ELEC-A4130 Sähkö ja magnetismi (5 op)

Samankaltaiset tiedostot
ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op)

Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

8.3 KAMERAT Neulanreikäkamera

Luento 15: Ääniaallot, osa 2

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op)

25 INTERFEROMETRI 25.1 Johdanto

7.4 PERUSPISTEIDEN SIJAINTI

11.1 MICHELSONIN INTERFEROMETRI

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11.

34. Geometrista optiikkaa

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu

35 VALON INTERFERENSSI (Interference)

ELEC-A4130 Sähkö ja magnetismi (5 op)

YOUNGIN KOE. varmistaa, että tuottaa vaihe-eron

4 Optiikka. 4.1 Valon luonne

Valo, valonsäde, väri

35. Kahden aallon interferenssi

ELEC C4140 Kenttäteoria (syksy 2016)

ja siis myös n= nk ( ). Tällöin dk l l

Teoreettisia perusteita I

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

Havaitsevan tähtitieteen peruskurssi I. Optiikka. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

FYSI1040 Fysiikan perusteet III / Harjoitus 1 1 / 6

5. Optiikka. Havaitsevan tähtitieteen pk I, luento 5, Kalvot: Jyri Näränen ja Thomas Hackman. HTTPK I, kevät 2012, luento 5

RATKAISUT: 16. Peilit ja linssit

Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen

ELEC-A4130 Sähkö ja magnetismi (5 op)

Diffraktio. Luku 36. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

2 paq / l = p, josta suuntakulma q voidaan ratkaista

Aaltojen heijastuminen ja taittuminen

π yd cos 2 b) Osoita, että lauseke intensiteetille sirontakulman funktiona on I

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

34 GEOMETRINEN OPTIIKKA (Geometric Optics)

Aaltojen heijastuminen ja taittuminen

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA

7 VALON DIFFRAKTIO JA POLARISAATIO

1 Johdanto (1) missä 0 on. interferenssi. mittauksen tarkkuudeksi Δ

ELEC C4140 Kenttäteoria (syksy 2016)

23 VALON POLARISAATIO 23.1 Johdanto Valon polarisointi ja polarisaation havaitseminen

Scanned by CamScanner

Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): ja kuvausyhtälö (6.3.2) voidaan kirjoittaa mukavaan muotoon + =. (6.3.

Polarisaatio. Timo Lehtola. 26. tammikuuta 2009

ELEC C4140 Kenttäteoria (syksy 2015)

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio):

FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät

OPTIIKAN TYÖ. Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti:

Trigonometriset funktiot

Äärettömät raja-arvot

4 Optiikka. 4.1 Valon luonne

VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on

766349A AALTOLIIKE JA OPTIIKKA kl 2017, viikko 3 Harjoitus 1 Viimeinen näyttöpäivä ke 1.2.

eli HUOM! - VALEASIAT OVAT AINA NEGATIIVISIA ; a, b, f, r < 0 - KOVERALLE PEILILLE AINA f > 0 - KUPERALLE PEILILLE AINA f < 0

Ratkaisu: Taittuminen ensimmäisessä pinnassa on tietysti sama kuin edellisessä esimerkissä. Säteet taittuvat ja muodostaisivat kuva 40 cm:n

ELEC-A4130 Sähkö ja magnetismi (5 op)

Kenttäteoria. Viikko 10: Tasoaallon heijastuminen ja taittuminen

SPEKTROMETRI, HILA JA PRISMA

Havaitsevan tähtitieteen peruskurssi I

Kuva 1. Kaaviokuva mittausjärjestelystä. Laserista L tuleva valonsäde kulkee rakojärjestelmän R läpi ja muodostaa diffraktiokuvion varjostimelle V.

Työn tavoitteita. 1 Johdanto

KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Kvanttifysiikan perusteet 2017

Fysiikan perusteet 3 Optiikka

Fysiikan valintakoe klo 9-12

Valokuvauksen opintopiiri

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op)

Kuva 1. Michelsonin interferometrin periaate.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Työ 2324B 4h. VALON KULKU AINEESSA

a ' ExW:n halkaisija/2 5/ 2 3

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

6 GEOMETRISTA OPTIIKKAA

Luento 16: Ääniaallot ja kuulo

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1. Valon polarisoituminen. P = polarisaattori, A = analysaattori (kierrettävä).

SATE2010 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6 / Siirtojohdot ja transientit häviöttömissä siirtojohdoissa

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015)

12 DIFFRAKTIO 12.1 FRAUNHOFERIN DIFFRAKTIO KAPEASSA RAOSSA

ReLEx smile Minimaalisesti kajoava näönkorjaus - Tietoa potilaalle

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

6 GEOMETRISTA OPTIIKKAA

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot

Esimerkki - Näkymätön kuu

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium).

a) Mitkä reaaliluvut x toteuttavat yhtälön x 2 = 7? (1 p.) b) Mitkä reaaliluvut x toteuttavat yhtälön 5 4 x

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r

Mekaniikan jatkokurssi Fys102

Liikemäärän säilyminen Vuorovesivoimat Jousivoima

Transkriptio:

ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa

Luentoviikko 11 Tavoitteet Geometrinen optiikka Kamerat Silmä Suurennuslasi Optisia kojeita (yleissivistystä) Interferenssi Interferenssi ja koherentit lähteet Kahden lähteen interferenssi Interferenssikuvioiden intensiteetti Interferenssi ohutkalvoissa Michelsonin interferometri Lähde: http://spiff.rit.edu/classes/phys312/workshops/w9b/dblslit/dblslit_long.html, Jeff Wignall 2 (31)

Luentoviikko 11 Tavoitteet Tavoitteena on oppia miten kameran linssin kuvakulma määräytyy mikä aiheuttaa ihmisen näkökyvyn puutteita ja miten puutteita voi korjata miten yksinkertaiset optiset kojeet toimivat mitä tapahtuu, kun kaksi aaltoa yhtyy (interferoi) miten tulkita koherenttien valoaaltojen interferenssikuviota miten interferenssikuvion eri kohtien intensiteetti määritetään miten ohutkalvointerferenssi syntyy miten interferenssiä voi käyttää erittäin pienten etäisyyksien mittaamiseen 3 (31)

Geometrinen optiikka (YF 34.5 8) Kamerat Kamera Kameran osat ovat valotiivis laatikko (lat. camera, kammio) kokoava linssi(stö) himmentimellä säädettävä (valo)aukko suljin, jolla objektiivista päästetään valoa määrätyn ajan valoherkkä tallennusmedia (ilmaisin; filmi tai CCD-kenno) http://en.wikipedia.org/wiki/digital_camera Kun kamera on tarkennettu, linssistön ja himmentimen (yhdessä objektiivin) muodostama todellinen kuva ja ilmaisin osuvat samaan paikkaan kuva on terävä Positiivisen (kokoavan) linssin tuottama kuva etääntyy linssistä, kun kohde lähestyy linssiä linssin paikkaa on muutettava erietäisyyksisille kohteille (kamera on tarkennettava uudestaan) 4 (31)

Geometrinen optiikka (YF 34.5 8) Kamerat Kameran linssin polttoväli Polttovälin f valinta riippuu ilmaisimen koosta ja halutusta kuvakulmasta Ilmaisimen koko ei ole muutettavissa (esim. micro four thirds -CCD-ilmaisimen koko on 17.3 mm 13 mm ja kinofilmin koko on 36 mm 24 mm) Pitkän polttovälin linssillä (teleobjektiivi) kuvakulma on pieni, mutta linssi muodostaa suurikokoisen kuvan kaukaisesta kohteesta Lyhyen polttovälin linssillä (laajakulmaobjektiivi) on suuri kuvakulma, mutta kaukaisen kohteen kuva on pieni Esim: Perinteinen kinofilmi ja 50 mm:n ns. normaaliobjektiivi antaa vaaka- ja pystytasossa kuvakulmat 40 ja 27. (Oleta, että aukko on pieni, kohde äärettömän kaukana ja ilmaisin/filmi objektiivin polttopisteessä. Esitä kuvakulma sopivan arkustangentin avulla.) 5 (31)

Geometrinen optiikka (YF 34.5 8) Kamerat Aukkoluku Jotta kuva tallentuisi ilmaisimelle oikein, ilmaisimelle pitää päästä sopiva määrä valoenergiaa pinta-alayksikköä kohden (= valotus) Valotusta säädellään sulkimella ja objektiivin himmentimellä (jonka aukon halkaisija olkoon D) Suljin määrää, kuinka kauan ilmaisimelle päästetään valoa Ilmaisimelle tuleva valointensiteetti on verrannollinen linssin kuvakulmaan ( 1/f 2 ) ja aukon teholliseen pinta-alaan ( D 2 ) Tietyn linssin jälkeiselle ilmaisimelle saapuu intensiteetti D 2 /f 2 (= linssin nopeus tai valovoima) Objektiivin valovoimaa ilmaisee f-luku eli aukkoluku f # = f /D f-lukua vastaavaa aukkoa merkitään f / f-luku Aukot muodostavat (vakiintuneen) jonon f /1.4, f /2, f /2.8, f /4, f /5.6, f /8,... Jokainen askel oikealle jonossa = kerroin 1/2 kuvakennolle tulevan valon intensiteetissä 1 sama valotus (energia) vaatii kaksinkertaisen valotusajan, esim. parit (f /4, 500 s), (f /5.6, 1 250 s) 1 ja (f /8, s) vastaavat toisiaan valotuksessa (entä muuten?) 125 6 (31)

Geometrinen optiikka (YF 34.5 8) Silmä Silmä Silmän keskeisimmät osat (vrt. kamera) ja niiden tehtävät ovat sarveiskalvo suurin osa taittovoimakkuudesta värikalvo (iiris) valon määrän säätäminen (himmennin) mykiö tarkentaminen (linssi) sädelihas mykiön polttovälin muuttaminen ( mukauttajalihas ) verkkokalvo kuva-ilmaisin (CCD-kenno) http://en.wikipedia.org/wiki/eye 7 (31)

Geometrinen optiikka (YF 34.5 8) Silmä Näkeminen Akkommodaatio = silmän mukautuminen (tarkentuminen) Lähipiste Kaukopiste Sädelihas kiinnittyy mykiöön ripustinsäikeillä Lähelle katsottaessa sädelihas supistuu ja ripustinsäikeet löystyvät, jolloin mykiö vetäytyy kokoon ja taittaa valoa voimakkaammin Kauas katsottaessa mukauttajalihas rentoutuu säikeet kiristyvät ja pakottavat mykiön litteäksi taittovoimakkuus vähenee Lyhin etäisyys, jolle silmä voi tarkentaa standardi-ihmisellä 25 cm (lukuetäisyys) Etääntyy iän mukana ( ikänäkö ) lukulasit Etäisyys, jonka rentoutunut silmä tarkentaa verkkokalvolle normaalisti ääretön Pitkäaikainen katselu on mukavinta, kun kohde on kaukopisteessä Likinäköisen kaukopiste < 8 (31)

Geometrinen optiikka (YF 34.5 8) Silmä Silmän taittovirheet Likinäköisyys Kaukana oleva kohde kuvautuu verkkokalvon eteen Korjataan negatiivisilla (hajottavilla) linsseillä Linssit muodostavat kaukaisesta kohteesta virtuaalisen kuvan likinäköisen silmän kaukopisteeseen Lähellä olevat kohteet nähdään silmän mukautuessa Kaukonäköisyys Lähellä oleva kohde kuvautuu verkkokalvon taakse Korjataan positiivisilla (kokoavilla) linsseillä Linssit siirtävät lähellä olevan kohteen virtuaalisen kuvan ko. silmän lähipisteeseen, johon silmä mukautuu katsomaan Kaukana oleva kohde näkyy, kun mukautumista vähennetään Hajataitteisuus Sarveiskalvon pinta ei ole pallomainen = kaarevuussäteet ovat erilaiset eri suunnissa Silmä esim. kuvaa vaakasuorat kohteet oikein verkkokalvolle mutta pystysuorat sen eteen Korjataan sylinterimäisillä linsseillä 9 (31)

Geometrinen optiikka (YF 34.5 8) Silmä Näkökyvyn korjaaminen Näkökyvyn korjaamiseen käytettävät linssit ilmaistaan yleensä niiden taittovoimakkuuden avulla Taittovoimakkuuden yksikkö on diopteri D = 1/f, missä polttoväli f ilmoitetaan metreissä Tällöin esim. 2.0 diopterin linssin polttoväli on 0.50 m ja 4.0 diopterin linssin f = 0.25 m Pysyvämpi näkökyvyn korjaus on sarveiskalvon leikkaaminen Esim. LASIK = laser-assisted in situ keratomileusis: toimenpide, jossa UV-laserilla poltetaan sarveiskalvon pinnasta pieniä alueita ja hiotaan sen kaarevuus sellaiseksi, ettei potilas tarvitse enää silmälaseja 10 (31)

Geometrinen optiikka (YF 34.5 8) Suurennuslasi Suurennuslasi Kuvan näennäisen koon määrää kuvan koko verkkokalvolla Ilman korjausta koko riippuu kohteen ääripäiden muodostamasta kulmasta θ = kulmakoko Jotta kohde näyttäisi suuremmalta, se tuodaan lähemmäksi silmää kulmakoon kasvattamiseksi arvoon θ Silmä ei kykene mukautumaan, jos kohde on lähempänä kuin lähipiste yläraja kulmakoolle Suurennuslasi muodostaa lähipistettä lähempänä olevasta kohteesta kuvan äärettömyyteen silmälle miellyttävintä Kohde asetettava suurennuslasin polttopisteeseen Kun kohde on kaukaisuudessa, lateraalisuurennus m on ääretön Mielekkäämpää on puhua kulmasuurennuksesta M = θ θ 11 (31)

Suurennuslasi Jatkoa d 0 y θ Silmä θ Silmä f Silmän lähipisteeseen d 0 25 cm asetettu kohde näkyy kulmassa θ Suurennuslasin polttopisteeseen asetetun kohteen kuva on äärettömyydessä ja näkyy kulmassa θ ; pienillä kulmilla saadaan θ y d 0, θ y f M = θ θ = d 0 f = d 0D Kuvausvirheiden takia yhdellä linssillä maksimikulmasuurennus 4

Geometrinen optiikka (YF 34.5 8) Optisia kojeita (yleissivistystä) Okulaari Itseopiskelua Okulaari on useasta linssistä koostuva suurennuslasi Suurennus 10... 20 Rakenteen takia kuvanlaatu on parempi kuin yhden linssin suurennuslasilla; M = d 0 D = 25 cm f Okulaari on osa linssijärjestelmää: viimeinen osa ennen silmää Katsoo edeltävän linssijärjestelmän muodostamaa kuvaa 13 (31)

Geometrinen optiikka (YF 34.5 8) Optisia kojeita (yleissivistystä) Mikroskooppi Itseopiskelua s 1 f 1 L f 2 (silmään) Objektiivi Okulaari Mikroskoopilla tarkastellaan pieniä lähikohteita Objektiivi muodostaa kohteesta kuvan, jota tarkastellaan okulaarilla Kuvan mittasuhteet eivät ole kovin hyviä: Kohde on lähellä objektiivin polttopistettä, s 1 f 1. Lisäksi L f 1 joten s 1 = f 1 + L L. 14 (31)

Geometrinen optiikka (YF 34.5 8) Optisia kojeita (yleissivistystä) Mikroskoopin suurennus Itseopiskelua Objektiivin lateraalisuurennus m 1 = s 1 s 1 L f 1 50, missä L on ns. putken pituus. (Useilla valmistajilla L = 160 mm.) Okulaarin kulmasuurennus M 2 = Mikroskoopin kokonais(kulma)suurennus M = m 1 M 2 250 mm f 2 10 (250 mm)l f 1 f 2 500, missä kaikki mitat annetaan millimetreinä. (Kuva on ylösalainen, mutta miinusmerkki on tapana unohtaa mikroskoopin suurennuksen yhteydessä.) 15 (31)

Teleskoopin toimintaperiaate Itseopiskelua d = f 1 + f 2 f 1 f 2 Teleskoopilla katsellaan kaukaisia kohteita Objektiivi muodostaa pienennetyn kuvan, jota tarkastellaan okulaarilla Kuva muodostuu objektiivin polttopisteeseen Teleskoopissa objektiivin ja okulaarin polttopisteet ovat samassa pisteessä d = f 1 + f 2 Kulmasuurennus M = f 1 f 2 Teleskoopissa polttoväli f 1 on pitkä, joten objektiivin halkaisija D pitää olla iso, jotta saadaan kohtuullisen hyvä aukkoluku f # = f 1 /D.

Interferenssi (YF 35)

Interferenssi (YF 35) Interferenssi ja koherentit lähteet Interferenssi kahdessa tai kolmessa dimensiossa Interferenssi viittaa tilanteeseen, jossa avaruudessa on useita aaltoja päällekkäin tilanteen tarkastelu on fysikaalista optiikkaa Superpositioperiaatteen mukaisesti aaltojen poikkeamat (displacement: amplitudi tai kenttävektori) voidaan laskea yhteen joka pisteessä joka hetki (mahdollista lineaarisessa väliaineessa) Interferenssi-ilmiöt erottuvat parhaiten yhdistämällä yksitaajuisia (monokromaattisia) sininmuotoisia aaltoja (tarkastellaan kahta skalaarista lähdettä S 1 ja S 2 ): A = A 1 cos(k 1 r 1 ω 1 t + δ 1 ) + A 2 cos(k 2 r 2 ω 2 t + δ 2 ) b c S 1 S 2 a 18 (31)

Interferenssi (YF 35) Interferenssi ja koherentit lähteet Koherentit lähteet Jos kahden yksitaajuisen sininmuotoisen lähteen taajuus on sama ja vaihe-ero on vakio (ω 1 = ω 2, δ 2 δ 1 = vakio) lähteet ovat koherentteja ( vaihe?) tällaisen lähdeparin synnyttämät aallot ovat koherentteja Ääni- ja radiotekniikassa koherentteja lähteitä on helppo toteuttaa Valo muodostuu atomien (lämpöliikkeestä johtuvien) viritysten purkautumisesta Purkautumisen kesto tyypillisesti 10 8 s Purkaukset ovat riippumattomia toisistaan epäkoherentti ja ei-monokromaattinen valo; aurinko ja lamput lähettävät purskeista valoa (ilmassa purske on muutaman mikrometrin pituinen [= koherenssipituus]) Laserissa viritysten purkautumiset riippuvat toisistaan koherentti (eli väistämättä monokromaattinen) valo (kun yksittäiset atomit ovat lähteitä, joiden valon koherenttisuutta verrataan) 19 (31)

Interferenssi ja matkaero Sininmuotoiset samanamplitudiset (!) lähteet b c r 1 = 4λ r 2 = 2λ S 1 S 2 a Vahvistava interferenssi, kun aallot ovat samanvaiheiset (esim. a, b): k 2 r 2 ω 2 t + δ 2 = k 1 r 1 ω 1 t + δ 1 + 2πm, m = 0, ±1, ±2,... Sammuttava interferenssi, kun aallot ovat vastakkaisvaiheiset ( ) (esim. c): k 2 r 2 ω 2 t + δ 2 = k 1 r 1 ω 1 t + δ 1 + 2π m + 1 2, m = 0, ±1, ±2,...

Interferenssi (YF 35) Interferenssi ja koherentit lähteet Interferenssiehdot Oletus: lähteet ovat identtisiä eli amplitudit ovat samat miksi? lähteiden taajuus ω on sama aaltojen aallonpituus λ = 2π/k on sama lähteiden alkuvaihe δ on sama (eli lähteet ovat samanvaiheiset) aaltojen polarisaatio on samansuuntainen (jottei tarvita vektorisummausta) Lähteet ovat siis koherentit Edellisen kalvon interferenssiehdot saavat muodon: r 2 r 1 = mλ, m = 0, ±1, ±2,... vahvistava eli konstruktiivinen i. ( r 2 r 1 = m + 1 ) λ, m = 0, ±1, ±2,... sammuttava eli destruktiivinen i. 2 Huomaa rajoitukset, joilla ehdot pätevät! 21 (31)

Interferenssi (YF 35) Kahden lähteen interferenssi Youngin kaksoisrakokoe (1800) Valaistaan rakoa S 0 yksivärisellä valolla Raosta lähtevät (alkeis)aallot osuvat rakoihin S 1 ja S 2 S 1 ja S 2 ovat koherentteja valonlähteitä interferenssikuvio (interferenssijuovia) varjostimella S 0 S 1 S 2 22 (31)

Interferenssi (YF 35) Kahden lähteen interferenssi Kaksoisraon interferenssiehdot Lähettimet samassa vaiheessa Aaltojen matkaero vaihe-ero d sin θ R r 2 r 1 d sin θ, kun r 1, r 2, R d Vahvistava interferenssi, kun d θ r 2 θ y d sin θ = mλ, m = 0, ±1, ±2,... Sammuttava interferenssi, kun d sin θ = ( m + 1 ) λ, m = 0, ±1, ±2,... 2 r 1 P 23 (31)

Interferenssi (YF 35) Kahden lähteen interferenssi Kaksoisraon interferenssiehdot Jatkoa Maksimikohtien sijainnit varjostimella: y m = R tan θ m Pienillä kulmilla tan θ sin θ, joten saadaan Youngin kaksoisrakokokeen interferenssimaksimien paikat: d θ d sin θ R r 2 θ y y m R sin θ m y m R mλ d r 1 P 24 (31)

Interferenssi (YF 35) Interferenssikuvioiden intensiteetti Kahden lähteen interferenssin intensiteetti Lähteiden S 1 ja S 2 interferenssin amplitudi pisteessä P: E 1 = E cos(ωt + φ/2), E 2 = E cos(ωt φ/2) E(t) = E 1 + E 2, missä φ = aaltojen vaihe-ero P:ssä Kosinin summakaavan avulla (kaavakokoelma!) saadaan [ E(t) = E cos(ωt) cos(φ/2) sin(ωt) sin(φ/2) ] + cos(ωt) cos( φ/2) sin(ωt) sin( φ/2) = 2E cos(ωt) cos(φ/2) joten kahden lähteen summakentän amplitudi E P = 2E cos(φ/2) Intensiteetti I = S av = 1 2 ɛ 0cE 2 P = 4 2 ɛ 0cE 2 cos 2 (φ/2) Maksimi, kun φ = 0 on I 0 = 2ɛ 0 ce 2, ja yleensä I = I 0 cos 2 φ 2 25 (31)

Interferenssi (YF 35) Interferenssikuvioiden intensiteetti Vaihe-eron ja matkaeron yhteys Aaltojen vaihe- ja matkaerolla on yhteys φ 2π = r 2 r 1 λ φ = 2π λ (r 2 r 1 ) = k(r 2 r 1 ) Jos d R, r 2 r 1 d sin θ Tällöin intensiteetti I = I 0 cos 2 φ 2 = I 0 cos 2 ( πd λ φ = 2πd λ ) sin θ sin θ Jos vielä varjostin on kaukana raoista, y R ja sin θ y/r ( ) πyd I = I 0 cos 2 λr y/r = tanθ 0.5 0-0.5 Kaksoisrakointerferenssi, d = 10λ 0.2 0.4 0.6 0.8 1 I/I 0 26 (31)

Interferenssi (YF 35) Interferenssi ohutkalvoissa Interferenssi ohutkalvossa Heijastuskerroin Tutkitaan heijastusta ja interferenssiä, kun valo osuu ohueen kalvoon (esim. öljyläikkä veden pinnalla tai saippuakupla) [miksei paksu kalvo?] 1 2 e n a Kalvon paksuus t n b g n c Fresnelin kertoimet (vrt. luentoviikko 10) kertovat, kuinka suuri osa tulevasta (i) kentästä heijastuu (r) ja läpäisee (t) rajapinnan Kohtisuoralle heijastukselle heijastuskerroin Γ = E r = n i n t E i n i + n t (n i on tulopuolen taitekerroin ja n t läpäisypuolen) 27 (31)

Interferenssi (YF 35) Interferenssi ohutkalvoissa Interferenssi ohutkalvossa Vaihesiirto 1 2 e n a Kalvon paksuus t n b g n c Heijastuskertoimesta seuraa π:n vaihesiirto heijastuneen ja tulevan säteen välille, jos n t > n i ; esim. säde 1: n b > n a E r = n a n b n a + n E i cos(kx ωt) = Γ E i cos(kx ωt + π) b (tapahtuuko säteelle 2 pisteessä (g) vaihesiirtoa?) 28 (31)

Interferenssi (YF 35) Interferenssi ohutkalvoissa Interferenssi ohutkalvossa Matkaero 1 2 e n a Kalvon paksuus t n b g n c Heijastuksessa pisteessä (e) säteelle 1 syntyy vaihesiirto φ 1 = π ja levyn sisällä säteen 2 vaihe muuttuu kulmalla φ 2, joten säteiden 1 ja 2 vaihe-ero δ kohtisuorassa heijastuksessa on δ = φ 2 φ 1 = 2π λ (r 2 r 1 ) π, kun λ on aallonpituus levyssä Matkaero r 2 r 1 2t δ = 2t 2π λ π Huomaa: Vaihesiirto syntyy siinä heijastuksessa, jossa n t > n i 29 (31)

Interferenssi (YF 35) Interferenssi ohutkalvoissa Interferenssi ohutkalvossa Interferenssiehdot Säteiden 1 ja 2 välillä on vahvistava interferenssi, kun (n = n b, n a = n c = 1; λ 0 on aallonpituus ilmassa) δ = 2πm δ = 2t 2πn π = 2πm 4nt 1 = 2m 2t = λ 0 λ 0 n λ 0 ( m + 1 2 ), m = 0, 1, 2,... Sammuttava interferenssi, kun δ = (2m 1)π: 2t = mλ 0, m = 1, 2,... n Huomaa, että nämä tulokset pätevät ainoastaan systeemille, jossa on suhteellinen puolen aallon vaihesiirto (esim. ilma lasi ilma) muille tapauksille ne pitää johtaa erikseen Laskuissa on oltava tarkkana, syntyykö jossain suhteellinen puolen aallon vaihesiirto 30 (31)

Interferenssi (YF 35) Michelsonin interferometri Michelsonin interferometri Tärkeä interferenssin sovellus Kun peiliä siirretään matka y, ilmaisimen yli pyyhkäisee interferenssijuovamäärä m ja voidaan laskea y tai säteen aallonpituus λ: y = m λ 2 tai λ = 2y m Tuleva valo Säteenjakaja Liikuteltava peili Kiinteä peili Ilmaisin Interferenssijuovista voidaan myös määrittää esim. tuntemattoman kaasun taitekerroin 31 (31)