Kryogeniikka ja lämmönsiirto. Dee Kryogeniikka Risto Mikkonen

Koko: px
Aloita esitys sivulta:

Download "Kryogeniikka ja lämmönsiirto. Dee Kryogeniikka Risto Mikkonen"

Transkriptio

1 DEE Kyogeniikka Kyogeniikka ja lämmönsiito Dee Kyogeniikka Risto Mikkonen

2 Lämmönsiion mekanismit '' q x ( ) x q '' h( s ) q Dee Kyogeniikka Risto Mikkonen '' 4 4 ( s su )

3 Lämmön johtuminen Atomien ja molekyylien väähdysliike + vapaiden elektonien liike. Wiedemann-Fanzin laki ( ) ( ) L Siis hyvä sähkönjohde on hyvä lämmönjohde. Dee Kyogeniikka Risto Mikkonen

4 Lämmön johtuminen (Cont.) Nesteiden lämmönjohtavuus vaihtelee hyvin vähän. Kaasuille on veannollinen viskositeettiin, joka ~ /. Useille kiinteille aineille ( ) 0 ( missä on vakio ) Fouie n laki: '' q x ( ) x Lämpövita saadaan positiiviseksi alenevan lämpötilagadientin suuntaan. Dee Kyogeniikka Risto Mikkonen

5 Lämpövita Kun lämmönjohtavuutta ei voida pitää vakiona: Q c A l ( ) d Esimekki : 300 K 4. K Ruostumaton teäs: Epoksi: 300 W/m 50 W/m Dee Kyogeniikka Risto Mikkonen

6 Esimekki Nesteheliumiin siityy lämpöä johtumalla teäksestä valmistettua sylinteimäistä tukiakennetta pitkin, jota ei jäähdytetä höyystyvällä heliumkaasulla. Umpinaisen sylintein poikkipinta-ala on 0 mm ja pituus 00 mm. Mikäli tukiputken puoleenväliin liitetään kyojäähdytin, on ankkuointipisteessä putken lämpötila 70 K. Kuinka paljon edullisemmaksi käyttökustannuksiltaan atkaisu on veattuna tilanteeseen, jossa kyojäähdytintä ei käytetä? eäksen lämmönjohtavuuden integaali lämpötilavälillä 300 K 4. K on 300 W/m ja välillä 70 K 4. K 00 W/m. Nesteheliumin höyystymislämpö on 0.4 J/g ja tiheys 5 kg/m 3. Kyojäähdyttimen vaatima teho huoneen lämpötilassa on 0 kw, sähkön hinta 0. /kwh ja nesteheliumin hinta 0 /l. Dee Kyogeniikka Risto Mikkonen

7 Lämpö vs sähkö -anlogia Joseph Fouie Geog Ohm ( ) ( ) Dee Kyogeniikka Risto Mikkonen

8 Konvektio Dee Kyogeniikka Risto Mikkonen

9 Konvektio Lämmön- ja massansiito kahden faasin kesken. Väliaine liikkeessä; lämpö siityy potentiaaligadientin ja oman liikkeen ansiosta. Luonnollinen konvektio vs pakotettu konvektio. q = h ( s - ) h, lämmönsiitokeoin [h] = W/m K Dee Kyogeniikka Risto Mikkonen

10 Luonnollinen / pakotettu konvektio Dee Kyogeniikka Risto Mikkonen

11 Lämpösäteily Säteily on enegian siitymistä sähkömagneettisten aaltojen muodossa, eikä tavitse väliainetta edetäkseen. Säteily on voimakkaasti epälineaainen ilmiö. q '' ad 4 s 4 su Dee Kyogeniikka Risto Mikkonen

12 Case study Miksi talvella auton lasit jäätyvät helpommin avoimelta kuin seinän puolelta? Dee Kyogeniikka Risto Mikkonen

13 Esimekki Betelgeuse on ns. ylijättiläistähti, jonka pintalämpötila on noin 900 K (noin puolet Auingon pintalämpötilasta). ähden emittoima lämpösäteily on 4x0 30 W. (0 000 ketainen Auinkoon nähden). Olettaen tähti täydelliseksi emittoijaksi, määitä tähden säde. A Q Q ( m) Dee Kyogeniikka Risto Mikkonen

14 Auinko vs Maa Dee Kyogeniikka Risto Mikkonen

15 Betelgeuse vs Auinko Dee Kyogeniikka Risto Mikkonen

16 eminen diffusiviteetti Lämmönjohtavuuden ja tilavuusyksikköä kohti määitetyn ominaislämpökapasiteetin suhde. Kuvaa mateiaalin kykyä johtaa lämpöä suhteutettuna sen kykyyn vaastoida lämpöenegiaa. Suui eagoi nopeasti ympäistössä tapahtuviin muutoksiin. c p m s Dee Kyogeniikka Risto Mikkonen

17 Lämmönjohtumisen yleinen osittaisdiffeeentiaaliyhtälö Dee Kyogeniikka Risto Mikkonen

18 Lämmönjohtumisen yleinen osittaisdiffeeentiaaliyhtälö t E g c p Dee Kyogeniikka Risto Mikkonen

19 Sylintei- ja pallokoodinaatisto Sylinteikoodinaatisto z z y x sin cos p g c E z t Pallokoodinaatisto cos sin sin cos sin z y x p g c E t sin sin sin ) ( Dee Kyogeniikka Risto Mikkonen

20 Alku- ja eunaehdot Dee Kyogeniikka Risto Mikkonen

21 Diichlet n ja Neumann in eunaehdot Diichlet: Kappaleen pintalämpötila tunnetaan s Neumann: Lämpövian tiheys eunalla tunnetaan q '' x x x 0 Dee Kyogeniikka Risto Mikkonen

22 D stationääi, lähteetön johtuminen d d x ( x) (0) C Siis dt dx C s, x s, 0, ( L) L C s, Integoidaan kahdesti, C x L s, ( x) s, s, s, s, q x Fouie: Lämpövita d A dx A L Lämpövian tiheys q '' x L s, s, s, s, Dee Kyogeniikka Risto Mikkonen

23 Lämpövastus A L q R x s s cond t,,, Analogia A L I E E R s s e,, Johtumislämpövastus Konvektion lämpövastus h A q R s conv t. Säteilyn lämpövastus A h q R su s ad t, missä su s su s h Dee Kyogeniikka Risto Mikkonen

24 Komposiittiakenteet Komposiittiakenteissa kokonaislämmönsiitokeoin voidaan määittää analogisesti esistanssien saja- ja innankytkentöjen mukaisesti.,,4 qx R missä R h A L A Dee Kyogeniikka Risto Mikkonen t C C t L A A A h A 4 L B B A

25 Esimekki R t =? Dee Kyogeniikka Risto Mikkonen

26 Sylinteikoodinaatisto, D lähteetön tapaus = () Dee Kyogeniikka Risto Mikkonen

27 Sylinteikoodinaatisto, D lähteetön tapaus 0 d d d d Jos on vakio ln ) ( 0 C C C d d C d d d d d d Reunaehdot:,, ln ) ( ln ) ( s s C C C C,,, ln ln ) ( s s s Lämpötilajakautuma Dee Kyogeniikka Risto Mikkonen

28 Sylinteikoodinaatisto, D lähteetön tapaus Lämpövita q ( L) q Joten L ln ( s, d d s, ) Johtumislämpövastus sylinteikoodinaatistossa ln R t, cond L Dee Kyogeniikka Risto Mikkonen

29 Komposiittiakenne q Lh ln A L, ln 3 B L, ln 4 3 C L Lh 4 4 Dee Kyogeniikka Risto Mikkonen

30 Esimekki Ohutseinäistä eistettyä kupaiputkea käytetään kyogeenisen nesteen siiossa. Analysoi optimaalista eistyskeoksen paksuutta tilanteessa, mikä minimoi putken lämpökuoman. Esimekkinä putki, d = 0 mm, eisteenä peliitti, jonka = W/mK, eistyspaksuudet 0,, 5, 0, 0 ja 40 mm. Eisteen ulkopinnalla h = 5 W/m K Dee Kyogeniikka Risto Mikkonen

31 Dee Kyogeniikka Risto Mikkonen

32 Pallokoodinaatisto, D lähteetön tapaus Lämpövita Siis lämpövita q 4 d d Eotetaan muuttujat ja integoidaan q 4 s, s, q 4 q 4 d s, s, d s, s, R Jolloin johtumislämpövastus t, cond s, q s, 4 Dee Kyogeniikka Risto Mikkonen

33 Esimekki Nestetyppeä säilytetään pallonmuotoisessa astiassa, d = 0.5 m. Astia on eistetty 5 mm paksuisella heijastavalla piipulveieisteellä = W/mK) jonka ulkopinnan lämpötila on 300 K. Lämmönsiitymiskeoin h = 0 W/m K. Määitä nestetypen kiehumisnopeus, kun typen höyystymislämpö H = x 0 5 J/kg ja tiheys = 804 kg/m 3. Dee Kyogeniikka Risto Mikkonen

34 Dee Kyogeniikka Risto Mikkonen

Kryogeniikka ja lämmönsiirto. DEE-54030 Kryogeniikka Risto Mikkonen

Kryogeniikka ja lämmönsiirto. DEE-54030 Kryogeniikka Risto Mikkonen DEE-54030 Kyogeniikka Kyogeniikka ja lämmönsiito 1 DEE-54030 Kyogeniikka Risto Mikkonen 5.5.015 Lämmönsiion mekanismit '' q x ( ) x q '' h( s ) q '' 4 4 ( s su ) DEE-54030 Kyogeniikka Risto Mikkonen 5.5.015

Lisätiedot

DEE Sähkömagneettisten järjestelmien lämmönsiirto

DEE Sähkömagneettisten järjestelmien lämmönsiirto DEE-54000 Sähkömagneettisten järjestelmien lämmönsiirto II periodi Luennot Risto Mikkonen, SH 311 Harjoitukset ke 10-12 SE 100 J to 10-12 SE 100 J to 8-10 SE 100 J Suoritusvaatimukset Tentti + hyväksytty

Lisätiedot

DEE-54030 Kryogeniikka

DEE-54030 Kryogeniikka DEE-54030 Kryogeniikka Kryogeeninen eristys Mitä lämmönsiirto on? Lämmönsiirto on lämpöenergian välittymistä lämpötilaeron vaikutuksesta. Lämmönsiirron mekanismit Johtuminen Konvektio Säteily Lämmönsiirron

Lisätiedot

Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä

Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Kun yhdistetään kahdella tavalla esitetty sähkökentän vuo, saadaan Gaussin laki: S d S Q sis Gaussin laki peustuu siihen, että suljetun pinnan läpi

Lisätiedot

SMG-4250 Suprajohtavuus sähköverkossa

SMG-4250 Suprajohtavuus sähköverkossa SMG-450 Suprajohtavuus sähköverkossa Laskuharjoitukset: Suprajohdemagneetin suunnittelu Harjoitus 3(5): Kryostaatti Ehdotukset harjoitustehtävien ratkaisuiksi 1. Yleisesti ottaen lämpö siirtyy kolmella

Lisätiedot

DEE Suprajohtavuus Laskuharjoitukset: Suprajohdemagneetin suunnittelu Harjoitus 4(6): Kryostaatti Ehdotukset harjoitustehtävien ratkaisuiksi

DEE Suprajohtavuus Laskuharjoitukset: Suprajohdemagneetin suunnittelu Harjoitus 4(6): Kryostaatti Ehdotukset harjoitustehtävien ratkaisuiksi DEE-540 Suprajohtavuus Laskuharjoitukset: Suprajohdemagneetin suunnittelu Harjoitus 4(6): Kryostaatti Ehdotukset harjoitustehtävien ratkaisuiksi. Yleisesti ottaen lämpö siirtyy kolmella tavalla: johtumalla,

Lisätiedot

DEE-54000 Sähkömagneettisten järjestelmien lämmönsiirto

DEE-54000 Sähkömagneettisten järjestelmien lämmönsiirto DEE-54 Säköagneettisten järjestelien läönsiirto Ripateoria 1 Säköagneettisten järjestelien läönsiirto Risto Mikkonen Ripateoria q Läönsiirtoa voidaan teostaa: Suurentaalla läpötilaeroa Suurentaalla :ta

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset SMG-4200 Sähkömagneettiten järjetelmien lämmöniirto Harjoituken 1 ratkaiuehdotuket Vata 1800-luvun puoliväliä ymmärrettiin että lämpöenergia on atomien ja molekyylien atunnaieen liikkeeeen värähtelyyn

Lisätiedot

Kuivauksen fysiikkaa. Hannu Sarkkinen

Kuivauksen fysiikkaa. Hannu Sarkkinen Kuivauksen fysiikkaa Hannu Sarkkinen 28.11.2013 Kuivatusmenetelmiä Auringon säteily Mikroaaltouuni Ilmakuivatus Ilman kosteus Ilman suhteellinen kosteus RH = ρ v /ρ vs missä ρ v = vesihöyryn tiheys (g/m

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi SMG-4 Sähkömagneettisten jäjestelmien lämmönsiito Ehdotukset hajoituksen 3 atkaisuiksi 1. Voidaan kohtuullisella takkuudella olettaa, että pallonmuotoisessa säiliössä lämpötila muuttuu vain pallon säteen

Lisätiedot

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan 3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden

Lisätiedot

9. Pyörivän sähkökoneen jäähdytys

9. Pyörivän sähkökoneen jäähdytys 81 9. Pyörivän sähkökoneen jäähdytys Sähkökoneen lämmönsiirron suunnittelu on yhtä tärkeää kuin koneen sähkömagneettinenkin suunnittelu, koska koneen lämpenemä määrittää sen tehon. Lämmön- ja aineensiirto

Lisätiedot

Muita sähkökentän laskemismenetelmiä ovat muun muassa potentiaalin gradientti ja kuvalähdeperiaate. Niistä puhutaan myöhemmin.

Muita sähkökentän laskemismenetelmiä ovat muun muassa potentiaalin gradientti ja kuvalähdeperiaate. Niistä puhutaan myöhemmin. GAUIN LAKI IÄLTÖ: Gaussin lain integaalimuoto Gaussin lain diffeentiaalimuoto Menetelmän valinta sähkökentän laskemisessa ähkökentän voivat aiheuttaa vaaukset tai muuttuva magneettikenttä. Tässä kappaleessa

Lisätiedot

PST-kattolämmityksen asennusohje

PST-kattolämmityksen asennusohje PST-kattolämmityksen asennusohje 1 Kattolämmityselementtien asennusohje Kiinnitysalueet Kattorakenne Rimoitus Lisälämmöneriste Kattoelementit Metallivastukset Liitäntäjohto Katon pintaverhous Kattoelementin

Lisätiedot

Sähkökentät ja niiden laskeminen I

Sähkökentät ja niiden laskeminen I ähkökentät ja niiden laskeminen I IÄLTÖ: 1.1. Gaussin lain integaalimuoto ähkökentän vuo uljetun pinnan sisään jäävän kokonaisvaauksen laskeminen Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä

Lisätiedot

Rak Tulipalon dynamiikka

Rak Tulipalon dynamiikka Rak-43.3510 Tulipalon dynamiikka 7. luento 14.10.2014 Simo Hostikka Palopatsaat 1 Luonnollisten palojen liekki 2 Palopatsas 3 Liekin korkeus 4 Palopatsaan lämpötila ja virtausnopeus 5 Ideaalisen palopatsaan

Lisätiedot

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Termodynamiikan suureita ja vähän muutakin mikko rahikka Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,

Lisätiedot

Jännitteenjaolla, sekä sarjaan- ja rinnankytkennällä saadaan laskettua:

Jännitteenjaolla, sekä sarjaan- ja rinnankytkennällä saadaan laskettua: DEE-11000 Piiianalyysi Hajoitus 6 (ketaus) / viikko 8 4 Laske oheisen piiin jännite v g ännitteenjaolla, sekä sajaan- ja innankytkennällä saadaan laskettua: 5 U5 0 U s U s 80 5 15 1 1 1 1 1 1 1 0 40 16

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

13 KALORIMETRI. 13.1 Johdanto. 13.2 Kalorimetrin lämmönvaihto

13 KALORIMETRI. 13.1 Johdanto. 13.2 Kalorimetrin lämmönvaihto 13 KALORIMETRI 13.1 Johdanto Kalorimetri on ympäristöstään mahdollisimman täydellisesti lämpöeristetty astia. Lämpöeristyksestä huolimatta kalorimetrin ja ympäristön välinen lämpötilaero aiheuttaa lämmönvaihtoa

