D ( ) E( ) E( ) 2.917

Koko: px
Aloita esitys sivulta:

Download "D ( ) E( ) E( ) 2.917"

Transkriptio

1 Mat Sovellettu todennäköisyyslasku 4. harjoitukset/ratkaisut Aiheet: Diskreetit jakaumat Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen jakauma, Kertymäfunktio, Negatiivinen binomijakauma, Odotusarvo, Otanta ilman takaisinpanoa, Otantasuhde, Otanta takaisinpanolla, Pistetodennäköisyysfunktio, Poisson-jakauma, Standardipoikkeama, Varianssi 4.1. Pelaaja heittää virheetöntä noppaa kymmenen kertaa. (Virheettömässä nopassa jokaisella silmäluvulla i = 1, 2, 3, 4, 5, 6 on sama todennäköisyys tulla tulokseksi.) Laske silmälukujen summan odotusarvo, varianssi ja standardipoikkeama. Pelaaja saa voittona silmälukujen summan euroina kymmenkertaisena. Mikä on voiton odotusarvo ja standardipoikkeama? Kannattaako peliin osallistua, kun se maksaa 400 euroa? Nopanheiton tulos X on satunnaismuuttuja, joka noudattaa diskreettiä tasaista jakaumaa. f() = Pr(X = ) = 1/6, = 1, 2, 3, 4, 5, 6 Satunnaismuuttujan X odotusarvo, 2. momentti, varianssi ja standardipoikkeama: E( X) = Pr( X = ) = = = 3.5 = E( X ) = Pr( X = ) = = 6 6 = 1 [ ] D ( ) E( ) E( ) X = X X = 6 6 D( X ) = Heitetään noppaa 10 kertaa. Jokaisen heiton tulos X k on satunnaismuuttuja, joka noudattaa ym. diskreettiä tasaista jakaumaa. Voimme lisäksi olettaa, että heittojen tulokset ovat toisistaan riippumattomia. Heittotulosten summa 10 Z = X k= 1 on satunnaismuuttuja. i Summan Z odotusarvo on ( k) E( Z) = E X = E( X ) = = 35 k Ilkka Mellin (2004) 1/10

2 Huomaa, että satunnaismuuttujien summan odotusarvo on satunnaismuuttujien odotusarvojen summa myös, kun ko. satunnaismuuttujat eivät ole riippumattomia. Summan Z varianssi on ( k) D ( Z) = D X = D ( Xk) = Huomaa, että satunnaismuuttujien summan varianssi on satunnaismuuttujien varianssien summa vain, kun ko. satunnaismuuttujat ovat riippumattomia. Summan Z standardipoikkeama on D( Z ) = = Huomaa, että D(Z) 10 D(X k ) ts. satunnaismuuttujien summan standardipoikkeama ei ole satunnaismuuttujien standardipoikkeamien summa. Pelaajan voitto Y = 10 Z on satunnaismuuttuja. Voiton odotusarvo: E(Y) = 10 E(Z) = 350 e Voiton varianssi: D 2 (Y) = 10 2 D 2 (Z) = 2917 e 2 Voiton standardipoikkeama: D(Y) = e Koska peliin osallistuminen maksaa 400 e, pelaajat kärsivät keskimäärin tappion, jonka suuruus on 400 E(Y) = = 50 e 4.2. Kone tekee viallisia tuotteita todennäköisyydellä 0.2. Eräänä päivänä kone tekee 10 tuotetta. Mikä on todennäköisyys, että viallisia tuotteita löytyy 2 kpl? Mikä on todennäköisyys, että viallisia tuotteita löytyy? (c) Mikä on odotettavissa oleva viallisten tuotteiden lukumäärä? Ko. päivän aikana tehtyjen viallisten tuotteiden lukumäärä X on satunnaismuuttuja, joka noudattaa binomijakaumaa: X Bin(n, p) n = 10 p = 0.2 Ilkka Mellin (2004) 2/10

3 n n f ( ) = Pr( X = ) = p (1 p), = 0,1,2,, n Todennäköisyys, että viallisia tuotteita löytyy 2 kpl on Pr( X = 2) = Todennäköisyys, että viallisia tuotteita löytyy on Pr( X > 0) = 1 Pr( X = 0) = = (c) Odotettavissa oleva viallisten tuotteiden lukumäärä on E(X) = np = = Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen. Osa kuulista ei mahdu ko. rajojen sisälle ja ne ovat käyttökelvottomia. Kuulien laadunvalvonta on toteutettu niin, että joka sadas valmistettu kuula mitataan. Jos mitatun kuulan halkaisija on ko. rajojen ulkopuolella, koneen toiminta keskeytetään tarkastusta varten. Oletetaan, että koneen valmistamista kuulista keskimäärin 1/10 on käyttökelvottomia. Millä todennäköisyydellä joudutaan tutkimaan 10 kuulaa tai enemmän, ennen kuin kone joudutaan pysäyttämään? Millä todennäköisyydellä joudutaan tutkimaan 13 kuulaa tai enemmän, jos on tutkittu 9 kuulaa löytämättä yhtään käyttökelvotonta? (c) Mikä on niiden kuulien odotettavissa oleva lukumäärä, jotka joudutaan tutkimaan ennen ensimmäisen käyttökelvottoman löytymistä? Ensimmäisen viallisen kuulan järjestysnumero X on satunnaismuuttuja, joka noudattaa geometrista jakaumaa: X Geom(p) p = 0.1 Ilkka Mellin (2004) 3/10

4 1 f( ) = Pr( X = ) = (1 p) p, = 1,2, On helppo nähdä (esimerkiksi täydellisellä induktiolla), että satunnaismuuttujan X kertymäfunktio on [ ] F( ) = 1 (1 p) [] = suurin kokonaisluku, joka Todennäköisyys, että joudutaan tutkimaan 10 kuulaa tai enemmän on ( X ) = ( X > ) = 1 Pr( X 9) Pr 10 Pr 9 = 1 F(9) 9 = 1 1 (1 p) = (1 p) = Todennäköisyys, että joudutaan tutkimaan 13 kuulaa tai enemmän ennen viallisen löytymistä ehdolla, että on jouduttu tutkimaan 9 kuulaa löytämättä yhtään viallista on Pr( X 13 ja X 10) Pr ( X 13 X 10) = Pr( X 10) Pr( X 13) = Pr( X 10) 1 F(12) = 1 F(9) = = 0.9 = Toisaalta todennäköisyys, että joudutaan tutkimaan 4 kuulaa tai enemmän ennen viallisen löytymistä on 3 Pr( X 4) = 1 F(3) = 0.9 = Se, että tässä Pr( X 13 X 10) = Pr(X 4) ei ole sattumaa, vaan tulos voidaan yleistää seuraavaan muotoon: Ilkka Mellin (2004) 4/10

5 jo Jos satunnaismuuttuja X noudattaa geometrista jakaumaa, niin ( X a+ b X a) = ( X + b) Pr Pr 1 Tulos merkitsee sitä, että geometrisella jakaumalla on ns. unohtamisominaisuus: Todennäköisyys joutua tutkimaan b kuulaa lisää ei riipu siitä, kuinka monta kuulaa on jouduttu tutkimaan löytämättä ensimmäistä viallista. Prosessi on siis unohtanut oman historiansa. (c) Odotettavissa oleva lukumäärä kuulille, jotka joudutaan tutkimaan ennen ensimmäisen käyttökelvottoman löytymistä, on E(X) = 1/p = 1/0.1 = Tehdas valmistaa tuotetta, jolla on erittäin korkeat laatukriteerit. Keskimäärin vain 60 % tuotteista täyttää kriteerit. Valitaan satunnaisesti tuotteita tarkastettavaksi, kunnes on löydetty 3 kelvollista tuotetta. Mikä on todennäköisyys, että joudutaan tarkastamaan enemmän kuin 4 tuotetta? Kuinka monta tuotetta joudutaan keskimäärin tarkastamaan? Kolmannen kelvollisen tuotteen järjestysnumero X on satunnaismuuttuja, joka noudattaa negatiivista binomijakaumaa: X NegBin(r, p) r = 3 p = r r f( ) = Pr( X = ) = (1 p) p, r = 1, 2,, = r, r+ 1, r+ 2, r 1 Todennäköisyys joutua tutkimaan enemmän kuin 4 tuotetta on ( X ) Pr > 4 = 1 Pr( X 4) = 1 Pr( X = 3) Pr( X = 4) 3 = = = Ilkka Mellin (2004) 5/10

6 Odotettavissa oleva tuotteiden lukumäärä, jotka joudutaan tarkastamaan, ennen kuin löydetään 3 kelvollista, on r 3 E( X ) = = = 5 p Pakkauksessa on 100 tuotetta, joista 30 on viallista. Poimitaan pakkauksesta 5 tuotetta tarkastettavaksi ilman takaisinpanoa. Mikä on todennäköisyys, että tarkastettujen joukossa on 1 viallinen tuote? Poimitaan pakkauksesta 5 tuotetta tarkastettavaksi takaisinpanolla. Mikä on todennäköisyys, että tarkastettujen joukossa on 1 viallinen tuote? Olkoon satunnaismuuttuja X = Viallisten lukumäärä tarkastettujen 5 tuotteen joukossa. Satunnaismuuttujan X jakauma riippuu siitä poimitaanko otos ilman takaisinpanoa tai takaisinpanolla: Jos otanta tehdään ilman takaisinpanoa, X noudattaa hypergeometrista jakaumaa. Jos otanta tehdään takaisinpanolla, X noudattaa binomijakaumaa. On kuitenkin syytä huomata, että hypergeometrista jakaumaa voidaan approksimoida riittävällä tarkkuudella binomijakaumalla, jos ns. otantasuhde n/n n = otoskoko N = perusjoukon koko on kyllin pieni. Näin on käytännössä, jos n/n < 0.05 Koska otos poimitaan ilman takaisinpanoa, X HyperGeom(N, r, n) N = 100 r = 30 n = 5 Ilkka Mellin (2004) 6/10

7 r N r n f ( ) = Pr( X = ) =, ma[ 0, n ( N r) ] min( n, r) N n Siten todennäköisyys, että tarkastettujen joukossa on 1 viallinen on f(1) = Pr( X = 1) = = Koska otos poimitaan takaisinpanolla, X Bin(n, p) n = 5 p = r/n = 0.3 n n f ( ) = Pr( X = ) = p (1 p), = 0,1,2,, n Siten todennäköisyys, että tarkastettujen joukossa on 1 viallinen on f (1) = Pr( X = 1) = = Tehdas väittää, että korkeintaan 1 % tuotteista on viallisia. Ostat 1000 tuotetta ja poimit satunnaisesti tarkastettavaksi 25 tuotetta ilman takaisinpanoa. Mikä on todennäköisyys, että löydät tarkastettujen tuotteiden joukosta useampia kuin 2 viallista, jos valmistajan väite on oikeutettu? Viallisten lukumäärä X tarkastettujen tuotteiden joukossa on satunnaismuuttuja, joka noudattaa hypergeometrista jakaumaa: X HyperGeom(N, r, n) N = 1000 r = 1000/100 = 10 n = 25 Ilkka Mellin (2004) 7/10

8 Koska otantasuhde n/n = 25/1000 = < 0.05 hypergeometrista jakaumaa voidaan approksimoida binomijakaumalla: X a Bin(n, p) n = 25 p = 0.01 Satunnaismuuttujan X pistetodennäköisyysfunktiota voidaan siis approksimoida pistetodennäköisyysfunktiolla n n f ( ) = Pr( X = ) = p (1 p), = 0,1,2,, n Siten todennäköisyys löytää 2 useampia kuin 2 viallista on ( X ) Pr > 2 = 1 Pr( X 2) = 1 Pr( X = 0) Pr( X = 1) Pr( X = 2) = 1 f(0) f(1) f(2) = Puhelinkeskukseen tulee keskimäärin 3 puhelua minuutissa. Määrää seuraavien tapahtumien todennäköisyydet: 30 sekunnissa ei tule yhtään puhelua? Minuutissa tulee korkeintaan 4 puhelua? (c) Seuraavan minuutin aikana ei tule yhtään puhelua, kun edellisenä minuuttina puheluita oli 4? (d) Mikä on odotettavissa olevien puheluiden lukumäärä 1 tunnin aikana? Oletetaan, että puhelinkeskukseen s aikayksikköä kohden tulevien puheluiden lukumäärä X on satunnaismuuttuja, joka noudattaa Poisson-jakaumaa: X Poisson(λs) s = 1 min λ = 3 Ilkka Mellin (2004) 8/10

9 λs e ( λs) f( ) = Pr( X = ) =, = 0,1,2,! Nyt s = 0.5 min joten λs = = 1.5 Siten todennäköisyys, että ½ minuutissa ei tule puheluita, on e (1.5) Pr( X = 0) = = ! Nyt s = 1 min joten λs = 3 1 = 3 Siten todennäköisyys, että minuutissa tulee korkeintaan 4 puhelua, on 4 4 Pr( X = ) = = 0 = 0 e λs ( λs)! = e ! 1! 2! 3! 4! = ( ) = = (c) Olkoon X i = minuutin i aikana tulleiden puheluiden lukumäärä, i = 1, 2. Satunnaismuuttujia X 1 ja X 2 voidaan pitää riippumattomina ja lisäksi kumpikin noudattaa Poisson-jakaumaa: X i Poisson(λs) s = 1 min λ = 3 Ilkka Mellin (2004) 9/10

10 Riippumattomuuden nojalla ( ) Pr X = 0 ja X = 4 = Pr( X = 0) Pr( X = 4) e 3 e 3 = 0! 4! 6 = e (d) Odotettavissa oleva puheluiden määrä 1 minuutin aikana on E(X) = λs = 3 Siten odotettavissa oleva puheluiden määrä 1 tunnissa on 60 3 = Pikkupullaan käytetään 1 dl taikinaa. Kuinka monta rusinaa 10 litraan taikinaa on pantava, jotta jokaisesta pullasta löytyisi ainakin 1 rusina vähintään todennäköisyydellä 0.95? Rusinoiden lukumäärä X tilavuusyksikössä hyvin sekoitettua taikinaa noudattaa Poissonjakaumaa: X Poisson(λs) s = tilavuusyksikkö λ = rusinoiden keskimääräinen lukumäärä tilavuusyksikössä Todennäköisyys, että taikinassa on vähintään 1 rusina tilavuusyksikössä on Pr ( X 1) = 1 Pr( X < 1) = 1 Pr( X = 0) 0 λ λ = 1 e 0! λ = 1 e Asetetaan ehto ( X ) Pr 1 = 1 e λ 0.95 joka toteutuu, jos log(0.05) λ = log( e) 10 litrassa taikinaa on 100 dl. Koska = taikinaan pitää laittaa vähintään 300 rusinaa, jotta jokaisesta pullasta löytyisi vähintään 1 rusina vähintään todennäköisyydellä Ilkka Mellin (2004) 10/10

4. laskuharjoituskierros, vko 7, ratkaisut

4. laskuharjoituskierros, vko 7, ratkaisut 4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.

Lisätiedot

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

D ( ) Var( ) ( ) E( ) [E( )]

D ( ) Var( ) ( ) E( ) [E( )] Mat-.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Diskreettejä jakaumia Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Eksponenttijakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-2.090 Sovellettu todennäköisyyslasku A Harjoitus 4 (vko 41/2003) (Aihe: diskreettejä satunnaismuuttujia ja jakaumia, Laininen luvut 4.1 4.7) 1. Kone tekee

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Diskreettejä jakaumia TKK (c) Ilkka Mellin (2007) 1 Diskreettejä jakaumia >> Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma

Lisätiedot

Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia TKK (c) Ilkka Mellin (2005) 1 Diskreettejä jakaumia Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen jakauma Negatiivinen

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

3. laskuharjoituskierros, vko 6, ratkaisut

3. laskuharjoituskierros, vko 6, ratkaisut Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio. Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.

Lisätiedot

5. laskuharjoituskierros, vko 8, ratkaisut

5. laskuharjoituskierros, vko 8, ratkaisut Mat-.09 Sovellettu todennäköisyyslasku, kevät -05 5. laskuharjoituskierros, vko 8, ratkaisut D. Eräässä maata kiertävällä radalla olevassa satelliitissa on ilmaisin, jonka elinikä X yksikkönä vuosi noudattaa

Lisätiedot

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Mat-2.091 Sovellettu todennäköisyyslasku Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Ehdollinen todennäköisyys, Erotustapahtuma,

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat: Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat Mat-2.09 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Jatkuvat jakaumat Avainsanat: Binomijakauma, Eksponenttijakauma, Jatkuva tasainen jakauma, Kertymäfunktio, Mediaani, Normaaliapproksimaatio, Normaalijakauma,

Lisätiedot

(x, y) 2. heiton tulos y

(x, y) 2. heiton tulos y Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 2, 4, 6, 8, 11 Pistetehtävät: 3, 5, 9, 12 Ylimääräiset tehtävät: 7, 10, 13 Aiheet: Joukko-oppi Todennäköisyys ja sen määritteleminen

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: 8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi

Lisätiedot

Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä

Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä Todennäköisyys 1 Klassinen todennäköisyys: p = Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä Esimerkkejä: Nopan heitto, kolikon heitto Satunnaismuuttuja Tilastollisesti vaihtelevaa

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-.9 Sovellettu todennäköisyyslasku A Harjoitus 3 (vko 4/3) (Aihe: tasainen todennäköisyysmalli, pistetodennäköisyysfunktio, tiheysfunktio, kertymäfunktio,

Lisätiedot

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 4. lokakuuta 2007 Antti Rasila () TodB 4. lokakuuta 2007 1 / 17 1 Moniulotteiset todennäköisyysjakaumat Johdanto Kaksiulotteiset satunnaismuuttujat Kaksiulotteisen

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen

Lisätiedot

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Unioni, Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Alkeistapahtuma, Ehdollinen todennäköisyys,

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B

Mat Sovellettu todennäköisyyslaskenta B Mat-1.2620 Sovellettu todennäköisslaskenta B 1. välikoe 08.03.2011 / Kibble Kirjoita selvästi jokaiseen koepaperiin seuraavat tiedot: Mat-1.2620 SovTnB 1. vk 08.03.2011 opiskelijanumero + kirjain TEKSTATEN

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat

Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat TKK (c) Ilkka Mellin (2006) 1 Moniulotteiset satunnaismuuttujat ja

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin

Lisätiedot

1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.

1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4. HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat Kaksiulotteiset todennäköisyysjakaumat

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-200 Todennäköisyyslaskenta Tentti 29.04.20 / Kimmo Vattulainen Funktiolaskin sallittu.. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi kuutosen. A aloittaa

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Todennäköisyyslaskun kertaus. Heliövaara 1

Todennäköisyyslaskun kertaus. Heliövaara 1 Todennäköisyyslaskun kertaus Heliövaara 1 Satunnaismuuttujat ja todennäköisyysjakaumat Heliövaara 2 Stunnaismuuttujat ja todennäköisyysjakaumat Jos satunnaisilmiötä halutaan mallintaa matemaattisesti,

Lisätiedot

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Diskreetit todennäköisyysjakaumat Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Satunnaismuuttuja Satunnaisilmiö on ilmiö, jonka lopputulokseen sattuma vaikuttaa Satunnaismuuttuja on muuttuja,

Lisätiedot

6. laskuharjoitusten vastaukset (viikot 10 11)

6. laskuharjoitusten vastaukset (viikot 10 11) 6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287

Lisätiedot

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Tehtävä 1 on klassikko. 1. Tässä tehtävässä tapahtumat A ja B eivät välttämättä

Lisätiedot

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1 Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen

Lisätiedot

Todennäköisyysjakaumia

Todennäköisyysjakaumia 8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma

Lisätiedot

Moniulotteiset satunnaismuuttujat ja jakaumat

Moniulotteiset satunnaismuuttujat ja jakaumat Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat KE (2014) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat >> Kaksiulotteiset

Lisätiedot

&idx=2&uilang=fi&lang=fi&lvv=2015

&idx=2&uilang=fi&lang=fi&lvv=2015 20.10.2015/1 MTTTP5, luento 20.10.2015 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat

Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (4) todennäköisyysjakaumat Johdatus todennäköisyyslaskentaan todennäköisyysjakaumat TKK (c) Ilkka Mellin (4) todennäköisyysjakaumat: Mitä opimme? /5 hden satunnaismuuttujan todennäköisyysjakaumat

Lisätiedot

Harjoitus 2: Matlab - Statistical Toolbox

Harjoitus 2: Matlab - Statistical Toolbox Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015

https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 12.1.2016/1 MTTTP5, luento 12.1.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot

1. laskuharjoituskierros, vko 4, ratkaisut

1. laskuharjoituskierros, vko 4, ratkaisut 1. laskuharjoituskierros, vko 4, ratkaisut D1. Heitetään kahta virheetöntä noppaa, joiden kuudella tahkolla on silmäluvut 1, 2, 3, 4, 5 ja 6. Tällöin heittotuloksiin liittyvä otosavaruus on S = {(x, y)

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla 17.11.2016/1 MTTTP5, luento 17.11.2016 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla likimain Jos X ~ Bin(n, p), niin X ~ N(np, np(1 p)), kun n suuri. 17.11.2016/2

Lisätiedot

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Tilastollinen päättely II, kevät 2017 Harjoitus 1A

Tilastollinen päättely II, kevät 2017 Harjoitus 1A Tilastollinen päättely II, kevät 207 Harjoitus A Heikki Korpela 23. tammikuuta 207 Tehtävä. Kertausta todennäköisyyslaskennasta. Ilmoita satunnaismuuttujan Y jakauman nimi ja pistetodennäköisyys- tai tiheysfunktio

Lisätiedot

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla? 6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.

Lisätiedot

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset Todennäköisyyslaskenta I, kesä 207 Helsingin yliopisto/avoin Yliopisto Harjoitus, ratkaisuehdotukset. Kokeet ja Ω:n hahmottaminen. Mitä tarkoittaa todennäköisyys on? Olkoon satunnaiskokeena yhden nopan

Lisätiedot

χ 2 -yhteensopivuustestissä käytetään χ 2 -testisuuretta χ = Mat Sovellettu todennäköisyyslasku A

χ 2 -yhteensopivuustestissä käytetään χ 2 -testisuuretta χ = Mat Sovellettu todennäköisyyslasku A Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Estimointi, Havaittu frekvenssi, Heterogeenisuus,

Lisätiedot

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8. HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2 HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.

Lisätiedot

riippumattomia ja noudattavat samaa jakaumaa.

riippumattomia ja noudattavat samaa jakaumaa. 12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Satunnaismuuttujat ja todennäköisyysjakaumat

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Satunnaismuuttujat ja todennäköisyysjakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla 16.11.2017/1 MTTTP5, luento 16.11.2017 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla ~,, ~,,. 16.11.2017/2 Esim. Tutkittiin uuden menetelmän käyttökelpoisuutta

Lisätiedot

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

x 4 e 2x dx Γ(r) = x r 1 e x dx (1) HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1

Lisätiedot

Todennäköisyyslaskenta - tehtävät

Todennäköisyyslaskenta - tehtävät Todennäköisyyslaskenta - tehtävät Todennäköisyyslaskentaa käsitellään Pitkän matematiikan kertauskirjan sivuilla 253 276. Klassinen todennäköisyys Kombinatoriikka Binomitodennäköisyys Satunnaismuuttuja,

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015

https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 25.10.2016/1 MTTTP5, luento 25.10.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan:

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan: Mat-.6 Sovellettu todennäköisslaskenta B Mat-.6 Sovellettu todennäköisslaskenta B / Ratkaisut Aiheet: Moniulotteiset satunnaismuuttujat ja todennäköissjakaumat Moniulotteisia jakaumia Avainsanat: Diskreetti

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 3. Kaksiulotteiset satunnaismuuttujat

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 3. Kaksiulotteiset satunnaismuuttujat .9. Kaksiulotteiset satunnaismuuttujat MS-A Todennäköisslaskennan ja tilastotieteen peruskurssi Viikko Moniulotteiset satunnaismuuttujat sekä niiden jakaumat ja tunnusluvut; Moniulotteisia jakaumia Usein

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja niiden todennäköisyysjakaumat

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen 1. Laitosneuvostoon valitaan 2 professoria, 4 muuta henkilökuntaan kuuluvaa jäsentä sekä 4 opiskelijaa. Laitosneuvostoon

Lisätiedot

Johdatus tn-laskentaan torstai 16.2.2012

Johdatus tn-laskentaan torstai 16.2.2012 Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki

Lisätiedot

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04

Lisätiedot

30A02000 Tilastotieteen perusteet

30A02000 Tilastotieteen perusteet 30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi

Lisätiedot

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4 Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014

https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014 1 MTTTP3 Tilastollisen päättelyn perusteet 2 Luennot 8.1.2015 ja 13.1.2015 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme? TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä

Lisätiedot

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774

Lisätiedot

Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi

Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi TOD.NÄK JA TILASTOT, MAA0 Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi Kuten tilastojakaumia voitiin esittää tunnuslukujen (keskiarvo, moodi, mediaani, jne.) avulla, niin vastaavasti

Lisätiedot

Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa?

Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa? 21.3.2019/1 MTTTP1, luento 21.3.2019 7 TILASTOLLISEN PÄÄTTELYN PERUSTEITA Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

Tilastomatematiikka Kevät 2008

Tilastomatematiikka Kevät 2008 Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/19 4.3 Varianssi Satunnaismuuttuja on neliöintegroituva, jos odotusarvo

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2007) 1 Jakaumien tunnusluvut >> Odotusarvo Varianssi Markovin ja Tshebyshevin

Lisätiedot

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot