1 Sovelluksia. Sovelluksia 1



Samankaltaiset tiedostot
Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia

Black ja Scholes ilman Gaussia

= X s + IE[X t X s ] = 0, s ja sitä, että ehdollinen odotusarvo on tavallinen odotusarvo silloin, kun satunnaismuuttuja

Black-Scholes-optiohinnoittelumalli

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

) + T (r + ) + T (r. ) Ke rt Φ( log( s σ2. (1.1) sφ( log( s σ2 2 E. VALKEILA 2 )

ln S(k) = ln S(0) + w(i) E[ln S(k)] = ln S(0) + vk V ar[ln S(k)] = kσ 2

Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely)

Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH

V ar(m n ) = V ar(x i ).

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Black Scholes-hinnoittelumallin robustisuus ja tyylitellyt tosiseikat

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

T Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Satunnaismuuttujien muunnokset ja niiden jakaumat

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Sovellettu todennäköisyyslaskenta B

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

BS-kaava ja lama. Lama Johdannaiset ja BS-kaava. Matematiikka finanssikriisin syyllisenä. Tommi Sottinen

Rahoitusriskit ja johdannaiset Matti Estola. luento 8 Optioiden hinnoittelusta

Ito-prosessit. Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma. S ysteemianalyysin. Laboratorio

Matematiikan tukikurssi

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.

ABHELSINKI UNIVERSITY OF TECHNOLOGY

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

4. laskuharjoituskierros, vko 7, ratkaisut

Moniulotteisia todennäköisyysjakaumia

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

9. Tila-avaruusmallit

Projektin arvon määritys

Valintahetket ja pysäytetyt martingaalit

Sovellettu todennäköisyyslaskenta B

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

Aloitamme yksinkertaisella leluesimerkillä. Tarkastelemme yhtä osaketta S. Oletamme että tänään, hetkellä t = 0, osakkeen hinta on S 0 = 100=C.

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa

Sovellettu todennäköisyyslaskenta B

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

3. laskuharjoituskierros, vko 6, ratkaisut

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

Finanssisitoumusten suojaamisesta

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Sovellettu todennäköisyyslaskenta B

Diskreettiaikainen dynaaminen optimointi

Korkomarkkinoiden mallintaminen arbitraasiteorian pohjalta

Sovellettu todennäköisyyslaskenta B

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

D ( ) E( ) E( ) 2.917

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Rahoitusriskit ja johdannaiset Luentokurssi kevät 2011 Lehtori Matti Estola

T Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi

Esimerkki: Tietoliikennekytkin

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan

Matematiikan tukikurssi

klo Selvitä vakuutustekniseen vastuuvelkaan liittyvät riskit ja niiltä suojautuminen.

STOKASTISET DIFFERENTIAALIYHTÄLÖT 115

Esteet, hyppyprosessit ja dynaaminen ohjelmointi

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Mat Investointiteoria Laskuharjoitus 3/2008, Ratkaisut

Malliratkaisut Demo 1

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Kohdassa on käytetty eksponentiaalijakauman kertymäfunktiota (P(t > T τ ) = 1 P(t T τ ). λe λτ e λ(t τ) e 3λT dτ.

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista

OPTIOT Vipua ja suojausta - mutta mitä se maksaa? Remburssi Investment Group

Sovellettu todennäköisyyslaskenta B

MS-C2111 Stokastiset prosessit

4. Martingaalit ja lokaalit martingaalit

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x)

Johdatus tn-laskentaan torstai

Jatkuvat satunnaismuuttujat

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Yleistä tietoa kokeesta

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

6. laskuharjoitusten vastaukset (viikot 10 11)

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Transkriptio:

