4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen. Kuulien laadunvalvonta on toteuttetu niin, että joka sadas valmistettu kuula mitataan. Jos mitatun kuulan halkaisija on rajojen ulkopuolella, koneen toiminta keskeytetään tarkastusta varten. Oletetaan, että koneen valmistamista kuulista keskimäärin 1/10 on käyttökelvottomia. a Millä todennäköisyydellä tutkitaan 10 kuulaa tai enemmän, ennen kuin kone joudutaan pysäyttämään? b Millä todennäköisyydellä tutkitaan 13 kuulaa tai enemmän, jos on tutkittu 9 kuulaa löytämättä yhtään käyttökelvotonta? c Mikä on niiden kuulien odotettavissa oleva lukumäärä, jotka joudutaan tutkimaan ennen ensimmäisen käyttökelvottoman löytymistä? Ensimmäisen viallisen kuulan järjestysnumero X on satunnaismuuttuja, joka noudattaa geometrista jakaumaa eli X Geom(0.1. Nyt X:n pistetodennäköisyysfunktio on ja kertymäfunktio (Mellin s 37, 1.51 a b f(x = 0.9 x 1 0.1, x = 1,,... F(x = 1 0.9 x Pr(X 10 = Pr(X > 9 = 1 Pr(X 9 = 1 F(9 = 1 (1 0.9 9 = 0.9 9 0.387 Pr(X 13 X 10 = Toisaalta Pr(X 13 X 10 Pr(X 10 = Pr(X 13 Pr(X 10 = 1 F(1 1 F(9 = 0.93 = 0.79 Pr(X 4 = 1 F(3 = 0.9 3 = 0.79 = Pr(X 13 X 10 Tämä ei ole sattumaa vaan yleisesti geometriselle jakaumalle voidaan sanoa: Pr(X a + b X b = Pr(X 1 + b Tulos merktisee sitä, että geometrisella jakaumalla on unohtamisominaisuus. Unohtamisominaisuudella on seuraava tulkinta: Todennäköisyys joutua tutkimaan b kuulaa ei riipu siitä kuinka monta kuulaa on jo tutkittu löytämättä viallisia. Prosessi toisin sanoen unohtaa oman historiansa. c E(X = 1 p = 1 0.1 = 10
D. Pakkauksessa on 100 tuotetta, joista 30 on viallisia. a Poimitaan pakkauksesta 5 tuotetta tarkastettavaksi ilman takaisinpanoa. Mikä on todennäköisyys, että tarkastettujen joukossa on 1 viallinen tuote? b Poimitaan pakkauksesta 5 tuotetta tarkastettavaksi takaisinpanolla. Mikä on todennäköisyys, että tarkastettujen joukossa on 1 viallinen tuote? Okoon satunnaismuuttuja X viallisten tuotteiden lukumäärä tarkastettujen viiden tuotteen joukossa. Satunnaismuuttujan X jakauma riippuu siitä poimitaanko otos ilman takaisinpanoa vai takaisinpanolla. Ensimmäisessä tapauksessa X noudattaa hypergeometrista jakaumaa ja jälkimmäisessä binomijakaumaa. On hyvä huomata, että hypergeometrista jakaumaa voidaan kohtuullisella tarkkuudella approksimoida binomijakaumalla, jos otantasuhde n/n on kyllin pieni (n on otoskoko ja N perusjoukon koko. Käytännössä näin on, jos n/n < 0.05. a X HyperGeom(100, 30, 5 jolloin pistetodennäköisyysfunktio: ja pyydetty todennäköisyys: f(x = ( 30 ( 100 r x 5 x ( 100 5 ( 30 ( 100 30 1 5 1 Pr(X = 1 = f(1 = 0.365 ( 100 5 b X Bin(5, 0.3 jolloin pistetodennäköisyysfunktio: ( 5 f(x = 0.3 x 0.7 5 x x ja pyydetty todennäköisyys: f(1 = ( 5 0.3 1 0.7 5 1 0.360 1 D3. Pullaan käytetään 1 dl taikinaa. Kuinka monta rusinaa 10 litran taikinaan on pantava, jotta ensimmäisestä pullasta löytyisi ainakin 1 rusina vähintään todennäköisyydellä 0.95?
Tapa 1: Poimitaan 10 litran taikinasta 1dl sattumanvaraisesti. Olkoon satunnaismuuttuja X = desilitrasta löytyvien rusinoiden määrä ja n = koko taikinaan laitettavien rusinoiden määrä. On siis oltava jolloin Pr(X 1 0.95, 1 Pr(X = 0 0.95 Pr(X = 0 0.05 Oletetaan, että jokaisen rusinan sijainti taikinassa on tasajakautunut. Tällöin, jos koko taikinassa on yksi rusina, on Pr(X = 0 = 1 1dl 100dl = 99 100. Rusinoiden sijainnit taikinassa ovat riippumattomia, joten n:llä rusinalla Joten Pr(X = 0 = ( 99 n. 100 ( 99 n 0.05 100 n log 0.99 log 0.05 log 0.05 n log 0.99 n 98.07 Eli taikinaan tulee laittaa vähintään 99 rusinaa. Tapa : Pullaan tulevien rusinoiden voidaan myös ajatella noudattavan binomijakaumaa, sillä jokaisen rusinan todennäköisyys tulla pullaan on p=1/100. Pullaan tarvittavan taikinan ottamisen voidaankin ajatella sisältävän n kpl. Bernoulli-kokeita, missä n on rusinoiden määrä taikinassa. Nyt siis X Bin(n, 0.01. f(0 = Pr(X = 0 0.05 ( n p 0 (1 p n 0.05 0 (1 p n 0.05 n 98.07 Tapa 3: Kun toistojen määrä n kasvaa ja todennäköisyys p pienenee, binomijakauma lähestyy Poisson -jakaumaa. Oletetaan nyt, että X Poisson(λs, missä s on tilavuus ja λ rusinoiden määrä yksikkötilavuudessa. (Nyt s = 1dl ja samalla 1dl on yksikkötilavuus. Todennäköisyys, että pullassa on vähintään 1 rusina on Asetetaan ehto Jolloin on oltava Pr(X 1 = 1 Pr(X < 1 = 1 Pr(X = 0 = 1 e λ λ 0 Pr(X 1 = 1 e λ 0.95 λ ln(0.05.996 0! = 1 e λ 10 litrasta taikinasta saa sata 1dl pullaa. 100.996 = 99.6, joten taikinaan pitää laittaa vähintään 300 rusinaa. Poisson -jakauman antama rusinoiden määrä heitti siis tässä tapauksessa oikeasta yhdellä rusinalla.
P4. Pelaaja heittää virheetöntä noppaa kertaa. a Laske silmälukujen summan odotusarvo, varianssi ja standardipoikkeama. b Pelaaja saa voittona silmälukujen summan euroina viisitoistakertaisena. Mikä on voiton odotusarvo ja standardipoikkeama? Kannattaako peliin osallistua, kun osallistuminen maksaa 100 euroa? 1 p. Yhden nopanheiton tulos X on satunnaismuuttuja, joka noudattaa diskreettiä tasaista jakaumaa. X:n pistetodennäköisyys funktio on: X:n odotusarvo,. momentti ja varianssi: E(X = x = 1 6 E(X = 1 6 f(x = 1, x = 1,, 3, 4, 5, 6 6 6 6 x k = 7 = 3.5 x k = 91 6 ( D (X = E(X 91 E(X = 6 ( 1.708 D(X = 91 6 7 ( 7.917 Heitetään noppaa kertaa. Jokaisen heiton tulos X k on satunnaismuuttuja, joka noudattaa ym. diskreettiä tasaista jakaumaa. Lisäksi heittojen tulokset ovat toisistaan riippumattomia. Heittotulosten summa voidaan määritellä satunnaismuuttujaksi: Z = X i
a Summan Z odotusarvo on (olivat muuttujat riippumattomia eli eivät ( E(Z = E X i = E(X i = 3.5 = 87.5 Koska muuttujat X i ovat riippumattomia, on niiden summan varianssi D (Z = D ( X i = D (X i.917 = 7.93 ja keskihajonta eli standardipoikkeama D(Z = D (Z 8.54 b Pelaajan voitto Y = 1 Z on satunnaismuuttuja. E(Y = 15 E(Z = 131e D (Y = 15 D (Z = 16409.e D(Y = 18.1e Koska peliin osallistuminen maksaa 100 e, keskimääräinen lopputulos peliin osallistumisesta on E(Y 100 = 131 100 = 11 euron voitto. P5. Tehdas valmistaa tuotetta, jolla on erittäin korkeat laatukriteerit. Keskimäärin vain 60 % tuotteista täyttää kriteerit. Valitaan satunnaisesti tuotteita tarkastettavaksi, kunnes on löydetty viisi kelvollista tuotetta. a Mikä on todennäköisyys, että joudutaan tarkastamaan enemmän kuin kuusi tuotetta? b Kuinka monta tuotetta joudutaan keskimäärin tarkastamaan? 1 p. Neljännen kelvollisen tuotteen järjestysnumero X on satunnaismuuttuja joka noudattaa negatiivista binomijakaumaa eli X NegBin(5, 0.6. X:n pistetodennäköisyysfunktio on: ( x 1 f(x = 0.4 x 5 0.6 5 ; x = 5, 6,... 5 1 a Pr(X > 6 = 1 Pr(X 6 = 1 Pr(X = 5 Pr(X = 6 ( 5 = 1 0.6 5 0.4 0.6 5 0.767 4 b E(X = r p = 5 0.6 8.333