Lisätiedot

LÄMMÖNJOHTUMINEN. 1. Työn tavoitteet

LÄMMÖNJOHTUMINEN. 1. Työn tavoitteet Oulun yliopisto Fysiikan opetuslaboratorio Fysikaalisen kemian laboratorioharjoitukset 1 LÄMMÖNJOHTUMINEN 1. Työn tavoitteet Jos asetat metallisauvan toisen pään liekkiin ja pidät toista päätä kädessäsi,

Lisätiedot

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin

Lisätiedot

Lämmöneristäminen. Minä panin ikkunaan pahvisuojan. Dow polyurethane systems

Lämmöneristäminen. Minä panin ikkunaan pahvisuojan. Dow polyurethane systems Lämmöneristäminen Dow polyurethane systems Minä panin ikkunaan pahvisuojan Aimo Ihanamäki kiinnostunut tulevaisuudesta huolestunut ilmastonmuutoksesta tekemisissä lämmöneristeiden kanssa uskon mahdollisuuteeni

Lisätiedot

Keskeisliikkeen liikeyhtälö

Keskeisliikkeen liikeyhtälö Keskeisliikkeen liikeyhtälö L vakio keskeisliikkeessä liike tasossa L Val. L e z liike xy-tasossa naakoodinaatit, joille d dt e d = ϕe ϕ ; dt e ϕ = ϕe = e LY: m = f()e ṙ = ṙe + ϕe ϕ ; = ( ϕ 2 )e +(2ṙ ϕ+

Lisätiedot

Transistori. Vesi sisään. Jäähdytyslevy. Vesi ulos

Transistori. Vesi sisään. Jäähdytyslevy. Vesi ulos Nesteiden lämmönjohtavuus on yleensä huomattavasti suurempi kuin kaasuilla, joten myös niiden lämmönsiirtokertoimet sekä lämmönsiirtotehokkuus ovat kaasujen vastaavia arvoja suurempia Pakotettu konvektio:

Lisätiedot

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN SÄHKÖMAGNEETTINEN KYTKEYTYMINEN H. Honkanen SÄHKÖMAGNEETTISEN KYTKEYTYMISEN TEORIAA Sähkömagneettinen kytkeytyminen on häiiöiden siitymistä sähkömagneettisen aaltoliikkeen välityksellä. Sähkömagneettisen

Lisätiedot

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla Termodynamiikkaa Energiatekniikan automaatio TKK 2007 Yrjö Majanne, TTY/ACI Martti Välisuo, Fortum Nuclear Services Automaatio- ja säätötekniikan laitos Termodynamiikan perusteita Konventionaalisessa lämpövoimaprosessissa

Lisätiedot

Tiilipiipun palonkestävyysanalyysi Simulointi välipohjan paksuudella 600 mm Läpivienti täysin eristetty ja osittain tuuletettu rakenne

Tiilipiipun palonkestävyysanalyysi Simulointi välipohjan paksuudella 600 mm Läpivienti täysin eristetty ja osittain tuuletettu rakenne 14.04.2014 Lämmönsiirtolaskelmat Päivitys 15.4.-14 Tiilipiipun palonkestävyysanalyysi Simulointi välipohjan paksuudella 600 mm Läpivienti täysin eristetty ja osittain tuuletettu rakenne Kokkola 14.04.2014

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

Pinnoitteen vaikutus jäähdytystehoon

Pinnoitteen vaikutus jäähdytystehoon Pinnoitteen vaikutus jäähdytystehoon Jesse Viitanen Esko Lätti 11I100A 16.4.2013 2 SISÄLLYS 1TEHTÄVÄN MÄÄRITTELY... 3 2TEORIA... 3 2.1Jäähdytysteho... 3 2.2Pinnoite... 4 2.3Jäähdytin... 5 3MITTAUSMENETELMÄT...

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi Valo-oia Haarto & Karhue Valo sähkömageettisia aaltoia Sähkömageettiste aaltoje teoria erustuu Maxwelli yhtälöihi S S E da 0 B da Q (Gaussi laki) 0 (Gaussi laki magetismissa) dφb E ds dt (Faraday laki)

Lisätiedot

Ruiskuvalumuotin jäähdytys, simulointiesimerkki

Ruiskuvalumuotin jäähdytys, simulointiesimerkki Ruiskuvalumuotin jäähdytys, simuloiesimerkki School of Technology and Management, Polytechnic Institute of Leiria Käännös: Tuula Höök - Tampereen Teknillinen Yliopisto Mallinnustyökalut Jäähdytysjärjestelmän

Lisätiedot

Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö

Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö Taivaanmekaniikkaa kaavojen johto, yksityiskohdat yms. ks. Kattunen, Johdatus taivaanmekaniikkaan tai Kattunen, Donne, Köge, Oja, Poutanen: Tähtitieteen peusteet tai joku muu tähtitieteen/taivaanmekaniikan

Lisätiedot

MALLINTAMINEN JA SEN KÄYTTÖ PALOTEKNIIKASSA

MALLINTAMINEN JA SEN KÄYTTÖ PALOTEKNIIKASSA MALLINTAMINEN JA SEN KÄYTTÖ PALOTEKNIIKASSA Jukka Hietaniemi VTT Rakennus- ja yhdyskuntatekniikka PL 183, 44 VTT Tiivistelmä Tietotekniikan käyttö on levinnyt kaikille inhimillisen toiminnan alueille ja

Lisätiedot

Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka

Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Alkudemonstraatio Käsi lämpömittarina Laittakaa kolmeen eri altaaseen kylmää, haaleaa ja lämmintä vettä. 1) Pitäkää

Lisätiedot

LUT, Sähkötekniikan osasto. 1. Ilmassa etenevällä tasoaallolla on sähkökentän voimakkuus z. d) vaihekerroin

