty) ankkuriteksti 1
1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:
Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return
Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti
14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on
Etsintä verkosta (Searching from the Web) T Datasta tietoon Jouni Seppänen
Etsintä verkosta (Searching from the Web) T-61.2010 Datasta tietoon Jouni Seppänen 13.12.2006 1 Webin lyhyt historia 2 http://info.cern.ch/proposal.html 3 4 5 http://browser.arachne.cz/screen/ 6 7 Etsintä
TIEDONHAKU INTERNETISTÄ
TIEDONHAKU INTERNETISTÄ Internetistä löytyy hyvin paljon tietoa. Tietoa ei ole mitenkään järjestetty, joten tiedonhaku voi olla hankalaa. Tieto myös muuttuu jatkuvasti. Tänään tehty tiedonhaku ei anna
Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.
Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.
Hakuohjeet Haku Tiedonhaun tulokset
06/2010 Hakuohjeet 1. Haku 1.1. Hakutermien yhdistely Boolen operaattorit 1.2. Haun rajaus 1.3. Haun kohdistaminen tiettyyn kenttään 1.4 Hakuhistoria 1.5. Asiasanat -toiminto 1.6 Lehdet -toiminto 2. Tiedonhaun
Lukumäärän laskeminen 1/7 Sisältö ESITIEDOT:
Lukumäärän laskeminen 1/7 Sisältö Samapituisten merkkijonojen lukumäärä I Olkoon tehtävänä muodostaa annetuista merkeistä (olioista, alkioista) a 1,a 2,a 3,..., a n jonoja, joissa on p kappaletta merkkejä.
Tiedonhaku. Esim. kymenlaakso muutosjohtami* Laila Hirvisaari Tuntematon sotilas Ruksi tyhjentää hakukentän.
Tiedonhaku Kirjoita hakukenttään teoksen nimi, tekijä, aihe tai muita asiaan liittyviä hakusanoja. Tarvittaessa katkaise hakusana tähdellä *. Tällöin haku löytää kaikki niin alkavat sanat. Esim. hakusana
Tietokanta (database)
Tietokanta Tietokanta (database) jotakin käyttötarkoitusta varten laadittu kokoelma toisiinsa liittyviä säilytettäviä tietoja 1 Tiedosto Ohjelmointikielissä apumuistiin tallennettuja tietoja käsitellään
MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)
MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle
Sisältö. 2. Taulukot. Yleistä. Yleistä
Sisältö 2. Taulukot Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko operaation parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 2.1 2.2 Yleistä
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 31.1.-1.2.2018 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka tutkii onko kokonaisluku tasan jaollinen jollain toisella kokonaisluvulla siten, että ei käytetä lainkaan jakolaskuja Jaettava
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 9.2.2011 T-106.1208 Ohjelmoinnin perusteet Y 9.2.2011 1 / 46 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti
A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
Algoritmit 2. Luento 11 Ti Timo Männikkö
Algoritmit 2 Luento 11 Ti 25.4.2017 Timo Männikkö Luento 11 Peruutusmenetelmä Osajoukon summa Pelipuut Pelipuun läpikäynti Rajoitehaku Kapsäkkiongelma Algoritmit 2 Kevät 2017 Luento 11 Ti 25.4.2017 2/29
isomeerejä yhteensä yhdeksän kappaletta.
Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua
Datatähti 2019 loppu
Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio
Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen
Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen anton.mallasto@aalto.fi. 1. 2. Muista. Ryhmän G aliryhmä H on normaali aliryhmä, jos ah = Ha kaikilla a G. Toisin
Seuraavassa taulukossa on annettu mittojen määritelmät ja sijoitettu luvut. = 40% = 67% 6 = 0.06% = 99.92% 6+2 = 0.
T-6.28 Luonnollisen kielen tilastollinen käsittely Vastaukset, ti 7.2.200, 8:30-0:00 Tiedon haku, Versio.0. Muutetaan tehtävässä annettu taulukko sellaiseen muotoon, joka paremmin sopii ensimmäisten mittojen
Summon tehokas monihaku
Summon tehokas monihaku Suomen Tieteellinen Kirjastoseura Tietoaineistoseminaari 14.3.2012: Onnistuuko kirjasto tiedon hallinnassa? Tuula Hämäläinen, VTT 2 Sisältö VTT, lyhyt organisaation ja Tietoratkaisujen
CIRI Ontologiaperustainen tiedonhakuliittymä
CIRI Ontologiaperustainen tiedonhakuliittymä Eija Airio, Kalervo Järvelin, Sari Suomela, Pirkko Saatsi ja Jaana Kekäläinen Tampereen yliopisto Informaatiotutkimuksen laitos Ontologian kolmitasomalli kehitetty
Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto
Kynä-paperi -harjoitukset Taina Lehtinen 43 Loput ratkaisut harjoitustehtäviin 44 Stressitestin = 40 s = 8 Kalle = 34 pistettä Ville = 5 pistettä Z Kalle 34 8 40 0.75 Z Ville 5 8 40 1.5 Kalle sijoittuu
0. 10. 017 a b c d 1. + +. + +. + + 4. + + + 5. + 6. + P1. Lehtipuiden lukumäärä olkoon aluksi n, jolloin havupuiden määrä on 1,4n. Hakkuiden jälkeen lehtipuiden määrä putoaa lukuun n 0,1n = 0,88n ja havupuiden
Tieto- ja tallennusrakenteet
Tieto- ja tallennusrakenteet Sisältö Tyyppi, abstrakti tietotyyppi, abstraktin tietotyypin toteutus Tallennusrakenteet Taulukko Linkitetty rakenne Abstraktit tietotyypit Lista (Puu) (Viimeisellä viikolla)
Algoritmit 1. Luento 7 Ti Timo Männikkö
Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017
Metropolia ammattikorkeakoulu TU00BS : ICT-teknologiaosaaminen Tuntitehtävät 5 Pasi Ranne
Osoitteessa http://users.metropolia.fi/~pasitr/2015-2016/tu00bs69-3001/tt/05/kanta ovat taulujen Henk (kuva A), Proj (kuva B) ja Prhe (kuva C) luontilauseet ja sisällön lisäyslauseet. Tee phpmyadmin-ohjelmalla
Vinkkejä musiikin tiedonhakuun OUTI-verkkokirjastossa
Vinkkejä musiikin tiedonhakuun OUTI-verkkokirjastossa Katja Pietilä / Musiikkiosasto 23.9.2017 Sisältö Verkkokirjaston aloitussivu Tarkan haun aloitussivu Hakutuloksen lukeminen Kokonaisten julkaisujen
Metropolia ammattikorkeakoulu 05.02.2015 TI00AA43-3004: Ohjelmointi Kotitehtävät 3
: http://users.metropolia.fi/~pasitr/2014-2015/ti00aa43-3004/kt/03/ratkaisut/ Tehtävä 1. (1 piste) Tee ohjelma K03T01.cpp, jossa ohjelmalle syötetään kokonaisluku. Jos kokonaisluku on positiivinen, niin
1. Esitä rekursiivinen määritelmä lukujonolle
Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)
3.7 Todennäköisyysjakaumia
MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen
Automaattinen semanttinen annotointi
Automaattinen semanttinen annotointi Matias Frosterus, Reetta Sinkkilä, Katariina Nyberg Semantic Computing Research Group (SeCo) School of Science and Technology, Department of Media Technology and University
ITKP102 Ohjelmointi 1 (6 op)
ITKP102 Ohjelmointi 1 (6 op) Tentaattori: Antti-Jussi Lakanen 7. huhtikuuta 2017 Vastaa kaikkiin tehtäviin. Tee jokainen tehtävä erilliselle konseptiarkille. Kirjoittamasi luokat, funktiot ja aliohjelmat
Tiedonhaku ja varaaminen
Tiedonhaku ja varaaminen Kyytin verkkokirjasto kyyti.finna.fi 20.11.2018 Tiedonhaku Kirjoita hakukenttään teoksen nimi, tekijä, aihe tai muita asiaan liittyviä hakusanoja. Tarvittaessa katkaise hakusana
ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu
jens 1 matti Etäisyydet 1: 1.1 2: 1.4 3: 1.8 4: 2.0 5: 3.0 6: 3.6 7: 4.0 zetor
T-1.81 Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ti 8.4., 1:1-18: Klusterointi, Konekääntäminen. Versio 1. 1. Kuvaan 1 on piirretty klusteroinnit käyttäen annettuja algoritmeja. Sanojen
3. Pelaajan pistearvo ja kilpailun kokonaispistearvon määräytyminen
Rankingin määräytymisperusteet 1.1.2017 alkaen 1. Yleistä Suomen racketlonranking laaditaan 1.1.2017 lähtien tässä dokumentissa kuvatun järjestelmän mukaan. Rankingin tarkoituksena on selkein perustein
Tietorakenteet, laskuharjoitus 7, ratkaisuja
Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9
Kääreluokat (oppikirjan luku 9.4) (Wrapper-classes)
Kääreluokat (oppikirjan luku 9.4) (Wrapper-classes) Kääreluokista Javan alkeistietotyypit ja vastaavat kääreluokat Autoboxing Integer-luokka Double-luokka Kääreluokista Alkeistietotyyppiset muuttujat (esimerkiksi
Sisältö. 22. Taulukot. Yleistä. Yleistä
Sisältö 22. Taulukot Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko metodin parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 22.1 22.2 Yleistä
Algoritmit 2. Luento 9 Ti Timo Männikkö
Algoritmit 2 Luento 9 Ti 17.4.2018 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen Huffmanin koodi LZW-menetelmä Taulukointi Editointietäisyys Algoritmit 2 Kevät 2018 Luento 9 Ti 17.4.2018 2/29 Merkkitiedon
Luentoesimerkki: Riemannin integraali
Luentoesimerkki: Riemannin integraali Heikki Apiola, "New perpectives "-esitykseen lievästi muokattu Kurssi: Informaatioverkostot, keväällä Tässä (4..) käytetään "worksheet-modea", uudempaa "document mode"
Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
Laskentaa kirjaimilla
MAB1 Polynomit Laskentaa kirjaimilla Tähän asti olemme laskeneet luvuilla, jotka on esitetty numeroiden avulla. Matematiikan säännöt, laskentamenetelmät, kaavat samoin kuin fysiikan ja itse asiassa kaikkien
Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti
Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan
Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi
Kurssin loppuosa Diskreettejä menetelmiä laajojen 0-1 datajoukkojen analyysiin Kattavat joukot ja niiden etsintä tasoittaisella algoritmilla Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa
Kanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
f (28) L(28) = f (27) + f (27)(28 27) = = (28 27) 2 = 1 2 f (x) = x 2
BMA581 - Differentiaalilaskenta ja sovellukset Harjoitus 4, Syksy 15 1. (a) Olisiko virhe likimain.5, ja arvio antaa siis liian suuren arvon. (b) Esim (1,1.5) tai (,.5). Funktion toinen derivaatta saa
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 6.3.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa
9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.
Sinulle on annettu bittijono, ja tehtäväsi on muuttaa jonoa niin, että jokainen bitti on 0.
A Bittien nollaus Sinulle on annettu bittijono, ja tehtäväsi on muuttaa jonoa niin, että jokainen bitti on 0. Saat käyttää seuraavia operaatioita: muuta jokin bitti vastakkaiseksi (0 1 tai 1 0) muuta kaikki
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,
Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta
Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,