Kryogeniikka ja lämmönsiirto. Dee Kryogeniikka Risto Mikkonen

Koko: px
Aloita esitys sivulta:

Download "Kryogeniikka ja lämmönsiirto. Dee Kryogeniikka Risto Mikkonen"

Transkriptio

1 DEE Kyogeniikka Kyogeniikka ja lämmönsiito Dee Kyogeniikka Risto Mikkonen

2 Lämmönsiion mekanismit '' q x ( ) x q '' h( s ) q Dee Kyogeniikka Risto Mikkonen '' 4 4 ( s su )

3 Lämmön johtuminen Atomien ja molekyylien väähdysliike + vapaiden elektonien liike. Wiedemann-Fanzin laki ( ) ( ) L Siis hyvä sähkönjohde on hyvä lämmönjohde. Dee Kyogeniikka Risto Mikkonen

4 Lämmön johtuminen (Cont.) Nesteiden lämmönjohtavuus vaihtelee hyvin vähän. Kaasuille on veannollinen viskositeettiin, joka ~ /. Useille kiinteille aineille ( ) 0 ( missä on vakio ) Fouie n laki: '' q x ( ) x Lämpövita saadaan positiiviseksi alenevan lämpötilagadientin suuntaan. Dee Kyogeniikka Risto Mikkonen

5 Lämpövita Kun lämmönjohtavuutta ei voida pitää vakiona: Q c A l ( ) d Esimekki : 300 K 4. K Ruostumaton teäs: Epoksi: 300 W/m 50 W/m Dee Kyogeniikka Risto Mikkonen

6 Esimekki Nesteheliumiin siityy lämpöä johtumalla teäksestä valmistettua sylinteimäistä tukiakennetta pitkin, jota ei jäähdytetä höyystyvällä heliumkaasulla. Umpinaisen sylintein poikkipinta-ala on 0 mm ja pituus 00 mm. Mikäli tukiputken puoleenväliin liitetään kyojäähdytin, on ankkuointipisteessä putken lämpötila 70 K. Kuinka paljon edullisemmaksi käyttökustannuksiltaan atkaisu on veattuna tilanteeseen, jossa kyojäähdytintä ei käytetä? eäksen lämmönjohtavuuden integaali lämpötilavälillä 300 K 4. K on 300 W/m ja välillä 70 K 4. K 00 W/m. Nesteheliumin höyystymislämpö on 0.4 J/g ja tiheys 5 kg/m 3. Kyojäähdyttimen vaatima teho huoneen lämpötilassa on 0 kw, sähkön hinta 0. /kwh ja nesteheliumin hinta 0 /l. Dee Kyogeniikka Risto Mikkonen

7 Lämpö vs sähkö -anlogia Joseph Fouie Geog Ohm ( ) ( ) Dee Kyogeniikka Risto Mikkonen

8 Konvektio Dee Kyogeniikka Risto Mikkonen

9 Konvektio Lämmön- ja massansiito kahden faasin kesken. Väliaine liikkeessä; lämpö siityy potentiaaligadientin ja oman liikkeen ansiosta. Luonnollinen konvektio vs pakotettu konvektio. q = h ( s - ) h, lämmönsiitokeoin [h] = W/m K Dee Kyogeniikka Risto Mikkonen

10 Luonnollinen / pakotettu konvektio Dee Kyogeniikka Risto Mikkonen

11 Lämpösäteily Säteily on enegian siitymistä sähkömagneettisten aaltojen muodossa, eikä tavitse väliainetta edetäkseen. Säteily on voimakkaasti epälineaainen ilmiö. q '' ad 4 s 4 su Dee Kyogeniikka Risto Mikkonen

12 Case study Miksi talvella auton lasit jäätyvät helpommin avoimelta kuin seinän puolelta? Dee Kyogeniikka Risto Mikkonen

13 Esimekki Betelgeuse on ns. ylijättiläistähti, jonka pintalämpötila on noin 900 K (noin puolet Auingon pintalämpötilasta). ähden emittoima lämpösäteily on 4x0 30 W. (0 000 ketainen Auinkoon nähden). Olettaen tähti täydelliseksi emittoijaksi, määitä tähden säde. A Q Q ( m) Dee Kyogeniikka Risto Mikkonen

14 Auinko vs Maa Dee Kyogeniikka Risto Mikkonen

15 Betelgeuse vs Auinko Dee Kyogeniikka Risto Mikkonen

16 eminen diffusiviteetti Lämmönjohtavuuden ja tilavuusyksikköä kohti määitetyn ominaislämpökapasiteetin suhde. Kuvaa mateiaalin kykyä johtaa lämpöä suhteutettuna sen kykyyn vaastoida lämpöenegiaa. Suui eagoi nopeasti ympäistössä tapahtuviin muutoksiin. c p m s Dee Kyogeniikka Risto Mikkonen

17 Lämmönjohtumisen yleinen osittaisdiffeeentiaaliyhtälö Dee Kyogeniikka Risto Mikkonen

18 Lämmönjohtumisen yleinen osittaisdiffeeentiaaliyhtälö t E g c p Dee Kyogeniikka Risto Mikkonen

19 Sylintei- ja pallokoodinaatisto Sylinteikoodinaatisto z z y x sin cos p g c E z t Pallokoodinaatisto cos sin sin cos sin z y x p g c E t sin sin sin ) ( Dee Kyogeniikka Risto Mikkonen

20 Alku- ja eunaehdot Dee Kyogeniikka Risto Mikkonen

21 Diichlet n ja Neumann in eunaehdot Diichlet: Kappaleen pintalämpötila tunnetaan s Neumann: Lämpövian tiheys eunalla tunnetaan q '' x x x 0 Dee Kyogeniikka Risto Mikkonen

22 D stationääi, lähteetön johtuminen d d x ( x) (0) C Siis dt dx C s, x s, 0, ( L) L C s, Integoidaan kahdesti, C x L s, ( x) s, s, s, s, q x Fouie: Lämpövita d A dx A L Lämpövian tiheys q '' x L s, s, s, s, Dee Kyogeniikka Risto Mikkonen

23 Lämpövastus A L q R x s s cond t,,, Analogia A L I E E R s s e,, Johtumislämpövastus Konvektion lämpövastus h A q R s conv t. Säteilyn lämpövastus A h q R su s ad t, missä su s su s h Dee Kyogeniikka Risto Mikkonen

24 Komposiittiakenteet Komposiittiakenteissa kokonaislämmönsiitokeoin voidaan määittää analogisesti esistanssien saja- ja innankytkentöjen mukaisesti.,,4 qx R missä R h A L A Dee Kyogeniikka Risto Mikkonen t C C t L A A A h A 4 L B B A

25 Esimekki R t =? Dee Kyogeniikka Risto Mikkonen

26 Sylinteikoodinaatisto, D lähteetön tapaus = () Dee Kyogeniikka Risto Mikkonen

27 Sylinteikoodinaatisto, D lähteetön tapaus 0 d d d d Jos on vakio ln ) ( 0 C C C d d C d d d d d d Reunaehdot:,, ln ) ( ln ) ( s s C C C C,,, ln ln ) ( s s s Lämpötilajakautuma Dee Kyogeniikka Risto Mikkonen

28 Sylinteikoodinaatisto, D lähteetön tapaus Lämpövita q ( L) q Joten L ln ( s, d d s, ) Johtumislämpövastus sylinteikoodinaatistossa ln R t, cond L Dee Kyogeniikka Risto Mikkonen

29 Komposiittiakenne q Lh ln A L, ln 3 B L, ln 4 3 C L Lh 4 4 Dee Kyogeniikka Risto Mikkonen

30 Esimekki Ohutseinäistä eistettyä kupaiputkea käytetään kyogeenisen nesteen siiossa. Analysoi optimaalista eistyskeoksen paksuutta tilanteessa, mikä minimoi putken lämpökuoman. Esimekkinä putki, d = 0 mm, eisteenä peliitti, jonka = W/mK, eistyspaksuudet 0,, 5, 0, 0 ja 40 mm. Eisteen ulkopinnalla h = 5 W/m K Dee Kyogeniikka Risto Mikkonen

31 Dee Kyogeniikka Risto Mikkonen

32 Pallokoodinaatisto, D lähteetön tapaus Lämpövita Siis lämpövita q 4 d d Eotetaan muuttujat ja integoidaan q 4 s, s, q 4 q 4 d s, s, d s, s, R Jolloin johtumislämpövastus t, cond s, q s, 4 Dee Kyogeniikka Risto Mikkonen

33 Esimekki Nestetyppeä säilytetään pallonmuotoisessa astiassa, d = 0.5 m. Astia on eistetty 5 mm paksuisella heijastavalla piipulveieisteellä = W/mK) jonka ulkopinnan lämpötila on 300 K. Lämmönsiitymiskeoin h = 0 W/m K. Määitä nestetypen kiehumisnopeus, kun typen höyystymislämpö H = x 0 5 J/kg ja tiheys = 804 kg/m 3. Dee Kyogeniikka Risto Mikkonen

34 Dee Kyogeniikka Risto Mikkonen

Kryogeniikka ja lämmönsiirto. DEE-54030 Kryogeniikka Risto Mikkonen

Kryogeniikka ja lämmönsiirto. DEE-54030 Kryogeniikka Risto Mikkonen DEE-54030 Kyogeniikka Kyogeniikka ja lämmönsiito 1 DEE-54030 Kyogeniikka Risto Mikkonen 5.5.015 Lämmönsiion mekanismit '' q x ( ) x q '' h( s ) q '' 4 4 ( s su ) DEE-54030 Kyogeniikka Risto Mikkonen 5.5.015

Lisätiedot

DEE Sähkömagneettisten järjestelmien lämmönsiirto

DEE Sähkömagneettisten järjestelmien lämmönsiirto DEE-54000 Sähkömagneettisten järjestelmien lämmönsiirto II periodi Luennot Risto Mikkonen, SH 311 Harjoitukset ke 10-12 SE 100 J to 10-12 SE 100 J to 8-10 SE 100 J Suoritusvaatimukset Tentti + hyväksytty

Lisätiedot

DEE Sähkömagneettisten järjestelmien lämmönsiirto

DEE Sähkömagneettisten järjestelmien lämmönsiirto DEE-54000 Sähkömagneettisten järjestelmien lämmönsiirto II periodi Luennot Risto Mikkonen, SH 311 Harjoitukset ke 10-12 SE 201 to 10-12 SE 100 J to 8-10 SE 201 Suoritusvaatimukset Tentti + hyväksytty harjoitustyö

Lisätiedot

DEE-54030 Kryogeniikka

DEE-54030 Kryogeniikka DEE-54030 Kryogeniikka Kryogeeninen eristys Mitä lämmönsiirto on? Lämmönsiirto on lämpöenergian välittymistä lämpötilaeron vaikutuksesta. Lämmönsiirron mekanismit Johtuminen Konvektio Säteily Lämmönsiirron