LUT, Sähkötekniikan osasto. 1. Ilmassa etenevällä tasoaallolla on sähkökentän voimakkuus z. d) vaihekerroin SÄHKÖMAGNETISMI LUT, Sähkötekniikan osasto LH5/216 P.I. Ketausta: 1. Ilassa etenevällä tasoaallolla on sähkökentän voiakkuus z t E cos t z Ex,. Aallon taajuus on 2 MHz. Kuvassa 1 on esitetty tasoaallon

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

vetyteknologia Muut kennotyypit 1 Polttokennot ja vetyteknologia Risto Mikkonen

vetyteknologia Muut kennotyypit 1 Polttokennot ja vetyteknologia Risto Mikkonen DEE-5400 Polttokennot ja vetyteknologia Muut kennotyypit 1 Polttokennot ja vetyteknologia Risto Mikkonen Alkaalipolttokennot Anodi: Katodi: H 4OH 4 H O 4e O e H O 4OH 4 Avaruussovellutukset, ajoneuvokäytöt

Lisätiedot

SISÄISEN KONVEKTION VAIKUTUS YLÄPOHJAN LÄMMÖNERISTÄVYYTEEN

SISÄISEN KONVEKTION VAIKUTUS YLÄPOHJAN LÄMMÖNERISTÄVYYTEEN Tomi Pakkanen SISÄISEN KONVEKTION VAIKUTUS YLÄPOHJAN LÄMMÖNERISTÄVYYTEEN Diplomityö Tarkastajat: tutkimusjohtaja Juha Vinha ja professori Ralf Lindberg Tarkastajat ja aihe on hyväksytty Rakennetun ympäristön

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

Harjoitus 5 / viikko 7

Harjoitus 5 / viikko 7 DEE-000 Piiianalyysi Hajoitus 5 / viikko 7 5. Laske solmupistemenetelmällä oheisen kuvan esittämän piiin jännite ja vita i. 0k ma k k k i ma Solmupistemenetelmää käytettäessä takasteltavan kytkennän jännitelähteet

Lisätiedot

EWA Solar aurinkokeräin

EWA Solar aurinkokeräin EWA Solar aurinkokeräin Sisällys: 1. Keräimen periaate 2. Keräimen rakenne 3. Keräimen toiminta 4. Keräimen yhdistäminen EWA:an 5. Ohjeita keräimen rakentamiseksi 6. Varoitus 7. Ominaisuuksia luettelona

Lisätiedot

Fysiikka III Termodynamiikka ja Optiikka

Fysiikka III Termodynamiikka ja Optiikka Fysiikka III Termodynamiikka ja Optiikka Juha Merikoski Jyväskylän yliopiston Fysiikan laitos Kevät 2009 1 Kurssin sisältö Osa 1: TERMODYNAMIIKKAA 17. Lämpö jalämpötila 18. Aineen termisiä ominaisuuksia

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

DEE-54030 Kryogeniikka

DEE-54030 Kryogeniikka DEE-54030 Kryogeniikka Kryogeenisten nesteiden ja kaasujen sovellusalueita 1 Puhtaan aineen tila Kemialliselta koostumukseltaan homogeeninen yhdestä alkuaineesta tai yhdisteestä koostuvat systeemit. Puhtaan

Lisätiedot

TOIMISTOHUONEEN LÄMPÖOLOSUHTEET KONVEKTIO- JA SÄTEILYJÄÄHDYTYSJÄRJESTELMILLÄ

TOIMISTOHUONEEN LÄMPÖOLOSUHTEET KONVEKTIO- JA SÄTEILYJÄÄHDYTYSJÄRJESTELMILLÄ TOIMISTOHUONEEN LÄMPÖOLOSUHTEET KONVEKTIO- JA SÄTEILYJÄÄHDYTYSJÄRJESTELMILLÄ Panu Mustakallio (1, Risto Kosonen (1,2, Arsen Melikov (3, Zhecho Bolashikov (3, Kalin Kostov (3 1) Halton Oy 2) Aalto yliopisto

Lisätiedot

LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Mittauspäivä ja aika LASKE VIRTAAMA, JOS TIEDÄT TEHON JA LÄMPÖTILAERON

LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Mittauspäivä ja aika LASKE VIRTAAMA, JOS TIEDÄT TEHON JA LÄMPÖTILAERON LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Täytä tiedot Mittauspäivä ja aika Lähdön lämpötila Paluun lämpötila 32,6 C 27,3 C Meno paluu erotus Virtaama (Litraa/sek) 0,32 l/s - Litraa

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

ARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat. Hannu Hirsi.

ARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat. Hannu Hirsi. ARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat Hannu Hirsi. SRakMK ja rakennusten energiatehokkuus : Lämmöneristävyys laskelmat, lämmöneristyksen termit, kertausta : Lämmönjohtavuus

Lisätiedot

DEE Sähkötekniikan perusteet Tasasähköpiirien lisätehtäviä

DEE Sähkötekniikan perusteet Tasasähköpiirien lisätehtäviä DEE-0 Sähkötekniikan peusteet Tasasähköpiiien lisätehtäviä Laske oheisen piiin vita E = V, R = 05, R =, R 3 = 05, R 4 = 05, R 5 = 05 Ykköstehtävän atkaisuehdotus: Kun kytkentä on oheisen kuvan mukainen,

Lisätiedot

Konvertterihallin kärypoiston tehostaminen. Insinööritoimisto AX-LVI Oy Markku Tapola, Seppo Heinänen, VTT Aku Karvinen AX-SUUNNITTELU 1

Konvertterihallin kärypoiston tehostaminen. Insinööritoimisto AX-LVI Oy Markku Tapola, Seppo Heinänen, VTT Aku Karvinen AX-SUUNNITTELU 1 Konvertterihallin kärypoiston tehostaminen Insinööritoimisto AX-LVI Oy Markku Tapola, Seppo Heinänen, VTT Aku Karvinen 1 Sisällys 1. Teoriaa 2. Mittaukset. Laskelmat 4. Johtopäätökset 2 Konvektiivisen

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

MAATILAKUIVURIT HAUTALA M., JOKINIEMI T. JA AHOKAS J. MAATALOUSTIETEIDEN LAITOS JULKAISUJA HELSINGIN YLIOPISTO MAATALOUS-METSÄTIETEELLINEN TIEDEKUNTA

MAATILAKUIVURIT HAUTALA M., JOKINIEMI T. JA AHOKAS J. MAATALOUSTIETEIDEN LAITOS JULKAISUJA HELSINGIN YLIOPISTO MAATALOUS-METSÄTIETEELLINEN TIEDEKUNTA MAATILAKUIVURIT HAUTALA M., JOKINIEMI T. JA AHOKAS J. 28 MAATALOUSTIETEIDEN LAITOS JULKAISUJA HELSINGIN YLIOPISTO MAATALOUS-METSÄTIETEELLINEN TIEDEKUNTA Yhteistyössä HELSINKI 2013 ISSN 1798-744X (Online)

Lisätiedot

K = Q C W = T C T H T C. c = 1 dq. f) Isokoorinen prosessi: prosessi joka suoritetaan vakiotilavuudessa

K = Q C W = T C T H T C. c = 1 dq. f) Isokoorinen prosessi: prosessi joka suoritetaan vakiotilavuudessa Sallitut apuvälineet: kijoitusvälineet ja gaafinen laskin. Muun oman mateiaalin tuominen ei sallittu. Tämä on fysiikan kussi, joten desimaalilleen oikeaa numeeista vastausta täkeämpää on että osoitat ymmätäneesi

Lisätiedot

Maatilakuivurit. Jukka Ahokas, Mikko Hautala. 28. helmikuuta 2012

Maatilakuivurit. Jukka Ahokas, Mikko Hautala. 28. helmikuuta 2012 Maatilakuivurit Jukka Ahokas, Mikko Hautala 28. helmikuuta 2012 This material has been produced in ENPOS and Rural Energy Acadeny projects. ENPOS is acronym for Energy Positive Farm. The ENPOS project

Lisätiedot

TUUKKA HAKKARAINEN UUSIEN LÄMMÖNERISTYS- JA FAASIMUUTOSMATERIAALIEN TOIMINTA RAKENNUKSISSA

TUUKKA HAKKARAINEN UUSIEN LÄMMÖNERISTYS- JA FAASIMUUTOSMATERIAALIEN TOIMINTA RAKENNUKSISSA TUUKKA HAKKARAINEN UUSIEN LÄMMÖNERISTYS- JA FAASIMUUTOSMATERIAALIEN TOIMINTA RAKENNUKSISSA Diplomityö Tarkastajat: Dosentti Juha Vinha ja TkT Jyrki Kesti Tarkastajat ja aihe hyväksytty Rakennetun ympäristön

Lisätiedot

ENERGIATEHOKAS KARJATALOUS

ENERGIATEHOKAS KARJATALOUS ENERGIATEHOKAS KARJATALOUS PELLON GROUP OY / Tapio Kosola ENERGIAN TALTEENOTTO KOTIELÄINTILALLA Luonnossa ja ympäristössämme on runsaasti lämpöenergiaa varastoituneena. Lisäksi maatilan prosesseissa syntyvää

Lisätiedot

RATKAISUT: Kertaustehtäviä

RATKAISUT: Kertaustehtäviä hysica 6 OETTAJAN OAS 1. painos 1(16) : Luku 1 1. c) 1 0,51 A c) 0,6 A 1 0,55 A 0,6 A. b) V B 4,0 V c) U BC,0 V b) 4,0 V c),0 V 3. a) Kichhoffin. 1 + 3 1 3 4 0,06 A 0,06 A 0 V. b) Alin lamppu syttyy. Kokonaisvita

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen

Lisätiedot

RUOSTUMATTOMASTA TERÄKSESTÄ VALMISTETTUJEN PUURAKENTEIDEN LIITOSTEN PALONKESTÄVYYS

RUOSTUMATTOMASTA TERÄKSESTÄ VALMISTETTUJEN PUURAKENTEIDEN LIITOSTEN PALONKESTÄVYYS RUOSTUMATTOMASTA TERÄKSESTÄ VALMISTETTUJEN PUURAKENTEIDEN LIITOSTEN PALONKESTÄVYYS Palotutkimuksen päivät 27. 28.8.2007 T. Oksanen, A. Kevarinmäki, R. Yli Koski. O. Kaitila VTT Esitys perustuu tutkimukseen

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

HYDRODYNAMIIKKA 763654S. Erkki Thuneberg

HYDRODYNAMIIKKA 763654S. Erkki Thuneberg HYDRODYNAMIIKKA 763654S Ekki Thunebeg Fysiikan laitos Oulun yliopisto 2011 Jäjestelyjä Kussin vekkosivu on https://wiki.oulu.fi/display/763654s/etusivu Vekkosivulta löytyy luentomateiaali (tämä moniste),

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m 1. Johtuvia häiiöitä mitataan LISN:n avulla EN55022-standadin mukaisessa johtuvan häiiön mittauksessa. a. 20 MHz taajuudella laite tuottaa 1.5 mv suuuista häiiösignaalia. Läpäiseekö laite standadin B-luokan

Lisätiedot

Teddy 1. välikoe kevät 2008

Teddy 1. välikoe kevät 2008 Teddy 1. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?

Lisätiedot

Energiansäästö viljankuivauksessa

Energiansäästö viljankuivauksessa Energiansäästö viljankuivauksessa Antti-Teollisuus Oy Jukka Ahokas 30.11.2011 Maatalous-metsätieteellinen tiedekunta Maataloustieteiden laitos Agroteknologia Öljyä l/ha tai viljaa kg/ha Kuivaamistarve

Lisätiedot

Physica 6 Opettajan OPAS (1/18)

Physica 6 Opettajan OPAS (1/18) Physica 6 Opettajan OPAS (1/18) 8. a) Jännitemittai kytketään innan lampun kanssa. b) Vitamittai kytketään sajaan lampun kanssa. c) I 1 = 0,51 A, I =? Koska lamput ovat samanlaisia, sähkövita jakautuu

Lisätiedot

Ideaalikaasut. 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista?

Ideaalikaasut. 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista? Ideaalikaasut 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista? 2. Auton renkaan paineeksi mitattiin huoltoasemalla 2,2 bar, kun lämpötila oli + 10 ⁰C. Pitkän ajon jälkeen rekkaan

Lisätiedot

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt Physica 9 1. painos 1(7) : 12.1 a) Lämpö on siirtyvää energiaa, joka siirtyy kappaleesta (systeemistä) toiseen lämpötilaeron vuoksi. b) Lämpöenergia on kappaleeseen (systeemiin) sitoutunutta energiaa.

Lisätiedot

Materiaalia, ohjeita, videoita sekä lisätietoja opettajille tarjottavasta koulutuksesta osoitteessa:

Materiaalia, ohjeita, videoita sekä lisätietoja opettajille tarjottavasta koulutuksesta osoitteessa: Kevään 06 Pitkän matematiikan YO-kokeen TI-Nspie CAS -atkaisut Nämä atkaisut tety alusta loppuun TI-Nspie CX CAS -ojelmistolla ja tallennettu lopuksi PDF -muotoon. Takoituksena on avainnollistaa, miten

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä

Lisätiedot

25.6.2015. Mynämäen kaivon geoenergiatutkimukset 2010-2014

25.6.2015. Mynämäen kaivon geoenergiatutkimukset 2010-2014 25.6.2015 Mynämäen kaivon geoenergiatutkimukset 20102014 Geologian tutkimuskeskus 1 TUTKIMUSALUE Tutkimusalue sijaitsee Kivistönmäen teollisuusalueella Mynämäellä 8tien vieressä. Kohteen osoite on Kivistöntie

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

KOSTEUS. Visamäentie 35 B 13100 HML

KOSTEUS. Visamäentie 35 B 13100 HML 3 KOSTEUS Tapio Korkeamäki Visamäentie 35 B 13100 HML tapio.korkeamaki@hamk.fi RAKENNUSFYSIIKAN PERUSTEET KOSTEUS LÄMPÖ KOSTEUS Kostea ilma on kahden kaasun seos -kuivan ilman ja vesihöyryn Kuiva ilma

Lisätiedot

HOXTER gmbh,kirchgasse 1, 91217 Hersbruck Tel.: 09151 8659 163 SIVU 2

HOXTER gmbh,kirchgasse 1, 91217 Hersbruck Tel.: 09151 8659 163 SIVU 2 TEKNISET TIEDOT Tel.: 09151 8659 163 SIVU 2 SISÄLLYS TAKAT 4 HAKA 37/50 4 HAKA 63/51 8 HAKA 67/51h 12 HAKA 89/45h 16 ECKA 67/45/51h 18 VESIKIERTOISET TAKAT 26 HAKA 37/50 W, WI 26 HAKA 63/51W, WI 30 HAKA

Lisätiedot

Tyhjä pallosymmetrinen avaruus

Tyhjä pallosymmetrinen avaruus Tyhjä pallosymmetinen avauus Yleisen suhteellisuusteoian yhtälöitä on helppo käsitellä silloin kun aika-avauus on lähes tasainen, tai eityisen symmetisissä tapauksissa. Tyhjä pallosymmetinen avauus on

Lisätiedot

HMM ja geenien etsintä

HMM ja geenien etsintä Kuten makovin mallien yhteydessä, niin HMM halutulla topologialla voidaan opettaa tunnistamaan geenejä. Ohessa eäs geenitunnistukseen käytetty topologia, joka tunnistaa ihmisen geenit (5 -> 3 ). Edellä

Lisätiedot

kipinäpurkauksena, josta salama on esimerkki.

kipinäpurkauksena, josta salama on esimerkki. Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien

Lisätiedot

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA Lujuusoin jatkokussi IV. IV. KUORIE KALVOTEORIAA Kuoien kalvoteoiaa Lujuusoin jatkokussi IV. JOHDATO Kuoiakenteen keskiinta on jo ennen muoonmuutoksia kaaeva inta. Kaaevasta muoosta seuaa että keskiinnan

Lisätiedot

NESTEIDEN ja ja KAASUJEN MEKANIIKKA

NESTEIDEN ja ja KAASUJEN MEKANIIKKA NESTEIDEN ja KSUJEN MEKNIIKK Väliaineen astus Kaaleen liikkuessa nesteessä tai kaasussa, kaaleeseen törmääät molekyylit ja aine-erot erot aiheuttaat siihen liikkeen suunnalle astakkaisen astusoiman, jonka

Lisätiedot

PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS

PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS 1 PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen osat Lämpötilan

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

Mitä ovat siirtoilmiöt?

Mitä ovat siirtoilmiöt? Prosessi- ja ympäristötekniikan perusta 1 AINEEN-, LÄMMÖN- JA LIIKEMÄÄRÄNSIIRTO Kaisu Ainassaari, Piia Häyrynen Prosessi- ja ympäristötekniikka Ympäristö- ja kemiantekniikan tutkimusryhmä Lämmönsiirto

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

TEKNILLINEN KORKEAKOULU

TEKNILLINEN KORKEAKOULU TEKNILLINEN KORKEAKOULU Elektroniikan, tietoliikenteen ja automaation tiedekunta Jaana Jahkonen LED-VALAISIMEN JÄÄHDYTYS Diplomityö, joka on jätetty opinnäytteenä tarkastettavaksi diplomi-insinöörin tutkintoa

Lisätiedot

Lämmönvaihdinpaketti TMix E

Lämmönvaihdinpaketti TMix E Lämmönvaihdinpaketti TMix E EDUT Toimitetaan koottuna Voidaan kytkeä suoraan lattialämmitystai teollisuusjakotukkiin Mahdollistaa pakkasnesteen käytön sulanapidossa ja lattialämmityksessä talousrakennuksissa

Lisätiedot

PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS

PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS 1 PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittausprojekti Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen

Lisätiedot

Vuores Koukkujärvi Energiavaihtoehtojen tarkastelu. Jyri Nieminen Ismo Heimonen VTT

Vuores Koukkujärvi Energiavaihtoehtojen tarkastelu. Jyri Nieminen Ismo Heimonen VTT Vuores Koukkujärvi Energiavaihtoehtojen tarkastelu Jyri Nieminen Ismo Heimonen VTT Sisältö Tausta ja lähtötiedot Tavoiteltavat tasot; matalaenergiatalojen ja passiivitalojen määrittelyt Mahdolliset järjestelmävariaatiot

Lisätiedot

Kertaustehtäviä. 1. b) Vastuksen resistanssi on U 4,5 V I 0,084 A Vastuksen läpi kulkevan sähkövirran suuruus uudessa tapauksessa on. I 220 ma.

Kertaustehtäviä. 1. b) Vastuksen resistanssi on U 4,5 V I 0,084 A Vastuksen läpi kulkevan sähkövirran suuruus uudessa tapauksessa on. I 220 ma. Ketaustehtäviä 1. b) Vastuksen esistanssi on U 4,5 V R 53,5714 Ω. I,84 A Vastuksen läpi kulkevan sähkövian suuuus uudessa tapauksessa on U 1 V I ma. R 53,5714 Ω. b) Koska vastukset on kytketty innan, kummankin

Lisätiedot

vikataajuus lämpötilassa T vikataajuus lämpötilassa T = 75 C 20 40 60 80 100 120 140 Lämpötila, C

vikataajuus lämpötilassa T vikataajuus lämpötilassa T = 75 C 20 40 60 80 100 120 140 Lämpötila, C 3 1. Johdanto Lähes kaikki moderniin elämään kuuluvat hyökkeet leluista tietokoneisiin sisältävät elektroniikkaa. Tarkasteltaessa yksittäisen useista erilaisista sähkö- ja elektroniikkapiireistä koostuvan

Lisätiedot

Lahti Energian uusi voimalaitos KYMIJÄRVI II. Jaana Lehtovirta Viestintäjohtaja Lahti Energia Oy

Lahti Energian uusi voimalaitos KYMIJÄRVI II. Jaana Lehtovirta Viestintäjohtaja Lahti Energia Oy Lahti Energian uusi voimalaitos KYMIJÄRVI II Jaana Lehtovirta Viestintäjohtaja Lahti Energia Oy Miksi voimalaitos on rakennettu? Lahti Energialla on hyvät kokemukset yli 12 vuotta hiilivoimalan yhteydessä

Lisätiedot

PALAMISPROSESSIN LÄMPÖSÄTEILYN TEHOKKUUDEN MUUTOS

PALAMISPROSESSIN LÄMPÖSÄTEILYN TEHOKKUUDEN MUUTOS TURUN PARI OY PALAMISPROSESSIN LÄMPÖSÄTEILYN TEHOKKUUDEN MUUTOS MUISTIO PARI POLTTOÖLJYJEN LISÄAINEEN KÄYTTÄJILLE Ville Valkama 4.8.2010 Sisältö Alkusanat... 3 Aistinvaraisesti havaittavia muutoksia...

Lisätiedot

782630S Pintakemia I, 3 op

782630S Pintakemia I, 3 op 782630S Pintakemia I, 3 op Ulla Lassi Puh. 0400-294090 Sposti: ulla.lassi@oulu.fi Tavattavissa: KE335 (ma ja ke ennen luentoja; Kokkolassa huone 444 ti, to ja pe) Prof. Ulla Lassi Opintojakson toteutus

Lisätiedot

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö. Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus

Lisätiedot

Lämmitys- ja jäähdytyspaneeli

Lämmitys- ja jäähdytyspaneeli Yhteystiedot, Katsaus, Sisältö Ohjeita lämmitykseen ja jäähdytykseen Plexus Professor Premum / Premax / Solo Architect Polaris I & S Plafond Podium Celo Cabinett Capella Carat Fasadium Atrium / Loggia

Lisätiedot

6.8 Erityisfunktioiden sovelluksia

6.8 Erityisfunktioiden sovelluksia 6.8 Erityisfunktioiden sovelluksia Tässä luvussa esitellään muutama esimerkki, joissa käytetään hyväksi eksponentti-, logaritmi- sekä trigonometrisia funktioita. Ensimmäinen esimerkki juontaa juurensa

Lisätiedot