Sovelluksia 1 1 Sovelluksia 1.1 Tausta ja tärkeimpiä määritelmiä Kalvo 1 Aloitetaan tutustumaan luennolla tarkasteltaviin prosesseihin. Tarkempia selityksiä, esimerkiksi Brownin liikkestä, löytyy kertauksesta, jota suositellaan vahvasti opiskeltavaksi ennen kurssia, ja johdannosta. Lisäksi myös kirjallisuudesta kannattaa asiat katsoa ja selvittää itselleen. Luennon johdannon pohjana on ollut John C. Hullin teos Options, Futures and Other Derivatives. Luennon ymmärtämiseksi on kertausluennoista ymmärrettävä hyvin ainakin seuraavat käsitteet ja ominaisuudet: Ehdollinen odotusarvo σ-algebra, filtraatio Kalvo 2 Martingaalit Lisäksi ymmärtämisessä auttaa, jos muutkin asiat ovat jo tuttuja. Tällä luennolla keskeisiä käsitteitä ovat: Stokastinen prosessi on joukko satunnaismuuttujia, jotka saavat erilaisia arvoja ajan muuttuessa jatkuvia diskreettejä Markov prosessi on stokastinen prosessi, jossa ainoastaan nykyinen arvo on relevantti ennustettaessa tulevaisuuden arvoa. Osakkeiden hintaprosessia pidetään usein stokastisena prosessina. Esimerkisi, jos Nokian osakkeen hinta olisi tänään 10 euroa ja haluttaisiin tietään, mitä se on viikon päästä. Ajateltaessa prosessin olevan Markov -prosessi hintaan ei vaikuta hinta eilen tai hinta viikko sitten vain ainoastaan hinta tänään. Näin

Sovelluksia 2 Kalvo 3 ajateltaessa osakkeen hinnan jakauma, millä tahansa tulevaisuuden hetkellä, ei ole riippuvainen siitä polusta, jota hinta on seurannut menneisyydessä. Vain tarkasteluhetki on tärkeä. Standardi Brownin liike on useilla eri tieteen aloilla käytetty Markov prosessi, jolla odotusarvo on 0 ja varianssi t, prosessi on jatkuva, ei missään differentioituva ja prosessin lisäyksille W ti W ti 1 pätee E(W ti W ti 1 ) = 0 V ar ( ) W ti W ti 1 = ti t i 1 keskihajonta = V ar ( ) W ti W ti 1 = ti t i 1 Yleistetty Brownin liike voidaan määritellä dx = adt + bdw t, missä W t on Brownin liike. Merkitään usein myös W (t). Termi adt antaa muutokselle suunnan, nyt x kasvaa/vähenee a aikayksikköä kohti. Muuttujaa a kutsutaan kasvukertoimeksi Ensimmäisestä termistä saadaan Kalvo 4 ja integroimalla dx = adt dx dt = a x = x 0 + at ajanjaksolla [0, T ] x kasvaa arvoon x 0 + at Toinen termi bdw t on kohina termi, satunnaisuutta kuvaava termi, missä kohinan määrä on b kertaa Brownin liikkeen muutos. Pienellä aikavälillä δt := t i 1 t i (merkitään pientä väliä nyt δ) muutos δx on δx = aδt + b δtɛ, (1.1)

Sovelluksia 3 Kalvo 5 missä ɛ noudattaa standardinormaalijakaumaa ɛ N(0, 1). Tällöin saadaan odotusarvo ja varianssi seuraavasti E(δx) = aδt V ar(δx) = b 2 δt. Kalvo 6 KUVA YLEISTETYSTÄ BM:stä

Sovelluksia 4 Kalvo 7 Esimerkki Tarkastellaan tilannetta, jossa yrityksen varallisuus (k e) noudattaa yleistettyä Brownin liike prosessia kasvukertoimella 20 ja varianssilla 900 vuotta kohti. Alkuhetkellä varallisuus on 50 ja vuoden jälkeen varallisuuden odotusarvo on 70 ja hajonta 900 eli 30. Kuuden kuukauden jälkeen varallisuuden odotusarvo on 60 ja hajonta 30 0, 5 = 21.21. Edellä kuvatunlaisia prosesseja voidaan kutsua myös Ito prosesseiksi. Tällöin yleistetyn Brownin liikkeen kertoimet a ja b ovat funktioita, eli dx = a(x, t)dt + b(x, t)dw t. Pienellä aikavälillä [t, δt] muuttuu prosessi arvosta x arvoon x + δx, missä δx = a(x, t)dt + b(x, t) ɛ. Muutoksen δx arviointi vaatii samanlaista päättelyä, kuin kaavassa (1.1), lisäksi oletetaan, että kasvukerroin ja varianssi pysyvät vakioina, samoina kuin a(x, t) ja b(x, t), ajan muuttuessa hetkestä t hetkeen t + δt. Kalvo 8 1.2 Osakkeiden hintojen käyttäytymisen mallintaminen 1.2.1 Osakkeen hintaprosessi Osakkeen hintaprosessin voidaan olettaa noudattavan yleistettyä Brownin liikettä, jossa kasvukerroin (usein kutsutaan driftiksi) ja varianssi ovat vakioita. Oletetaan aluksi, että S on osakkeen hinta hetkellä t ja µs on osakkeen kasvunopeus. Toisin sanoen pienellä välillä δt hinnanmuutos on µsδt.

Sovelluksia 5 Kalvo 9 Osakkeen hinnan keskihajontaa aikayksikköä kohti kutsutaan osakkeen hinnan volatiliteetiksi. Se on tulevaisuuden hinnan muutosten epävarmuuden mitta. Volatiliteetin arvioimiseen käytetään apuna mm. aikasarja-analyysiä. Jos osakkeen hinnan volatiliteetti on nolla, niin tälloin epävarmuutta ei ole (vakiokorkoiset määräaikaistalletukset yms.) ja malli typistyy muotoon δs = µsδt ja välin pienetessä, kun δt 0 ds = µsdt tai ds S = µdt. Integroimalla nollasta arvoon T saakka saadaan S T = S 0 e µt, missä S 0 ja S T ovat osakkeen hintoja hetkillä nolla ja T. Toisin sanoen kun volatiliteetti on nolla, niin osakkeen hinta kasvaa kasvukertoimen mukaisesti. Kalvo 10 Käytännössä osakkeen hinnoissa on epävarmuutta eli niissä ilmenee volatiliteettiä. Tässä mallissa oletetaan, että hinnat seuraavat kasvukerrointa (odotusarvoa), mutta vaihtelevat sen ympärillä satunnaisesti normaalijakauman mukaisesti. Se, että epävarmuutta kuvataan normaalijakaumalla perustuu keskeiseen raja-arvolauseeseen. Normaalijakaumaa noudattavan satunnaisuuden ottamiseksi mukaan malliin lisäämme yhtälöön uuden termin ds = µsdt + σsdw t,

Sovelluksia 6 Kalvo 11 eli ds S = µdt + σdw t. Edelliset yhtälöt ovat käytetyimpiä osakkeen hinnan kehitysta kuvaavia malleja. Mallissa σ on osakkeen hinnan volatiliteetti ja µ on kasvukerroin. Esimerkki 1.1. Tarkastellaan osaketta ilman osto yms. kuluja, vuotuinen volatiliteetti on 30% vuotuinen korko on 15% (jatkuva) eli σ = 0.3 ja µ = 0.15. Prosessi on ds S = 0.15dt + 0.3dW t. Jos S on osakkeen hinta tietyllä hetkellä ja δt on hinnan kasvu Kalvo 12 seuraavalla pienellä aikavälillä, niin missä ɛ N(0, 1). δs S = 0.15δt + 0.30 δtɛ, Tarkastellaan viikkoa (0.0192 vuotta) ja oletetaan, että osakkeen hinta alussa on 100 e. Tällöin δt = 0.0192, S = 100e ja δs = 100 (0.00288 + 0.0416) e = 0.288e + 4.16e, josta nähdään, että hinnankasvu viikossa on satunnaismuuttuja, joka noudattaa normaalijakaumaa odotusarvolla 0,288 e ja keskihajonnalla 4.17 e. Osakkeen hinnankehityksen malli tunnetaan geometrisenä Brownin liikkeenä. Kertausluennoissa ko. malli johdettiin osakkeen

Sovelluksia 7 hintakehtyksen binomimallista. Mallin diskreettiaikainen versio on eli δs S = µδt + σ δtɛ (1.2) Kalvo 13 δs = µsδt + σs δtɛ. (1.3) Muuttuja δs kuvaa muutosta pienellä aikavälillä δt, ɛ N(0, 1), µ on osakkeen hinnan kasvukerroin aikayksikköä kohti ja σ on osakkeen hinnan volatiliteetti. Kaavassa 1.2 vasen puoli kuvaa osakkeen tuottoa ajan suhteen, ilman osakkeen hinnan vaikutusta, termi µδt on tuoton odotusarvo ja σs δtɛ on tuoton stokastinen komponentti. Toisin sanoen yhtälöstä 1.2 nähdään, että δs S on normaalijakautunut odotusarvolla µδt ja hajonnalla σ δt eli δs S N(µδt, σ δt). Kalvo 14 1.2.2 Monte Carlo simulaatio Stokastisten prosessien Monte Carlo simulaatio on keino laskea otoksen tuloksia. Kurssilla myöhemmissä luennoissa tullaan tutustumaan enemmän myös Monte Carlo simuloinnin ideaan. Esimerkki 1.2. Oletetaan, että vuotuinen kasvukerroin tai odotusarvo on 14% ja volatiliteetti 20 %. Eli µ = 0.14 ja σ = 0.2. Tarkastellaan tilannetta, jossa δt = 0.1 eli tarkastelu tehdään 0.05 vuoden välein (18.25 päivää). Kaavasta (1.3) saadaan δs = 1.14 0.05S + 0.2 0.05Sɛ. Osakkeen hinnan polku saadaan standardinormaalijakauman avulla ottamalla useita otoksia ɛ:lle. Seuraava taulukko selventää asiaa. Idea on se, että ensimmäisellä kierroksella tarkastellaan osakkeen hintaa ja

Sovelluksia 8 Kalvo 15 lasketaan seuraavan hetken hinta ensimmäisen hinnan ja normaalijakaumasta saatavan otoksen avulla. Näin saadaan toinen hinta. Kolmatta hintaa laskettaessa käytetään apuna toista hintaa ja normaalijakaumasta saatavaa otosta jne. Tutustu itsenäisesti ideaan ja erilaisiin polkuihin Matlabin m-tiedoston MCS.m avulla. Kalvo 16 Taulukko ja kuva

Sovelluksia 9 1.3 Koonta Tarkastellaan nyt vielä hieman käsiteltyjen asioiden ideoita, että niistä jää selkeä mielikuva Kalvo 17 Stokastinen prosessi kuvaa satunnaisten ilmiöiden muuttumista ajan kuluessa. Simuloimalla voidaan tarkastella yhtä prosessin polun mahdollisuutta. Markov prosessi on tärkeä ja kiinnostava prosessi, jonka tulevaisuuden arvoon ei vaikuta menneisyys vaan ainoastaan nykyhetki. Brownin liike kuvaa normaalijakautuneiden satunnaismuuttujien käytöstä. Jos Brownin liike lähtee liikkeelle ajan hetkellä nolla paikasta x, niin prosessin odotusarvo ja varianssi ajanhetkellä T ovat x ja T. Kalvo 18 Yleistetty Brownin liike kuvaa kasvukertoimisten (driftillisten) normaalijakautuneitten satunnaismuuttujien käytöstä. Jos esimerkiksi kasvukerroin on vakio a ja varianssi aikayksikköä kohti vakio b 2, niin yleistetyn Brownin liikkeen, joka lähtee liikkeelle hetkellä 0 pisteestä x, odotusarvo ja varianssi hetkellä T ovat x + at ja b 2 T. Ito prosessi dt taas yleistää nämä edelliset. Se on prosessi, jolla kasvukerroin ja varianssi voivat olla itse muuttujan x ja ajan funktioita. Muuttujan x muutoksia hyvin pienillä aikaväleillä voidaan approksimoida normaalijakautuneiksi, mutta suurilla aika väleillä tämä ei ole mahdollista.

Sovelluksia 10 2 Black-Scholesin kaava Tämän kappaleen pohjana on osittain käytetty Paavo Salmisen ja Esko Valkeilan artikkelia, joka on julkaistu lehdessä Arkhimedes 3/99. Suosittelen artikkeliin tutustumista. Artikkeli löytyi ainakin 5.8.2004 internetistä osoitteesta Kalvo 19 http://elektra.helsinki.fi/se/a/0004-1920/1999/3/matemaat.pdf Luennossa asia johdatellaan diskreetin mallin avulla ja paljon olennaista asiaa on jätetty pois. Siksi suosittelen tutustumaan tarkasti alan kirjallisuuteen. Asiaa on kuvattu luentoa tarkemmin mm. kirjassa J.Michael Steele, Stochastic Calculus and Financial Applications, Springer 2000, kappaleessa 14. Tarkastellaan Black-Scholesin markkinamallia ja heidän luomaansa kaavaa. 2.1 Ongelma 2.1.1 Eurooppalainen osto-optio A haluaa osakkeen ja hänellä on K euroa vasta 30 päivän kuluttua. Kalvo 20 B lupaa myydä A:lle osakkeen 30 päivän kuluttua hintaan K euroa, korvausta vastaan. Eli A ostaa option B:ltä. Jos osakkeen hinta ko. päivänä < K, A ostaa pörssistä. > K, A:lle (S 30 K) euron etu Toisin sanoen option myyjä B lupaa maksaa A:lle rahasumman, jonka suuruus riippuu osakkeen hintavaihtelusta. Esimerkki 2.1. Ω = {ω 1, ω 2 } Todennäköisyysmitta

Sovelluksia 11 P : P (Ω) [0, 1] P (ω 1 ) = 0.8 P (ω 2 ) = 0.2 Osakkeen hinta on stokastinen prosessi Kalvo 21 S 0 = 100 125, jos ω 1 tapahtuu S 1 = 90, jos ω 2 tapahtuu Eurooppalaisen osakkeen S osto-optio X : Lunastusaika T = 1 Lunastushinta K = 105 A:lla oikeus lunastaa osake S hetkellä t = T = 1 hintaan K = 105. Option omistaminen on stokastista tuloa hetkellä T = 1 ja sen arvo on X = max {0, S 1 105} Mikä on option oikea hinta hetkellä t = 1? Kalvo 22 Odotusarvo hetkellä t = 1 0.8 (125 105) + 0.2 (0) = 0.8 20 = 16. Oletetaan, että korko on 10% ja diskontataan nykyhetkeen, niin 1 16 = 14.5 1.1 Saadaan yksi mahdollisuus hinnalle 14.5.

Sovelluksia 12 2.2 Ratkaisusta Kehittivät Fisher Black ja Myron Scholes 1973 Robert Merton laajensi ratkaisun myös amerikkalaisile optioille. Kalvo 23 Scholes ja Merton (Black kuoli v. 1995) saivat taloustieteen Nobelin palkinnon vuonna 1997. 2.3 Malli Kahdenlaisia sijoituksia: Oblikaatiot, riskitön tuotto korkoprosentin mukaan, B t Osake, riskillinen tuotto/tappio, S t Oletetaan nyt, että osakkeen hintaprosessi on edellä käsitellyn mallin mukainen ds t = µs t dt + σs t dw t, S 0 = s, (2.1) Kalvo 24 missä W on Brownin liike, σ > 0 on volatilitetti (keskihajonta ajan suhteen) ja µ on osakkeen tuottavuus, kasvukerroin. Differentiaaliyhtälö on mahdollista ratkaista, jolloin saadaan S t = se (µ 1 2 σ2 )t+σw t, W 0 = 0. Oblikaation hinta saadaan differentiaaliyhtälöstä db t = rb t dt, B 0 = b, (2.2) missä r > 0 on korkokerroin.

Sovelluksia 13 2.3.1 Strategia Määritellään, että Y T on myyjän lupaama rahasumma hetkellä t = T. Hintakehitys määrää Y T :n arvon. β t oblikaatioiden määrä Kalvo 25 γ t osakkeiden määrä. Se kuinka paljon osakkeita ja oblikaatioita myyjän kannattaa pitää vaikuttaa myyjällä olevaan varallisuuteen. Stokastista prosessia π t = (β t, γ t ), t 0, joka kertoo näiden lukumäärät eri ajan hetkillä, kutsutaan strategiaksi. Varallisuus saadaan strategiasta V π t = β t B t + γ t S t. Oletetaan, että varallisuus voidaan kirjoittaa integraalimuotoon Kalvo 26 V π t = v + t 0 β s db s + t 0 γ s ds s, missä V π 0 = v. Jos näin voidaan tehdä, niin strategia on omavarainen. Lisäksi oletetaan, että omavarainen strategia on alhaalta rajoitettu. Näillä oletuksilla strategia on sallittu. 2.4 Diskreetti markkinamalli t = 1, 2,.... r = oblikaation korkokerroin ja B t+1 = (1 + r) B t, t = 0, 1, 2,...

Sovelluksia 14 Osakkeen hinta nousee tai laskee: S t+1 = (1 + a) S t tai S t+1 = (1 + y) S t, t = 0, 1, 2,... (2.3) missä a < 0 < r < y. Ko. teoria pätee vain, kun hinnalla on mahdollisuus saada vain kaksi arvoa. Kalvo 27 Y T on rahasumma, jonka option myyjä lupaa maksaa, kun t = T, merkitään Y T = f (S T ). Myyjä tekee suojausstrategian π = {(β i, γ i ) : i = 1, 2,... T }, s.e. varallisuus on sama kuin myyjän lupaama hinta V π T = β T B T + γ T S T, = Y T (2.4) = f (S T ). Kalvo 28 Suojauksen rakentaminen t = T 1, tiedetään S T 1, hinnan kaksi mahdollista arvoa hetkellä T sekä korkokerroin r. Yhtälöstä (2.5) saadaan yhtälöryhmä β T B T + γ T S T 1 (1 + a) = f (S T 1 (1 + a)). β T B T + γ T S T 1 (1 + y) = f (S T 1 (1 + y)) Ja varallisuus V π T 1 = β T B T 1 + γ T S T 1. (2.5) t = T 2 tiedetään S T 2, korkokerroin r sekä osakkeen hinnan kaksi arvoa hetkellä T 1. Option myyjän varallisuus hetkellä T 1 pitäisi olla V π T 1. voidaan rarkaista β T 1 ja γ T 1. Rekursiota jatkamalla saadaan selville V0 π, joka on tasapuolinen option hinta.

Sovelluksia 15 V π 0 : laskeminen Oletetaan P(hinta nousee) = q ja P(hinta laskee) = 1 q. Hinnanlasku tai -nousu ei riipu osakkeen aikaisemmasta historiasta. Olkoon Q todennäköisyysmitta, jolle Yhtälö (2.5) voidaan kirjoittaa q = r a y a. Kalvo 29 VT π 1 = (1 r) 1 E Q (f (S T ) S T 1 ), (2.6) Riippumattomuusoletuksen perusteella voidaan S T 1 n paikalle laittaa koko historia E Q (f (S T ) S T 1 ) = E Q ( f (S T ) FT S ) 1 missä Ft S on osakkeen hinnan generoima σ-algebra, eli osakkeen hinnan koko historia hetkeen t saakka. Induktiolla saadaan V π t = (1 r) (T t) E Q ( f (S T ) F S t ), ja strategialle pätee, että että diskontattu varallisuusprosessi on martingaali mitan Q suhteen. Optiosopimuksen tasapuolinen hinta V π 0 saadaan V π 0 = (1 r) T E Q (f (S T )). (2.7) Kalvo 30 2.5 Black-Scholesin kaava eurooppalaiselle osto-optiolle Jatkuva kaava saadaan diskreetistä mallista, kaava (2.7). Kaava (2.7) kirjoitetaan binomitodennäköisyyden avulla ja binomijakauma suppenee kohti normaalijakaumaa, jolloin saadaan option oikea hinta V π 0 = e rt E Q (f(s T )).

Sovelluksia 16 Eurooppalaisen option arvoksi saadaan tällöin V π 0 = e rt E (max {S T K, 0}) (2.8) ( { }) = e rt E max se (r 1 2 σ2 )T +σw T K, 0, (2.9) Kalvo 31 missä W T N(0, T ) ja T on varianssi. Ratkaisu voidaa ilmaista käyttäen normaalijakauman kertymäfunktiota Φ. Laskuissa korko ja volatiliteetti pitäisi tuntea. Reilu hinta saadaan laskettua muotoon missä ja V π 0 = sφ (α + ) Ke rt Φ (α ), α ± = 1 σ T (log sk ) ) (r + ± σ2 T 2 Φ (z) = 1 2π z e u2 2 du. Kalvo 32 Termeistä: B&S:n kaavassa käytetään kreikkalaisia kirjamia kuvaamaan osittaisderivaattoja funktion muuttujien suhteen. Niillä kuvataan option arvon herkkyyttä (muutosta) parametrin arvon muutoksen suhteen. Esimerkiksi: = Φ(α + ) = (f(s T )) S T kuvaa option arvon herkkyyttä osakkeen hinnan muutoksien suhteen. Γ = Φ (α + ) S T σ = 2 (f(s T )) taas kuvaa option arvon kaarevuutta T ST 2 osakkeen hinnan suhteen eli deltan herkkyyttä osakkeen hinnan muutoksien suhteen. Θ on option hinnan aikaderivaatta ja se kuvaa option hinnan herkkyttä ajan suhteen.

Sovelluksia 17 Esimerkki 2.2. Osakkeen hinta 80e Kalvo 33 Volatiliteetti 0.40 Aika T=4 kk Toteutushinta 85e Mikä on option reilu hinta, jos korko on 8%? Kalvo 34 Lasketaan aluksi α + ja α α + = 1 (ln σ sk (r T + + σ2 2 ( 1 = ln 80 0.4 85 + 1 3 ) ) T (0.08 + 0.402 2 = 0.031 α = 1 (ln σ sk (r T + σ2 2 = 1 0.40 1 3 = 0.2625 ( ln 80 85 + ) ) T (0.08 0.42 2 ) ) 1 3 ) ) 1 3

Sovelluksia 18 Sijoitetaan saadut tulokset kaavaan v = sφ (α + ) Ke rt Φ (α ) Kalvo 35 = 80Φ ( 0.031) 85e 0.08( 1 3) Φ ( 0.2625) = 80 0.487 85 e 0.08 1 3 0.397 = 6.18 Arvot funktiolle Φ saa taulukosta tai laskemalla koneella. Kalvo 36 2.6 Muita stokastisiin prosesseihin perustuvia malleja Edellä käytettiin malleja, jotka pohjautuvat Brownin liikkeeseen. Useissa tilanteissa ei Markov prosessi ole kuitenkaan riittävä kuvaamaan malleja, koska Markov prosesseissa ei tulevaisuus perustu, yhtä hetkeä lukuunottamatta, menneisyyteen. Menneisyyttä tarvitsevista malleista voidaan ottaa esimerkkinä Gaussinen prosessi, Fraktionaalinen Brownin liike, jolla on mallinnettu tietoliikennepakettien kulkua verkossa. Kyseessä on Brownin liikkeen yleistys, jolla ei ole riippumattomia lisäyksiä, kuten Brownin liikkeellä, vaan lisäykset ovat ainoastaan stationaarisia. Molemmat prosessit ovat kuitenkin itse-similaarisia, joka tarkoittaa, että tarkennettaessa (zoomatessa) polkua tarkemmaksi näyttää prosessin polku koko ajan samanlaiselta. Fraktionaarisella Brownin

Sovelluksia 19 Kalvo 37 liikkeellä on kuitenkin paksuhäntäinen jakauma, jota Brownin liikkeellä ei ole. Eli fraktionaarisella Brownin liikkeellä voidaan mallintaa informaatiota, jossa ominaisuutena on pitkän aikavälin riippuvuus. Lisätietoa teleliikenteen mallintamisesta ja fraktionaarisesta Brownin liikkeestä voit aluksi vilkaista mm. Ilkka Norroksen artikkelista http://www.prosessori.fi/es99/pdf/fractal.pdf ja sen jälkeen etsiä itsenäisesti vaikka VTT:n verkkosivuilta. Kalvo 38 3 Lähdeluettelo Luentomateriaali pohjautuu pääosin seuraavaan kirjallisuuteen Hull J.C. Options, Futures and Other Derivatives, Fifth edition. Prentice Hall, New Jersey, 2003. Shreve, S. Lectures on Stochastic Calculus and Finance, http://www-2.cs.cmu.edu/ chal/shreve.html Klebaner, F. C, Introduction to Stochastic Calculus with application. Imperial College Press, London. 1998 Salminen P.,Valkeila E. Matemaattisen rahoitusteorian peruselementti: Black-Scholesin kaava. Arkhimedes 3/99. http://elektra.helsinki.fi/se/a/0004-1920/1999/3/matemaat.pdf Steele J.M., Stochastic Calculus and Financial Applications. Springer 2000.

Sovelluksia 20 Kalvo 39 Williams, D. Probability with Martingales. Cambridge University Press, The Pitt Building, Trumpington Street Cambridge CB2 1RP. 1991 Öksendal,B. Stochastic Differential Equations. Springer-Verlag, 1998