P6. Puhelinkeskukseen tulee keskimäärin viisi puhelua minuutissa. Määrää seuraavien tapahtumien todennäköisyydet: a Kahdessa minuutissa ei tule yhtään puhelua? b Minuutissa tulee vähintään kolme puhelua? c Seuraavan minuutin aikana tulee yksi puhelu, kun edellisen minuutin aikana puheluita ei tullut yhtään? d Mikä on odotettavissa olevien puheluiden lukumäärä tunnissa? p. Oletetaan, että puhelinkeskukseen aikayksikkköä s kohti tulevien puheluiden lukumäärä X on satunnaismuuttuja, joka noudattaa Poisson-jakaumaa eli X Poisson(λs, jossa nyt s = 1min ja λ = 5/min. a s = min, joten λs = 5 = 10 ja todennäköisyys ettei puolen minuutin aikana tule yhtään puhelua: Pr(X = 0 = e 10 10 0 4.5 10 5 0! b s = 1min, joten λs = 5 ja todennäköisyys että minuutissa tulee korkeintaan kolme puhelua: e 5 5 x Pr(X 3 = 1 Pr(X = x = 1 x! x=0 x=0 = 1 e 5( 5 0 0! + 51 1! + 5! 0.875 c Olkoon X i = minuutin i aikana tulleiden puheluiden lukumäärä, i = 1,. Satunnaismuuttujia X 1 ja X voidaan pitää riippumattomina ja lisäksi kumpikin noudattaa Poisson -jakaumaa: X i Poisson(λs, jossa nyt s = 1min ja λ = 5/min. Riippumattomuuden nojalla Pr(X = 1 X 1 = 0 = Pr(X = 1 = e 5 5 1 0.033 1! d s = 60min, joten λs = 300 ja siten E(X = λs = 300 L7. Kone tekee viallisia tuotteita todennäköisyydellä 0.. Eräänä päivänä kone tekee 10 tuotetta. a Mikä on todennäköisyys, että viallisia tuotteita löytyy kpl? b Mikä on todennäköisyys, että viallisia tuotteita löytyy? c Mikä on viallisten tuotteiden odotettavissa oleva lukumäärä? Viallisten tuotteiden lukumäärä on satunnaismuuttuja X ja X Bin(10, 0.. a ( 10 Pr(X = = 0. 0.8 8 0.300 b Pr(X > 0 = 1 Pr(X = 0 = 1 ( 10 0.8 1 0 0.896 0
c E(X = np = 10 0. = L8. Tehdas väittää, että korkeintaan 1% tuotteista on viallisia. Ostat 1000 tuotetta ja poimit satunnaisesti tarkastettavaksi tuotetta ilman takaisinpanoa. Mikä on todennäköisyys, että löydät tarkastettujen tuotteiden joukosta enemmän kuin kaksi viallista, jos valmistajan väite on oikeutettu? Viallisten lukumäärä X tarkastettujen tuotteiden joukossa on jakautunut hypergeometrisen jakauman mukaan: X HyperGeom(1000, 10(= 1000/100,. Pyydetty todennäköisyys voidaan laskea suoraan (jos laskemiseen käytetty järjestelmä saa laskettua 1000!-luokan lukuja tai binomikertoimien lasku on toteutettu siten, ettei moiseen jouduta: Pr(X > = 1 Pr(X = 1 Pr(X = 0 Pr(X = 1 Pr(X = ( 10 ( 1000 10 ( 10 ( 1000 10 ( 10 ( 1000 10 0 0 1 1 = 1 0.00149 ( 1000 ( 1000 Mutta helpommin sen kuitenkin saa huomaamalla, että otantasuhde n/n = 0.0 < 0.05, joten hypergeometrista jakaumaa voidaan nyt approksimoida binomijakaumalla: X a Bin(, 0.01. Todennäköisyyden laskeminen onnistuu nyt kevyemmälläkin kalustolla: ( 1000 Pr(X > = 1 Pr(X = 1 Pr(X = 0 Pr(X = 1 Pr(X = ( ( ( = 1 0.99 5 0.01 0.99 4 0.01 0.99 3 0 1 0.00195 Vaikka suhteellinen virhe onkin yli 0% luokkaa ei absoluuttinen virhe kuitenkaan ole suuren suuri eli approksimaation käyttö on täysin sallittua.