Yleistä tietoa kokeesta
|
|
- Emma Laakso
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Yleistä tietoa kokeesta Kurssikoe on pe klo (jossakin auditorioista). Huomaa tasatunti! Seuraava erilliskoe on ke 1.11 klo 16-20, johon ilmoittaudutaan Oodissa (ilmoittautumisaika erilliskokeeseen päättyy tänä sunnuntaina klo 23:59) Uusien ohjeitten mukaan korvaava kurssikoe järjestettäisiin juuri tuon erilliskokeen kanssa samaan aikaan, eli tuo erilliskoe korvaa korvaavan kurssikokeen Kurssikokeessa sallitut apuvälineet ovat 1) laskin sekä 2) lunttilappu. (MAOLtaulukoita ei sallita.) Lunttilapun pitää olla itse laadittu ja käsinkirijoitettu (eli ei tietokoneella tulostettu), eikä sillä ole muita rajoituksia kuin sen koko: yksi A4- kokoinen arkki (molemmat puolet saa käyttää). TN-laskennan erilliskokeessa (korvaa nyt siis korvaavan) saa käyttää laskinta (tässäkin on tullut uusia ohjeita ja näistä on luvattu tarkempia tietoja tänään). Korvaavassa kokeessa sallitut apuvälineet ovat samat kuin erilliskokeessa (ja samoin säädöksin kuin erilliskokeista) johtuen käytännön rajoitteista. Erilliskokeen tehtäväpaperin ohessa on kuitenkin minun (Petteri) laatima käsinkirjoitettu luntti. Tämän laitan ensi viikolla kurssisivulle nähtäväksi. Tämä hieman tasaa tilannetta. Koealue: 1. monisteen luvut 1-5. (kalvot ja/tai moniste) 2. Harjoitukset Kertaustehtäviäkin kannattaa laskea, sillä ne sisältävät vanhoja kurssikoekysymyksiäkin (kysymys T2/2011 (kertaustehtävä 21), T2/2015 (lähes) (kertaustehtävä 5, ainoa ero kysymykseen T2/2015:ssä Y ~ U(0,1)), T3/2015 (kertaustehtävä 23) ja T4/2015 (kertaustehtävä 24). Niiden ratkaisuehdotuksiin kannattaa myös perehtyä, mutta huom. kaikki ratkaisutavat käyvät. Ei ole yhtä malliratkaisua.
2 Kokeitten arvostelusta Arvostelusta: käytän arvionnissa perusperiaatetta "palkitse onnistumisista, älä rankaise virheistä". Tämä tarkoittaa käytännössä, että 1. vaikka tehtävän ns. lopputulos olisi näennäisesti varsin "etäällä" optimisuorituksen lopputuloksesta, voi pisteitä tulla silti paljon. 2. Vastaavasti vaikka lopputulos olisikin oikea, niin onnistumisia voi olla vähänkin (esim. laskin antaa suoraan vastauksen). 3. Eli: kerro aina mitä olet tekemässä tai mitä mielestäsi tulisi tehdä :-) tämä kannattaa vaikka tehtävää et osaisikaan loppuun asti. Arvostelusta: tämä tosin hidastaa arvostelua ja arvostelen kaikki kokeet, joten aikaa menee muutama viikko arvosteluun. Laitan Presemoon väliaikatietoja, kuinka pitkällä tarkastus on milloinkin (prosentteina).
3 Kokeessa ei kysytä seuraavia asioita: Jakson 2.9 loppu (alaotsikosta Täydentäviä huomautuksia lähtien): kf:n yleistetty käänteisfunktio; jakauman kvantiilin määrittely yleisessä tapauksessa. Siihen kohtaan asti jakso 2.9 sisältö on kurssin keskeistä sisältöä. Lause 2.13 jaksossa Jakso 4.8 (karakteristinen funktio). Jakson 4.7 kalvojen log-normaaliesimerkki (ja yleensäkin täydentävät huomautukset) Jakso 5.1.4: negatiivisen binomijakauman ominaisuuksien selvittäminen binomisarjan avulla Jakso 5.2: beetafunktion esittäminen gammafunktion avulla. mittaintegraaliin liittyviä keskusteluja Lauseitten todistuksia eikä muutenkaan todistustehtäviä. Tässä tosin on syytä huomata, että esimerkiksi binomijakauman odotusarvon johtaminen odotusarvon lineaarisuuden avulla ei ole mielestäni todistamista. Todistustehtävä alkaisi Osoita, että... tai Todista, että... kun taas johtamistehtävätyypit joita voi hyvinkin tulla ovat muotoa: Johda..., Määrää..., Laske... tai Esitä...
4 Muuta lisätietoa kokeeseen valmistautumisesssa: Opettele seuraavat jakaumat niin, että osaat kirjoittaa niiden ptnf:n tai tf:n ja osaat johtaa sujuvasti niiden ominaisuuksia (kuten odotusarvon ja varianssin). Bernoullin jakauma ja binomijakauma. geometrinen jakauma Poissonin jakauma välin (a,b) tasajakauma eksponenttijakauma normaalijakauma Myös muita jakaumia saattaa tehtävissä esiintyä, mutta silloin ne karakterisoidaan tehtävänannossa Jakaumille käytetään materiaalissa merkintöjä (esimerkiksi X ~ U(a,b)), joten varmista että tunnistat jakaumat näiden merkintöjen avulla Kannattaa kerrata harjoitustehtäviä ja kysyä esimerkiksi Presemossa, jos jokin kohta tehtävissä on jäänyt epäselväksi
5 Ydinasioita Varmista että tiedät tn:n peruslaskusäännöt ja ehdollisen tn:n käsitteen ja osaat laskea niihin liittyviä tehtäviä Varmista että tiedät ptnf:n, tf:n, kf:n ja kvantiilifunktion käsitteet. Varmista että tunnistat jatkuvan ja diskreetin jakauman kf:stä ja osaat laskea muunnoksien jakaumia (ptnf:iä, kf:iä ja tf:iä) Varmista että tiedät odotusarvon ominaisuuksia (lause 4.3), osaat laskea niiden avulla ja osaat laskea (ainakin periaatteessa) muunnoksen odotusarvon (TTL, lause 4.5) Varmista että tiedät riippumattomuuden käsitteen ja osaat käyttää sitä apuna tulon odotusarvon laskemisessa Varmista että tiedät varianssin ja kovarianssin käsitteet sekä niiden ominaisuuksia ja osaat laskea niihin liittyviä tehtäviä Varmista että tiedät momenttien käsitteet ja tiedät momenttiemäfunktion määritelmän ja osaat laskea pari ensimmäistä momenttia momenttiemäfunktion avulla
6 Kokeen aikana Tee laskuissa järkevyystarkistuksia: onko laskemani tn p välillä 0 p 1? (Tiedämme, että tapahtuman todennäköisyys toteuttaa tuon aina) onko laskemani varianssi varmasti 0? (Varianssi on sm:n (X-EX)^2 odotusarvo, joten se on aina ei-negatiivinen) onko laskemani ei-negatiivisen satunnaismuuttujan odotusarvo varmasti 0? (edellisen kohdan yleistys :) onko laskemallani kertymäfunktiolla kertymäfunktion ominaisuudet? onko johtamani tiheysfunktio varmasti 0? Jos törmäät laskussa hankalaan kohtaan ja joudut aikapulaan, niin selosta koepaperissa, millä strategialla olet laskua laskemassa. Hyvästä strategiasta voi saada suuren osan jaossa olevista pisteistä. kysymyksiä voi (ja kannattaa tehdä) presemon kautta. Pidempiäkin vastauksia voin antaa (mitkä kirjoitan käsin (tai LaTeXilla), laitan kuvan Flingaan, tai laitan tiedoston sivulle ja kerron siitä presemossa)
Yleistä tietoa kokeesta
Yleistä tietoa kokeesta Kurssikoe on ma 18.12. klo 12.00-14.30 (jossakin auditorioista). Huomaa tasatunti! Seuraava erilliskoe on ke 10.1.2018 klo 10-14, johon ilmoittaudutaan Oodissa (ilmoittautumisaika
Yleistä tietoa kokeesta
Yleistä tietoa kokeesta Kurssikoe järjestetään maanantai 7.5. klo 12-15 jossakin Exactumin auditorioista. Korvaava kurssikoe keskiviikkona (yleisenä tenttipäivänä) 11.4. klo 16-19 jossakin Exactumin auditorioista.
Kertausluento. Tilastollinen päättely II - 2. kurssikoe
Kertausluento Tilastollinen päättely II - 2. kurssikoe Yleistä tietoa TP II -2. kurssikokeesta 2. kurssikoe maanantaina 6.5.2019 klo 12.00-14.30 jossakin Exactumin auditoriossa Kurssikokeeseen ilmoittaudutaan
Kertausluento. Tilastollinen päättely II - 1. kurssikoe
Kertausluento Tilastollinen päättely II - 1. kurssikoe Yleistä tietoa TP II -1. kurssikokeesta 1. Kurssikoe on to 7.3 klo 12.00-14.30 (jossakin Exactumin auditorioista, salijako selvinnee tuolloin torstiana).
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
x 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto
Matemaattinen tilastotiede Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Alkusanat Tämä moniste perustuu vuosina 2002-2004 pitämiini matemaattisen tilastotieteen luentoihin
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä
1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden
2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
TN-IIa (MAT22001), syksy 2017
TN-IIa (MAT22001), syksy 2017 Petteri Piiroinen 4.9.2017 Todennäköisyyslaskennan IIa -kurssin asema opetuksessa Tilastotieteen pääaineopiskelijoille pakollinen aineopintojen kurssi. Suositus: toisen vuoden
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä
Tilastomatematiikka Kevät 2008
Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/19 4.3 Varianssi Satunnaismuuttuja on neliöintegroituva, jos odotusarvo
30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko
ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen
2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet
Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04
Harjoitus 4 Tehtävä 1
Harjoitus 4 Tehtävä 1 19:39» Hei olen jumissa 1a) tehtävässä. Yritin näyttää että kovarianssi on nolla siten että E(Z m(x))(m(x) h(x)) E(Z m(x))(e(m(x) h(x)) = 0. Laskuista tuli aika raskaita enkä heti
TN-IIa (MAT22001), syksy 2018
TN-IIa (MAT22001), syksy 2018 Petteri Piiroinen 4.9.2018 Todennäköisyyslaskennan IIa -kurssin asema opetuksessa Tilastotieteen opintosuunnassa pakollinen aineopintojen kurssi. Suositus: toisen vuoden syksyllä
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien
Satunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,
Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on
Sallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu ja MAOL taulukkokirjaa
Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II. kurssikoe 18.1.15 Sallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu ja MAOL taulukkokirjaa
5 Tärkeitä yksiulotteisia jakaumia
5 Tärkeitä yksiulotteisia jakaumia Jakaumista löytyy lisätietoja ja kuvaajia Wikipediasta. Kirjallisuudessa käytetään useille näistä jakaumista monia erilaisia parametrointeja. Kussakin lähteessä käytetty
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat
Matemaattisten tieteiden kandiohjelma / MTL Todennäköisyyslaskenta IIb Kurssikoe (kesto 2h 30 min)
Matemaattisten tieteiden kandiohjelma / MTL Todennäköisyyslaskenta IIb Kurssikoe 8..7 (kesto h 3 min) Sallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu. Ei
Johdatus tn-laskentaan torstai 16.2.2012
Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset 1. Olkoon X satunnaismuuttuja, ja olkoot a R \ {0}, b R ja Y = ax + b. (a) Olkoon X diskreetti ja f sen pistetodennäköisyysfunktio.
Tilastollinen päättely II (MAT22003), kevät 2019
Tilastollinen päättely II (MAT22003), kevät 2019 Petteri Piiroinen 13.1.2019 Tilastollinen päättely II -kurssin asema opetuksessa Tilastotieteen pääaineopiskelijoille pakollinen aineopintojen kurssi. Pakollinen
Todennäköisyyslaskenta. β versio. Todennäköisyyslaskenta. Ilkka Mellin. Teknillinen korkeakoulu, Matematiikan laboratorio. Ilkka Mellin (2006) I
β versio Todennäköisyyslaskenta Ilkka Mellin Teknillinen korkeakoulu, Matematiikan laboratorio TKK @ Ilkka Mellin (2006) I TKK @ Ilkka Mellin (2006) II Esipuhe Tämä moniste antaa perustiedot todennäköisyyslaskennasta.
k S P[ X µ kσ] 1 k 2.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 28 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
Tilastollinen päättely II, kevät 2017 Harjoitus 1A
Tilastollinen päättely II, kevät 207 Harjoitus A Heikki Korpela 23. tammikuuta 207 Tehtävä. Kertausta todennäköisyyslaskennasta. Ilmoita satunnaismuuttujan Y jakauman nimi ja pistetodennäköisyys- tai tiheysfunktio
Tilastollinen päättely II (MAT22003), kevät 2018
Tilastollinen päättely II (MAT22003), kevät 2018 Petteri Piiroinen 14.1.2018 Tilastollinen päättely II -kurssin asema opetuksessa Tilastotieteen pääaineopiskelijoille pakollinen aineopintojen kurssi. Pakollinen
4. laskuharjoituskierros, vko 7, ratkaisut
4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.
Nämä ovat siis minimivaatimukset, enemmänkin saa ja suositellaan
Mitä pitäisi vähintään osata Tässäkäydään läpi asiat jotka olisi hyvä osata Nämä ovat siis minimivaatimukset, enemmänkin saa ja suositellaan osattavan 333 Kurssin sisältö Todennäköisyyden, satunnaismuuttujien
Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia
Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin
Todennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi
Matematiikan peruskurssi 2
Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat
(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.
Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.
Todennäköisyyslaskenta
Todennäköisyyslaskenta Ilkka Mellin 1. korjattu painos Ilkka Mellin I Ilkka Mellin II Esipuhe Tämä moniste pyrkii antamaan perustiedot todennäköisyyslaskennasta. Monisteen ensisijaisena tavoitteena on
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-2.090 Sovellettu todennäköisyyslasku A Harjoitus 4 (vko 41/2003) (Aihe: diskreettejä satunnaismuuttujia ja jakaumia, Laininen luvut 4.1 4.7) 1. Kone tekee
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
MAY1 Luvut ja lukujonot, opintokortti
MAY1 Luvut ja lukujonot, opintokortti Nimi: Minimivaatimukset kurssin suorittamiseksi: Vihkoon on laskettu laadukkaasti vähintään 50 tehtävää. Opiskelija palauttaa viimeistään kokeeseen o Opintokortin
Tilastollinen päättömyys, kevät 2017 Harjoitus 6B
Tilastollinen päättömyys, kevät 7 Harjoitus 6B Heikki Korpela 8. helmikuuta 7 Tehtävä. Monisteen teht. 6... Olkoot Y,..., Y 5 Nµ, σ, ja merkitään S 5 i Y i Y /4. Näytä, että S/σ on saranasuure eli sen
Epäyhtälöt ovat yksi matemaatikon voimakkaimmista
6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida
Odotusarvo. Odotusarvon ominaisuuksia Satunnaismuuttujien ominaisuuksia 61
3.3. Satunnaismuuttujien ominaisuuksia 61 Odotusarvo Määritelmä 3.5 (Odotusarvo) Olkoon X diskreetti satunnaismuuttuja, jonka arvojoukko on S ja todennäköisyysfunktio f X (x). Silloin X:n odotusarvo on
TN IIa yleistä keskustelua
TN IIa yleistä keskustelua 10:29» Hei. Aloitin uuden keskustelun tälle vuodelle ja uudelle kurssille. Tervetuloa! 05:20» Nää laskariryhmät siis pidetään myös nyt ekalla viikolla? 11:14» 05:20: tällä viikolla
o Ohjeet annetaan kurssin aikana. MAY1 Luvut ja lukujonot, Opintokortti
MAY1 Luvut ja lukujonot, Opintokortti Nimi: Minimivaatimukset kurssin suorittamiseksi: Vihkoon on laskettu laadukkaasti vähintään 50 tehtävää. Opiskelija palauttaa viimeistään kokeeseen o Opintokortin
Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:
8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)
Kopulafunktiot. Joonas Ollila 12. lokakuuta 2011
Kopulafunktiot Joonas Ollila 12. lokakuuta 2011 Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään. Kopula-sanan alkuperä Kopula tarkoittaa
MAA8 Juuri- ja logaritmifunktiot, Opintokortti
MAA8 Juuri- ja logaritmifunktiot, Opintokortti Nimi: Minimivaatimukset kurssin suorittamiseksi: Vihkoon on laskettu laadukkaasti vähintään 50 tehtävää. Opiskelija palauttaa viimeistään kokeeseen o Opintokortin
1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 017 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I 1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X
4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
D ( ) E( ) E( ) 2.917
Mat-2.091 Sovellettu todennäköisyyslasku 4. harjoitukset/ratkaisut Aiheet: Diskreetit jakaumat Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen jakauma, Kertymäfunktio,
Todennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syyslokakuu 019 / Hytönen. laskuharjoitus, ratkaisuehdotukset 1. Kurssilla on 0 opiskelijaa, näiden joukossa Jutta, Jyrki, Ilkka ja Alex. Opettaja aikoo valita umpimähkään opiskelijan
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä
Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto
Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
MAB2 Geometria, Opintokortti. Nimi:
MAB2 Geometria, Opintokortti Nimi: Minimivaatimukset kurssin suorittamiseksi: Vihkoon on laskettu laadukkaasti vähintään 50 tehtävää Opiskelija palauttaa viimeistään kokeeseen o Opintokortin täytettynä
Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia TKK (c) Ilkka Mellin (2005) 1 Diskreettejä jakaumia Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen jakauma Negatiivinen
Jatkuvat satunnaismuuttujat
Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään
Todennäköisyysjakaumia
8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma
3.6 Su-estimaattorien asymptotiikka
3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä
TKK @ Ilkka Mellin (2008) 1/5
Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,
Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi
TOD.NÄK JA TILASTOT, MAA0 Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi Kuten tilastojakaumia voitiin esittää tunnuslukujen (keskiarvo, moodi, mediaani, jne.) avulla, niin vastaavasti
OPETUSSUUNNITELMALOMAKE
OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa
HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I
HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Tehtävä 1 on klassikko. 1. Tässä tehtävässä tapahtumat A ja B eivät välttämättä
LASKINTEN JA TAULUKOIDEN TARKISTUS
LASKINTEN JA TAULUKOIDEN TARKISTUS Yo-kokeessa käytettävät laskimet ja taulukkokirjat on tuotava aikuislukion kansliaan tarkistettavaksi viimeistään yo-koetta edeltävänä päivänä kello 18 mennessä. Jos
TN IIa ja TN IIb yleistä keskustelua
TN IIa ja TN IIb yleistä keskustelua 10:03» Hei. Aloitin uuden keskustelun tälle vuodelle ja uudelle kurssille. Tervetuloa! 06:43» Hei, onko kurssin materiaali vielä saatavilla? Ymmärsinkö oikein että
Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien
OPETUSSUUNNITELMALOMAKE
OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida
MAA5 Vektori, Opintokortti
MAA5 Vektori, Opintokortti Nimi: Minimivaatimukset kurssin suorittamiseksi: Vihkoon on laskettu laadukkaasti vähintään 50 tehtävää. Opiskelija palauttaa viimeistään kokeeseen o Opintokortin täytettynä
Päähaku, matemaattisten tieteiden kandiohjelma Valintakoe klo
Päähaku, matemaattisten tieteiden kandiohjelma Valintakoe 8.5.2019 klo 10.00 13.00 Kirjoita henkilö- ja yhteystietosi tekstaamalla. Kirjoita nimesi latinalaisilla kirjaimilla (abcd...), älä esimerkiksi
031021P Tilastomatematiikka (5 op) viikko 3
031021P Tilastomatematiikka (5 op) viikko 3 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan
Johdatus tn-laskentaan perjantai 17.2.2012
Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;
(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?
6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.
4. Todennäköisyyslaskennan kertausta
luento04.ppt S-38.1145 - Liikenneteorian perusteet - Kevät 2006 1 Sisältö eruskäsitteet Diskreetit satunnaismuuttujat Diskreetit jakaumat lkm-jakaumat Jatkuvat satunnaismuuttujat Jatkuvat jakaumat aikajakaumat
Martingaalit ja informaatioprosessit
4A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on tutustua satunnaisvektorin informaation suhteen lasketun ehdollisen odotusarvon käsitteeseen sekä oppia tunnistamaan, milloin annettu
3. laskuharjoituskierros, vko 6, ratkaisut
Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa
Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma
Diskreetit todennäköisyysjakaumat Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Satunnaismuuttuja Satunnaisilmiö on ilmiö, jonka lopputulokseen sattuma vaikuttaa Satunnaismuuttuja on muuttuja,
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,
LASKINTEN JA TAULUKOIDEN TARKISTUS
LASKINTEN JA TAULUKOIDEN TARKISTUS Yo-kokeessa käytettävät laskimet ja taulukkokirjat on tuotava aikuislukion kansliaan tarkistettavaksi viimeistään yo-koetta edeltävänä päivänä kello 18 mennessä. Jos
Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Satunnaisluvut, satunnaisvektorit ja niiden jakaumat
1A Satunnaisluvut, satunnaisvektorit ja niiden jakaumat Ensimmäisen harjoituksen tavoitteena on kerrata todennäköisyyden peruskäsitteitä, jotka ovat välttämättömiä stokastisten prosessien käsittelyssä.
Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1
Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
Opiskelijanumero Yleisarvio Työläys Hyödyllisyys 12345A K K B U 3 3 3
Luku 6 Datajoukkojen jakaumat, tunnusluvut ja kuvaajat Lasse Leskelä Aalto-yliopisto. lokakuuta 207 6. Datajoukko ja datakehikko Tässä monisteessa datajoukko tarkoittaa järjestettyä listaa keskenään samantyyppisiä
8.1 Ehdolliset jakaumat
8 Ehdollinen jakauma Tämän kappaleen tärkeitä käsitteitä: Ehdollinen jakauma; ehdollinen ptnf/tf. Kertolaskusääntö eli ketjusääntö yhteisjakauman esittämiseksi. Ehdollinen odotusarvo ja ehdollinen varianssi.
Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:
4. Tyhjentyvyys Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: Voidaanko päätelmät perustaa johonkin tunnuslukuun t = t(y) koko aineiston y sijasta? Mitä