Lisätiedot

Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä

Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Kun yhdistetään kahdella tavalla esitetty sähkökentän vuo, saadaan Gaussin laki: S d S Q sis Gaussin laki peustuu siihen, että suljetun pinnan läpi

Lisätiedot

SMG-4250 Suprajohtavuus sähköverkossa

SMG-4250 Suprajohtavuus sähköverkossa SMG-450 Suprajohtavuus sähköverkossa Laskuharjoitukset: Suprajohdemagneetin suunnittelu Harjoitus 3(5): Kryostaatti Ehdotukset harjoitustehtävien ratkaisuiksi 1. Yleisesti ottaen lämpö siirtyy kolmella

Lisätiedot

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi DEE-4000 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen ratkaisuiksi Yleistä asiaa lämmönjohtumisen yleiseen osittaisdifferentiaaliyhtälöön liittyen Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälön

Lisätiedot

DEE Suprajohtavuus Laskuharjoitukset: Suprajohdemagneetin suunnittelu Harjoitus 4(6): Kryostaatti Ehdotukset harjoitustehtävien ratkaisuiksi

DEE Suprajohtavuus Laskuharjoitukset: Suprajohdemagneetin suunnittelu Harjoitus 4(6): Kryostaatti Ehdotukset harjoitustehtävien ratkaisuiksi DEE-540 Suprajohtavuus Laskuharjoitukset: Suprajohdemagneetin suunnittelu Harjoitus 4(6): Kryostaatti Ehdotukset harjoitustehtävien ratkaisuiksi. Yleisesti ottaen lämpö siirtyy kolmella tavalla: johtumalla,

Lisätiedot

DEE-54000 Sähkömagneettisten järjestelmien lämmönsiirto

DEE-54000 Sähkömagneettisten järjestelmien lämmönsiirto DEE-54 Säköagneettisten järjestelien läönsiirto Ripateoria 1 Säköagneettisten järjestelien läönsiirto Risto Mikkonen Ripateoria q Läönsiirtoa voidaan teostaa: Suurentaalla läpötilaeroa Suurentaalla :ta

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset SMG-4200 Sähkömagneettiten järjetelmien lämmöniirto Harjoituken 1 ratkaiuehdotuket Vata 1800-luvun puoliväliä ymmärrettiin että lämpöenergia on atomien ja molekyylien atunnaieen liikkeeeen värähtelyyn

Lisätiedot

Kuivauksen fysiikkaa. Hannu Sarkkinen

Kuivauksen fysiikkaa. Hannu Sarkkinen Kuivauksen fysiikkaa Hannu Sarkkinen 28.11.2013 Kuivatusmenetelmiä Auringon säteily Mikroaaltouuni Ilmakuivatus Ilman kosteus Ilman suhteellinen kosteus RH = ρ v /ρ vs missä ρ v = vesihöyryn tiheys (g/m

Lisätiedot

Ch 19-1&2 Lämpö ja sisäenergia

Ch 19-1&2 Lämpö ja sisäenergia Ch 19-1&2 Lämpö ja sisäenergia Esimerkki 19-1 Olet syönyt liikaa täytekakkua ja havaitset, että sen energiasisältö oli 500 kcal. Arvioi kuinka korkealle mäelle sinun pitää pitää kiivetä, jotta kuluttaisit

Lisätiedot

KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma

KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma Sekä A- että B-osiosta tulee saada vähintään 10 pistettä. Mikäli A-osion pistemäärä on vähemmän kuin 10 pistettä,

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi SMG-4 Sähkömagneettisten jäjestelmien lämmönsiito Ehdotukset hajoituksen 3 atkaisuiksi 1. Voidaan kohtuullisella takkuudella olettaa, että pallonmuotoisessa säiliössä lämpötila muuttuu vain pallon säteen

Lisätiedot

Liite F: laskuesimerkkejä

Liite F: laskuesimerkkejä Liite F: laskuesimerkkejä 1 Lämpövirta astiasta Astiasta ympäristöön siirtyvää lämpövirtaa ei voida arvioida vain astian seinämien lämmönjohtavuuksilla sillä ilma seinämä ja maali seinämä -rajapinnoilla

Lisätiedot

Virtaukset & Reaktorit

Virtaukset & Reaktorit Virtaukset & Reaktorit Lämmönsiirron perusteet Oppimistavoite tälle kerralle Lämmönsiirron perusmekanismit Lämmönjohtumisongelmien mallitus ja ratkaisu Säteilylämmönsiirto Konvektio ja lämmönsiirtokerroin

Lisätiedot

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan 3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden

Lisätiedot

Muita sähkökentän laskemismenetelmiä ovat muun muassa potentiaalin gradientti ja kuvalähdeperiaate. Niistä puhutaan myöhemmin.

Muita sähkökentän laskemismenetelmiä ovat muun muassa potentiaalin gradientti ja kuvalähdeperiaate. Niistä puhutaan myöhemmin. GAUIN LAKI IÄLTÖ: Gaussin lain integaalimuoto Gaussin lain diffeentiaalimuoto Menetelmän valinta sähkökentän laskemisessa ähkökentän voivat aiheuttaa vaaukset tai muuttuva magneettikenttä. Tässä kappaleessa

Lisätiedot

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi. Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

9. Pyörivän sähkökoneen jäähdytys

9. Pyörivän sähkökoneen jäähdytys 81 9. Pyörivän sähkökoneen jäähdytys Sähkökoneen lämmönsiirron suunnittelu on yhtä tärkeää kuin koneen sähkömagneettinenkin suunnittelu, koska koneen lämpenemä määrittää sen tehon. Lämmön- ja aineensiirto

Lisätiedot

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on 766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua

Lisätiedot

PST-kattolämmityksen asennusohje

PST-kattolämmityksen asennusohje PST-kattolämmityksen asennusohje 1 Kattolämmityselementtien asennusohje Kiinnitysalueet Kattorakenne Rimoitus Lisälämmöneriste Kattoelementit Metallivastukset Liitäntäjohto Katon pintaverhous Kattoelementin

Lisätiedot

Lämpövaraston eristys hyödyntäen tyhjiötä

Lämpövaraston eristys hyödyntäen tyhjiötä Lappeenannan teknillinen ylipist Schl f Eney Systems Eneiatekniikan kulutushjelma B0A00 Eneiatekniikan kandidaatintyö Lämpövaastn eistys hyödyntäen tyhjiötä Insulatin f a heat stae utilizin vacuum cnditins

Lisätiedot

Sähkökentät ja niiden laskeminen I

Sähkökentät ja niiden laskeminen I ähkökentät ja niiden laskeminen I IÄLTÖ: 1.1. Gaussin lain integaalimuoto ähkökentän vuo uljetun pinnan sisään jäävän kokonaisvaauksen laskeminen Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä

Lisätiedot

LUENTO 3 LÄMPÖ, LÄMMITYS, LÄMMÖN- ERISTÄMINEN, U-ARVON LASKENTA

LUENTO 3 LÄMPÖ, LÄMMITYS, LÄMMÖN- ERISTÄMINEN, U-ARVON LASKENTA LUENTO 3 LÄMPÖ, LÄMMITYS, LÄMMÖN- ERISTÄMINEN, U-ARVON LASKENTA RAKENNUSFYSIIKAN PERUSTEET 453535P, 2 op Esa Säkkinen, arkkitehti esa.sakkinen@oulu.fi Jaakko Vänttilä, DI, arkkitehti jaakko.vanttila@oulu.fi

Lisätiedot

Lauri Puranen Säteilyturvakeskus Ionisoimattoman säteilyn valvonta

Lauri Puranen Säteilyturvakeskus Ionisoimattoman säteilyn valvonta LC-577 Sähömagneettisten enttien ja optisen säteilyn biologiset vaiutuset ja mittauset Sysy 16 PINTAAJUIST SÄHKÖ- JA MAGNTTIKNTÄT Lauri Puranen Säteilyturvaesus Ionisoimattoman säteilyn valvonta SÄTILYTURVAKSKUS

Lisätiedot

Kuljetusilmiöt. Diffuusio Lämmönjohtuminen Viskoosin nesteen virtaus Produktio ja absorptio

Kuljetusilmiöt. Diffuusio Lämmönjohtuminen Viskoosin nesteen virtaus Produktio ja absorptio Kuljetusilmiöt Diffuusio Lämmönjohtuminen Viskoosin nesteen virtaus Produktio ja absorptio Johdanto Kuljetusilmiöt on yhteinen nimitys prosesseille, joissa aineen molekyylien liike aiheuttaa energian,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokussi Fys10 Kevät 010 Jukka Maalampi LUENTO 5 Copyight 008 Peason Education, Inc., publishing as Peason Addison-Wesley. Newtonin painovoimateoia Knight Ch. 13 Satunuksen enkaat koostuvat

Lisätiedot

Rak Tulipalon dynamiikka

Rak Tulipalon dynamiikka Rak-43.3510 Tulipalon dynamiikka 7. luento 14.10.2014 Simo Hostikka Palopatsaat 1 Luonnollisten palojen liekki 2 Palopatsas 3 Liekin korkeus 4 Palopatsaan lämpötila ja virtausnopeus 5 Ideaalisen palopatsaan

Lisätiedot

Fysikaaliset ominaisuudet

Fysikaaliset ominaisuudet Fysikaaliset ominaisuudet Ominaisuuksien alkuperä Mistä materiaalien ominaisuudet syntyvät? Minkälainen on materiaalin rakenne? Onko rakenteellisesti samankaltaisilla materiaaleilla samankaltaiset ominaisuudet?

Lisätiedot

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Termodynamiikan suureita ja vähän muutakin mikko rahikka Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,

Lisätiedot

Jännitteenjaolla, sekä sarjaan- ja rinnankytkennällä saadaan laskettua:

Jännitteenjaolla, sekä sarjaan- ja rinnankytkennällä saadaan laskettua: DEE-11000 Piiianalyysi Hajoitus 6 (ketaus) / viikko 8 4 Laske oheisen piiin jännite v g ännitteenjaolla, sekä sajaan- ja innankytkennällä saadaan laskettua: 5 U5 0 U s U s 80 5 15 1 1 1 1 1 1 1 0 40 16

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

13 KALORIMETRI. 13.1 Johdanto. 13.2 Kalorimetrin lämmönvaihto

13 KALORIMETRI. 13.1 Johdanto. 13.2 Kalorimetrin lämmönvaihto 13 KALORIMETRI 13.1 Johdanto Kalorimetri on ympäristöstään mahdollisimman täydellisesti lämpöeristetty astia. Lämpöeristyksestä huolimatta kalorimetrin ja ympäristön välinen lämpötilaero aiheuttaa lämmönvaihtoa

Lisätiedot

LÄMMÖNJOHTUMINEN. 1. Työn tavoitteet

LÄMMÖNJOHTUMINEN. 1. Työn tavoitteet Oulun yliopisto Fysiikan opetuslaboratorio Fysikaalisen kemian laboratorioharjoitukset 1 LÄMMÖNJOHTUMINEN 1. Työn tavoitteet Jos asetat metallisauvan toisen pään liekkiin ja pidät toista päätä kädessäsi,

Lisätiedot

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin

Lisätiedot

Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI

Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI Copyright The McGraw-Hill Companies, Inc. Permission

Lisätiedot

Passiiviset piirikomponentit. 1 DEE Piirianalyysi Risto Mikkonen

Passiiviset piirikomponentit. 1 DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Passiiviset piirikomponentit 1 DEE-11000 Piirianalyysi Risto Mikkonen Passiiviset piirikomponentit - vastus Resistanssi on sähkövastuksen ominaisuus. Vastuksen yli vaikuttava jännite

Lisätiedot

Transistori. Vesi sisään. Jäähdytyslevy. Vesi ulos

Transistori. Vesi sisään. Jäähdytyslevy. Vesi ulos Nesteiden lämmönjohtavuus on yleensä huomattavasti suurempi kuin kaasuilla, joten myös niiden lämmönsiirtokertoimet sekä lämmönsiirtotehokkuus ovat kaasujen vastaavia arvoja suurempia Pakotettu konvektio:

Lisätiedot

Lämmöneristäminen. Minä panin ikkunaan pahvisuojan. Dow polyurethane systems

Lämmöneristäminen. Minä panin ikkunaan pahvisuojan. Dow polyurethane systems Lämmöneristäminen Dow polyurethane systems Minä panin ikkunaan pahvisuojan Aimo Ihanamäki kiinnostunut tulevaisuudesta huolestunut ilmastonmuutoksesta tekemisissä lämmöneristeiden kanssa uskon mahdollisuuteeni

Lisätiedot

Keskeisliikkeen liikeyhtälö

Keskeisliikkeen liikeyhtälö Keskeisliikkeen liikeyhtälö L vakio keskeisliikkeessä liike tasossa L Val. L e z liike xy-tasossa naakoodinaatit, joille d dt e d = ϕe ϕ ; dt e ϕ = ϕe = e LY: m = f()e ṙ = ṙe + ϕe ϕ ; = ( ϕ 2 )e +(2ṙ ϕ+

Lisätiedot

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla Termodynamiikkaa Energiatekniikan automaatio TKK 2007 Yrjö Majanne, TTY/ACI Martti Välisuo, Fortum Nuclear Services Automaatio- ja säätötekniikan laitos Termodynamiikan perusteita Konventionaalisessa lämpövoimaprosessissa

Lisätiedot

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN SÄHKÖMAGNEETTINEN KYTKEYTYMINEN H. Honkanen SÄHKÖMAGNEETTISEN KYTKEYTYMISEN TEORIAA Sähkömagneettinen kytkeytyminen on häiiöiden siitymistä sähkömagneettisen aaltoliikkeen välityksellä. Sähkömagneettisen

Lisätiedot

Tiilipiipun palonkestävyysanalyysi Simulointi välipohjan paksuudella 600 mm Läpivienti täysin eristetty ja osittain tuuletettu rakenne

Tiilipiipun palonkestävyysanalyysi Simulointi välipohjan paksuudella 600 mm Läpivienti täysin eristetty ja osittain tuuletettu rakenne 14.04.2014 Lämmönsiirtolaskelmat Päivitys 15.4.-14 Tiilipiipun palonkestävyysanalyysi Simulointi välipohjan paksuudella 600 mm Läpivienti täysin eristetty ja osittain tuuletettu rakenne Kokkola 14.04.2014

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

Pinnoitteen vaikutus jäähdytystehoon

Pinnoitteen vaikutus jäähdytystehoon Pinnoitteen vaikutus jäähdytystehoon Jesse Viitanen Esko Lätti 11I100A 16.4.2013 2 SISÄLLYS 1TEHTÄVÄN MÄÄRITTELY... 3 2TEORIA... 3 2.1Jäähdytysteho... 3 2.2Pinnoite... 4 2.3Jäähdytin... 5 3MITTAUSMENETELMÄT...

Lisätiedot

Jos olet käynyt kurssin aikaisemmin, merkitse vuosi jolloin kävit kurssin nimen alle.

Jos olet käynyt kurssin aikaisemmin, merkitse vuosi jolloin kävit kurssin nimen alle. 1(4) Lappeenrannan teknillinen yliopisto School of Energy Systems LUT Energia Nimi, op.nro: BH20A0450 LÄMMÖNSIIRTO Tentti 13.9.2016 Osa 1 (4 tehtävää, maksimi 40 pistettä) Vastaa seuraaviin kysymyksiin

Lisätiedot

40 LUKU 3. GAUSSIN LAKI

40 LUKU 3. GAUSSIN LAKI Luku 3 Gaussin laki 3.1 Coulombin laista Gaussin lakiin Takastellaan pistemäisen vaauksen q aiheuttamaa sähkökenttää, joka noudattaa yhtälöä (1.1). Tämän sähkökentän vuo etäisyydellä olevan pienen pintaelementin

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi Valo-oia Haarto & Karhue Valo sähkömageettisia aaltoia Sähkömageettiste aaltoje teoria erustuu Maxwelli yhtälöihi S S E da 0 B da Q (Gaussi laki) 0 (Gaussi laki magetismissa) dφb E ds dt (Faraday laki)

Lisätiedot

LCAO-menetelmä Tämä on lyhyt johdanto molekyylien laskentaan LCAO-menetelmällä.

LCAO-menetelmä Tämä on lyhyt johdanto molekyylien laskentaan LCAO-menetelmällä. LCAO-menetelmä Tämä on lyhyt johdanto molekyylien laskentaan LCAO-menetelmällä. LCAO-menetelmä on yleisin molekyylien elektoniakenteen laskemiseen kehitetyistä numeeisista menetelmistä. Se on laajalti

Lisätiedot

Ruiskuvalumuotin jäähdytys, simulointiesimerkki

Ruiskuvalumuotin jäähdytys, simulointiesimerkki Ruiskuvalumuotin jäähdytys, simuloiesimerkki School of Technology and Management, Polytechnic Institute of Leiria Käännös: Tuula Höök - Tampereen Teknillinen Yliopisto Mallinnustyökalut Jäähdytysjärjestelmän

Lisätiedot

Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö

Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö Taivaanmekaniikkaa kaavojen johto, yksityiskohdat yms. ks. Kattunen, Johdatus taivaanmekaniikkaan tai Kattunen, Donne, Köge, Oja, Poutanen: Tähtitieteen peusteet tai joku muu tähtitieteen/taivaanmekaniikan

Lisätiedot

Kryogeniikan termodynamiikkaa DEE Kryogeniikka Risto Mikkonen 1

Kryogeniikan termodynamiikkaa DEE Kryogeniikka Risto Mikkonen 1 DEE-54030 Kryogeniikka Kryogeniikan termodynamiikkaa 4.3.05 DEE-54030 Kryogeniikka Risto Mikkonen Open ystem vs. Closed ystem Open system Melting Closed system Introduced about 900 Cryocooler Boiling Cold

Lisätiedot

Kryogeniikka. 1 DEE Suprajohtavuus Risto Mikkonen

Kryogeniikka. 1 DEE Suprajohtavuus Risto Mikkonen DEE-54011 Suprajohtavuus Kryogeniikka 1 DEE-54011 Suprajohtavuus Risto Mikkonen A few words of jargon kroz ginomai frost to produce Etymologically, cryogenics means the science and art of producing cold.

Lisätiedot

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta 766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio

Lisätiedot

MALLINTAMINEN JA SEN KÄYTTÖ PALOTEKNIIKASSA

MALLINTAMINEN JA SEN KÄYTTÖ PALOTEKNIIKASSA MALLINTAMINEN JA SEN KÄYTTÖ PALOTEKNIIKASSA Jukka Hietaniemi VTT Rakennus- ja yhdyskuntatekniikka PL 183, 44 VTT Tiivistelmä Tietotekniikan käyttö on levinnyt kaikille inhimillisen toiminnan alueille ja

Lisätiedot

Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka

Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Alkudemonstraatio Käsi lämpömittarina Laittakaa kolmeen eri altaaseen kylmää, haaleaa ja lämmintä vettä. 1) Pitäkää

Lisätiedot

sähköverkossa Suprajohtavan käämin suunnitteluperiaatteita eri käämigeometriat (Cont,) 1 Suprajohtavuus sähköverkossa Risto Mikkonen

sähköverkossa Suprajohtavan käämin suunnitteluperiaatteita eri käämigeometriat (Cont,) 1 Suprajohtavuus sähköverkossa Risto Mikkonen DEE-54010 Suprajohtavuus sähköverkossa Suprajohtavan käämin suunnitteluperiaatteita eri käämigeometriat (Cont,) 1 Suprajohtavuus sähköverkossa Risto Mikkonen Solenoidimagneetti, B 0 H z (0,0) a N I ( ln

Lisätiedot

LUT, Sähkötekniikan osasto. 1. Ilmassa etenevällä tasoaallolla on sähkökentän voimakkuus z. d) vaihekerroin

LUT, Sähkötekniikan osasto. 1. Ilmassa etenevällä tasoaallolla on sähkökentän voimakkuus z. d) vaihekerroin SÄHKÖMAGNETISMI LUT, Sähkötekniikan osasto LH5/216 P.I. Ketausta: 1. Ilassa etenevällä tasoaallolla on sähkökentän voiakkuus z t E cos t z Ex,. Aallon taajuus on 2 MHz. Kuvassa 1 on esitetty tasoaallon

Lisätiedot

vetyteknologia Muut kennotyypit 1 Polttokennot ja vetyteknologia Risto Mikkonen

vetyteknologia Muut kennotyypit 1 Polttokennot ja vetyteknologia Risto Mikkonen DEE-5400 Polttokennot ja vetyteknologia Muut kennotyypit 1 Polttokennot ja vetyteknologia Risto Mikkonen Alkaalipolttokennot Anodi: Katodi: H 4OH 4 H O 4e O e H O 4OH 4 Avaruussovellutukset, ajoneuvokäytöt

Lisätiedot

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33: 1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

1. Työn tavoitteet. 2. Teoria ELEKTRONIN OMINAISVARAUS

1. Työn tavoitteet. 2. Teoria ELEKTRONIN OMINAISVARAUS Oulun yliopisto Fysiikan ja kemian laitos Fysikaalisen kemian laboatoiohajoitukset 1 1. Työn tavoitteet Englantilainen fyysikko J. J. Thomson teki vuonna 1897 katodisäteillä kokeita, joiden peusteella

Lisätiedot

Hydrologia. Säteilyn jako aallonpituuden avulla

Hydrologia. Säteilyn jako aallonpituuden avulla Hydrologia L3 Hydrometeorologia Säteilyn jako aallonpituuden avulla Ultravioletti 0.004 0.39 m Näkyvä 0.30 0.70 m Infrapuna 0.70 m. 1000 m Auringon lyhytaaltoinen säteily = ultavioletti+näkyvä+infrapuna

Lisätiedot

Ideaalikaasut. 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista?

Ideaalikaasut. 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista? Ideaalikaasut 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista? 2. Auton renkaan paineeksi mitattiin huoltoasemalla 2,2 bar, kun lämpötila oli + 10 ⁰C. Pitkän ajon jälkeen rekkaan

Lisätiedot

SISÄISEN KONVEKTION VAIKUTUS YLÄPOHJAN LÄMMÖNERISTÄVYYTEEN

SISÄISEN KONVEKTION VAIKUTUS YLÄPOHJAN LÄMMÖNERISTÄVYYTEEN Tomi Pakkanen SISÄISEN KONVEKTION VAIKUTUS YLÄPOHJAN LÄMMÖNERISTÄVYYTEEN Diplomityö Tarkastajat: tutkimusjohtaja Juha Vinha ja professori Ralf Lindberg Tarkastajat ja aihe on hyväksytty Rakennetun ympäristön

Lisätiedot

Harjoitus 5 / viikko 7

Harjoitus 5 / viikko 7 DEE-000 Piiianalyysi Hajoitus 5 / viikko 7 5. Laske solmupistemenetelmällä oheisen kuvan esittämän piiin jännite ja vita i. 0k ma k k k i ma Solmupistemenetelmää käytettäessä takasteltavan kytkennän jännitelähteet

Lisätiedot

EWA Solar aurinkokeräin

EWA Solar aurinkokeräin EWA Solar aurinkokeräin Sisällys: 1. Keräimen periaate 2. Keräimen rakenne 3. Keräimen toiminta 4. Keräimen yhdistäminen EWA:an 5. Ohjeita keräimen rakentamiseksi 6. Varoitus 7. Ominaisuuksia luettelona

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

Luento 2. 1 DEE Piirianalyysi Risto Mikkonen

Luento 2. 1 DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Luento 2 1 DEE-11000 Piirianalyysi Risto Mikkonen Passiiviset piirikomponentit - vastus Vastus on komponentti, jossa sähköenergiaa muuttuu lämpöenergiaksi (esim. sähkökiuas, silitysrauta,

Lisätiedot

Fysiikka III Termodynamiikka ja Optiikka

Fysiikka III Termodynamiikka ja Optiikka Fysiikka III Termodynamiikka ja Optiikka Juha Merikoski Jyväskylän yliopiston Fysiikan laitos Kevät 2009 1 Kurssin sisältö Osa 1: TERMODYNAMIIKKAA 17. Lämpö jalämpötila 18. Aineen termisiä ominaisuuksia

Lisätiedot

5-1 Gibbsin entropia. Boltzmannin entropian lausekkeessa S = k ln Ω esiintyvä Ω on systeemin niiden mikrotilojen

5-1 Gibbsin entropia. Boltzmannin entropian lausekkeessa S = k ln Ω esiintyvä Ω on systeemin niiden mikrotilojen 57 5 Yhdistetty pääsääntö 5-1 Gibbsin entopia Boltzmannin entopian lausekkeessa S = k ln Ω esiintyvä Ω on systeemin niiden mikotilojen lukumäää, joissa systeemin sisäinen enegia on hyvin pienellä välillä

Lisätiedot

TOIMISTOHUONEEN LÄMPÖOLOSUHTEET KONVEKTIO- JA SÄTEILYJÄÄHDYTYSJÄRJESTELMILLÄ

TOIMISTOHUONEEN LÄMPÖOLOSUHTEET KONVEKTIO- JA SÄTEILYJÄÄHDYTYSJÄRJESTELMILLÄ TOIMISTOHUONEEN LÄMPÖOLOSUHTEET KONVEKTIO- JA SÄTEILYJÄÄHDYTYSJÄRJESTELMILLÄ Panu Mustakallio (1, Risto Kosonen (1,2, Arsen Melikov (3, Zhecho Bolashikov (3, Kalin Kostov (3 1) Halton Oy 2) Aalto yliopisto

Lisätiedot

LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Mittauspäivä ja aika LASKE VIRTAAMA, JOS TIEDÄT TEHON JA LÄMPÖTILAERON

LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Mittauspäivä ja aika LASKE VIRTAAMA, JOS TIEDÄT TEHON JA LÄMPÖTILAERON LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Täytä tiedot Mittauspäivä ja aika Lähdön lämpötila Paluun lämpötila 32,6 C 27,3 C Meno paluu erotus Virtaama (Litraa/sek) 0,32 l/s - Litraa

Lisätiedot

DEE-54030 Kryogeniikka

DEE-54030 Kryogeniikka DEE-54030 Kryogeniikka Kryogeenisten nesteiden ja kaasujen sovellusalueita 1 Puhtaan aineen tila Kemialliselta koostumukseltaan homogeeninen yhdestä alkuaineesta tai yhdisteestä koostuvat systeemit. Puhtaan

Lisätiedot

11 INTERFEROMETRIA 11.1 MICHELSONIN INTERFEROMETRI

11 INTERFEROMETRIA 11.1 MICHELSONIN INTERFEROMETRI 47 NTEREROMETRA Edellisessä kappaleessa takastelimme inteeenssiä. nstumentti, joka on suunniteltu inteeenssikuvion muodostamiseen ja sen tutkimiseen (mittaamiseen on ns. inteeometi. 48 Jakamisessa säteille

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

ARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat. Hannu Hirsi.

ARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat. Hannu Hirsi. ARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat Hannu Hirsi. SRakMK ja rakennusten energiatehokkuus : Lämmöneristävyys laskelmat, lämmöneristyksen termit, kertausta : Lämmönjohtavuus

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA Copyright The McGraw-Hill Companies, Inc. Permission required

Lisätiedot

Luento 2. DEE Piirianalyysi Risto Mikkonen

Luento 2. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Luento 2 1 Luento 1 - Recap Opintojakson rakenne ja tavoitteet Sähkötekniikan historiaa Sähköiset perussuureet Passiiviset piirikomponentit 2 Luento 2 - sisältö Passiiviset piirikomponentit

Lisätiedot

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman

Lisätiedot

DEE Sähkötekniikan perusteet Tasasähköpiirien lisätehtäviä

DEE Sähkötekniikan perusteet Tasasähköpiirien lisätehtäviä DEE-0 Sähkötekniikan peusteet Tasasähköpiiien lisätehtäviä Laske oheisen piiin vita E = V, R = 05, R =, R 3 = 05, R 4 = 05, R 5 = 05 Ykköstehtävän atkaisuehdotus: Kun kytkentä on oheisen kuvan mukainen,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Konvertterihallin kärypoiston tehostaminen. Insinööritoimisto AX-LVI Oy Markku Tapola, Seppo Heinänen, VTT Aku Karvinen AX-SUUNNITTELU 1

Konvertterihallin kärypoiston tehostaminen. Insinööritoimisto AX-LVI Oy Markku Tapola, Seppo Heinänen, VTT Aku Karvinen AX-SUUNNITTELU 1 Konvertterihallin kärypoiston tehostaminen Insinööritoimisto AX-LVI Oy Markku Tapola, Seppo Heinänen, VTT Aku Karvinen 1 Sisällys 1. Teoriaa 2. Mittaukset. Laskelmat 4. Johtopäätökset 2 Konvektiivisen

Lisätiedot

MAATILAKUIVURIT HAUTALA M., JOKINIEMI T. JA AHOKAS J. MAATALOUSTIETEIDEN LAITOS JULKAISUJA HELSINGIN YLIOPISTO MAATALOUS-METSÄTIETEELLINEN TIEDEKUNTA

MAATILAKUIVURIT HAUTALA M., JOKINIEMI T. JA AHOKAS J. MAATALOUSTIETEIDEN LAITOS JULKAISUJA HELSINGIN YLIOPISTO MAATALOUS-METSÄTIETEELLINEN TIEDEKUNTA MAATILAKUIVURIT HAUTALA M., JOKINIEMI T. JA AHOKAS J. 28 MAATALOUSTIETEIDEN LAITOS JULKAISUJA HELSINGIN YLIOPISTO MAATALOUS-METSÄTIETEELLINEN TIEDEKUNTA Yhteistyössä HELSINKI 2013 ISSN 1798-744X (Online)

Lisätiedot

ENERGIATEHOKAS KARJATALOUS

ENERGIATEHOKAS KARJATALOUS ENERGIATEHOKAS KARJATALOUS PELLON GROUP OY / Tapio Kosola ENERGIAN TALTEENOTTO KOTIELÄINTILALLA Luonnossa ja ympäristössämme on runsaasti lämpöenergiaa varastoituneena. Lisäksi maatilan prosesseissa syntyvää

Lisätiedot

K = Q C W = T C T H T C. c = 1 dq. f) Isokoorinen prosessi: prosessi joka suoritetaan vakiotilavuudessa

K = Q C W = T C T H T C. c = 1 dq. f) Isokoorinen prosessi: prosessi joka suoritetaan vakiotilavuudessa Sallitut apuvälineet: kijoitusvälineet ja gaafinen laskin. Muun oman mateiaalin tuominen ei sallittu. Tämä on fysiikan kussi, joten desimaalilleen oikeaa numeeista vastausta täkeämpää on että osoitat ymmätäneesi

Lisätiedot

CHEM-A1410 Materiaalitieteen perusteet

CHEM-A1410 Materiaalitieteen perusteet CHEM-A1410 Materiaalitieteen perusteet Laskuharjoitus 18.9.2017, Materiaalien ominaisuudet Tämä harjoitus ei ole arvioitava, mutta tämän tyyppisiä tehtäviä saattaa olla tentissä. Tehtävät perustuvat kurssikirjaan.

Lisätiedot

Maatilakuivurit. Jukka Ahokas, Mikko Hautala. 28. helmikuuta 2012

Maatilakuivurit. Jukka Ahokas, Mikko Hautala. 28. helmikuuta 2012 Maatilakuivurit Jukka Ahokas, Mikko Hautala 28. helmikuuta 2012 This material has been produced in ENPOS and Rural Energy Acadeny projects. ENPOS is acronym for Energy Positive Farm. The ENPOS project

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

RATKAISUT: Kertaustehtäviä

RATKAISUT: Kertaustehtäviä hysica 6 OETTAJAN OAS 1. painos 1(16) : Luku 1 1. c) 1 0,51 A c) 0,6 A 1 0,55 A 0,6 A. b) V B 4,0 V c) U BC,0 V b) 4,0 V c),0 V 3. a) Kichhoffin. 1 + 3 1 3 4 0,06 A 0,06 A 0 V. b) Alin lamppu syttyy. Kokonaisvita

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot