1 PROSENTTILASKENTAA 7
|
|
- Otto Korhonen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö 20 Prosenttilaskut ja tietokone 22 2 KORKOLASKENTAA Korkolaskennan perusteet 34 Peruskäsitteet 34 Korko 35 Korkoaika 35 Koron laskeminen 37 Pääoman, korkokannan ja korkoajan laskeminen 38 Kasvanut pääoma 42 Ajan vaikutus rahasuoritukseen 44 Laskun maksuehto 44 Korkohyvitys 45 Korkolaskut ja Excel Korkolaskennan sovelluksia 51 Pankkitilit 51 Pankkilainat 55 Lainan nostaminen 55 Korko ja lyhennys 56 Tasaerälaina 58 Lainalaskelmat ja Excel 61 3 MATEMAATTISIA VÄLINEITÄ TALOUSELÄMÄN ONGELMIIN Algebran perusteita 67 Tuntematon, muuttuja ja lauseke 67 Lausekkeiden arvojen laskeminen Excelillä 70 Lausekkeen käsittely 72 Nimityksiä 72 Laskusääntöjä Yhtälöitä 77 Yhtälö 77 Epäyhtälö 78 Yhtälöpari 80 Toisen asteen yhtälö 84
2 3.3 Lineaarisia funktioita 89 Funktio 89 Kustannukset ja tuotto 92 Funktiot ja Excel 94 Kysyntä ja tarjonta 97 Kysyntä 97 Tarjonta 99 Tasapainohinta GEOMETRISIA SOVELLUKSIA Mittaaminen 104 Mitat 104 Pituusmitat 104 Pintamitat 105 Kuutiomitat 105 Painomitat 106 Vetomitat 106 Yhdenmuotoisuus ja mittakaava Kuvioiden pinta-aloja 112 Neliö 112 Suorakulmio 112 Kolmio 113 Suunnikas 115 Puolisuunnikas 115 Ympyrä 116 Säännöllinen monikulmio Kappaleiden tilavuuksia ja pinta-aloja 122 Kuutio 122 Suorakulmainen särmiö 122 Suora särmiö 123 Pyramidi 123 Suora ympyräpohjainen lieriö 124 Suora ympyräpohjainen kartio 124 Pallo TILASTOT Perusteita 131 Tilasto 131 Tilastojen hyödyntäminen 132 Valmiit tilastot 132 Peruskäsitteitä 135 Perusjoukko ja otos 135 Tilastoyksikkö ja muuttuja 135 Aineiston kerääminen 138 Otannan suorittaminen 138 Kerättävän tiedon laatu 139 Tietojen kirjaaminen tietokoneella 140
3 5.2 Tilastojen esittäminen 142 Taulukointi 142 Luokittelu 144 Kaksiulotteinen taulukko 145 Havaintomatriisin käsittely Excelillä 147 Lajittelu 147 Taulukointi 147 Graafinen esittäminen 154 Kuviotyypit 155 Pylväskaaviot 157 Ympyräkaavio 161 Murtoviivaesitykset 162 Hajontakuvio 165 Kuvaajien piirtäminen Excelillä Tunnuslukuja 173 Sijaintiluvut 173 Keskiarvo 173 Mediaani 175 Prosenttipisteet 176 Tyyppiarvo eli moodi 178 Tunnuslukujen laskeminen Excelillä 179 Hajontaluvut 184 Vaihteluväli 184 Kvartiiliväli 185 Keskihajonta PERUSTEIDEN KERTAUSTA Peruslaskutoimituksia 190 Lukujen pyöristäminen 190 Laskemisjärjestys 193 Murtoluvut 197 Negatiiviset luvut Yhtälö 209 Ensimmäisen asteen yhtälö Algebran perusteita 217 Potenssit 217 Juuret VASTAUKSIA 227
4 MUUTOSTEN LASKEMINEN Lisäys ja vähennys Kun perusarvoon lisätään perusarvosta prosentteina laskettu luku, saadaan lisätty arvo. Kun perusarvosta vähennetään prosentteina ilmoitettu vähennys, saadaan vähennetty arvo. Lisätty arvo saadaan laskemalla ensin lisäys ja lisäämällä se sitten alkuperäiseen arvoon. Tätä tapaa kätevämpi keino on lisäyskertoimen käyttö. Vastaavasti vähennetyn arvon laskeminen voidaan tehdä sujuvimmin vähennyskertoimella. Esim Alkuperäinen hinta on 380 ˆ. Hintaa korotetaan 15 %. Lasketaan korotettu hinta. Alkuperäinen hinta 380 ˆ. Korotus 15 % 380 ˆ:sta on 0, ˆ = 57 ˆ Korotettu hinta eli lisätty arvo on 380 ˆ + 57 ˆ = 437 ˆ. Korotettu hinta voidaan laskea kätevämmin seuraavasti: 380 ˆ + 0, ˆ = (1 + 0,15) 380 ˆ = 1, ˆ = 437 ˆ Kertomalla luvulla 1,15 lasketaan 115 % alkuperäisestä arvosta. Toisin sanoen perusarvo on 100 % ja lisäys on 15 %, joten lisätty arvo on 115 % p Kerroin 1,15 eli yleisesti 100 helpointa laskea päässälaskuna. on lisäyskerroin. Lisäyskerroin on Esim Alkuperäinen hinta on 156 ˆ. Hinnasta annetaan 25 %:n alennus. Lasketaan alennettu hinta. Alkuperäinen hinta on 156 ˆ. Alennus 25 % 156 ˆ:sta on 0, ˆ = 39 ˆ. Alennettu hinta eli vähennetty arvo on 156 ˆ 39 ˆ = 117 ˆ. Alennettu hinta saadaan myös seuraavasti:
5 Edellä olevissa esimerkeissä esiintyi vain yksi tuntematon ja yksi muuttuja. Tuntemattomia tai muuttujia voi olla myös useita. Käytettävät kirjaimet voi yleensä valita vapaasti. Usein käytettyjä kirjaimia ovat x ja y sekä a ja b. Asiayhteyden mukaan käytetään usein vakiintuneita merkintöjä kuten hinnasta kirjainta p tai ajasta kirjainta t. Esim. 3.3 Tarjoilijan palkka oli 7,40 ˆ tunnilta. Lisäksi hän sai provisiota 2 % myynnin määrästä. Muodostetaan viikon kokonaispalkkaa kuvaava lauseke. Nyt muuttujia on kaksi: tehdyt työtunnit ja myynti. Merkitään työtunteja viikossa = a viikon myynti euroina = b. Viikon palkkaa kuvaava lauseke on a 7,40 + 0,02 b Työtuntien määrän ollessa 35 ja myynnin ˆ viikon palkka on 35 7,40 + 0, = 459,00 (ˆ) Alla on eri tunti- ja myyntimääriä vastaavia palkkoja laskettu taulukkoon. Tunnit Myynti ˆ ,2 411, ,4 433, ,2 431, ,4 453, ,2 451, ,4 473, ,2 471, ,4 493, ,2 491, ,4 513, ,2 511, ,4 533, ,2 531, ,4 553, ,2 551, ,4 573,8 596
6 TEHTÄVIÄ 2-44 Opintolainaa nostettaessa pankki perii toimitusmaksun, joka on 2 % lainan määrästä, kuitenkin vähintään 50 ˆ. Kuinka paljon lainaa nostettaessa saadaan, kun lainan määrä on a) ˆ b) ˆ c) ˆ? 2-45 Lainan nostokulut ovat järjestelymaksu 2 % ja toimitusmaksu 0,5 % lainan määrästä. Arvioi ja laske lainaa nostettaessa saatava rahamäärä, kun a) lainan määrä on ˆ b) lainan määrä on ˆ Laske seuraavien tekstiviestillä anottavien lainojen todelliset vuosikorot a) Monetti-pikalainan määrä on 80 ˆ ja takaisin maksettava summa 92 ˆ ja laina aika 14 päivää b) Tekstivippi-pikalainan määrä on 100 ˆ, takaisin maksettava summa 120 ˆ ja laina-aika 14 päivää c) Ferratum-pikalainan määrä on 200 ˆ, takaisin maksettava summa 250 ˆ ja laina-aika 30 päivää. (Todellisuudessa kuluihin tulee lisäksi 3,80 ˆ tekstiviestikuluja) 2-47 Opiskelija ottaa opintolainaa ˆ. Lainan korko on 5,8 %. Puolivuosittain ja maksetaan 1 %:n korko ja loppu korko lisätään pääomaan eli pääomitetaan. Laske a) maaliskuussa 2008 maksettavan ja pääomitettavan koron määrä b) syyskuussa 2008 maksettavan ja pääomitettavan koron määrä Opintolainan määrä on ˆ. Kuinka suureksi laina kasvaa kolmessa vuodessa, jos puolivuosittain pääomaan lisättävä korko on ensimmäisenä vuonna 5,7 % ja kahden viimeisen vuoden ajan 6,65 %? 2-49 Luoton määrä on ˆ ja se maksetaan takaisin yhdellä kertaa kahden vuoden kuluttua. Korko, joka on 3 kk:n euribor + 2,2 prosenttiyksikköä, maksetaan puolivuosittain. Korko tarkistetaan neljännesvuosittain. Laske ensimmäisen vuoden korkomenot, kun euribor on neljännesvuosittain 4,85 %, 4,79 %, 4,65 % ja 4,20 % Asuntolainan määrä on ˆ, korko 6 % ja laina-aika 10 vuotta. Laina maksetaan takaisin puolivuosittain 1.6. ja yhtä suurin lyhennyksin. Myös korko maksetaan puolivuosittain. Tee taulukko, josta ilmenevät kolmen ensimmäisen vuoden aikana kullakin maksukerralla maksettavat korko, lyhennys ja suoritus sekä jäännöslaina. 64 LIIKETALOUDEN MATEMATIIKKA 1
7 Joitakin tunnuslukuja voi laskettaa myös Pivot-taulukkoon. Sitä kannattaa käyttää etenkin silloin, kun lasketaan tunnuslukuja ryhmittäin. Esim Lasketaan Ratsastuskouluaineistosta ratsastuskoululle annettujen arvosanojen keskiarvot ryhmittäin sen mukaan onko vastaajalla oma hevonen, hoitohevonen vai ei kumpaakaan. Osoittimen ollessa havaintomatriisin jossakin solussa valitaan Tiedot Pivot-taulukko- ja -kaavioraportti... Viedään muuttuja Hevonen rivikenttään ja muuttuja Arvosana tietoosakenttään. Kentän asetuksista valitaan Keskiarvo.
1 PROSENTTILASKENTAA 7
SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö
Lisätiedot1 MATEMAATTISIA VÄLINEITÄ TALOUSELÄMÄN ONGELMIIN Algebran perusteita 8 Potenssit Juuret 15 Tuntematon ja muuttuja 20 Lausekkeen käsittely 24
SISÄLTÖ 1 MATEMAATTISIA VÄLINEITÄ TALOUSELÄMÄN ONGELMIIN 7 1.1 Algebran perusteita 8 Potenssit Juuret 15 Tuntematon ja muuttuja 20 Lausekkeen käsittely 24 1.2 Yhtälöitä 29 Epäyhtälö 30 Yhtälöpari 32 Toisen
Lisätiedot1 PERUSTEIDEN KERTAUSTA... 7
SISÄLTÖ 1 PERUSTEIDEN KERTAUSTA... 7 1.1 PERUSLASKUTOIMITUKSIA... 7 LUKUJEN PYÖRISTÄMINEN... 7 LASKEMISJÄRJESTYS... 10 MURTOLUVUT... 15 NEGATIIVISET LUVUT... 22 1.2 ALGEBRAN PERUSTEITA... 28 POTENSSIT...
LisätiedotMATEMATIIKAN JOHDANTOKURSSI ASSIn opiskelijoille soveltuvin osin
HAAGA-HELIA MATEMATIIKAN JOHDANTOKURSSI ASSIn opiskelijoille soveltuvin osin Katri Währn Kevät 2012 1 FUNKTIOLASKIMEN KÄYTTÖ Funktiolaskimeen on sisäänrakennettuna laskujärjestelmä eli se osaa laskea kerto-
LisätiedotKESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.
VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten
LisätiedotOppilas vahvistaa opittuja taitojaan, kiinnostuu oppimaan uutta ja saa tukea myönteisen minäkuvan kasvuun matematiikan oppijana.
Tavoitteet S L 3. lk 4. lk 5. lk 6. lk Merkitys, arvot ja asenteet T1 pitää yllä oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä tukea myönteistä minäkuvaa ja itseluottamusta L1, L3, L5
LisätiedotGeogebra -koulutus. Ohjelmistojen pedagoginen hyödyntäminen
Geogebra -koulutus Ohjelmistojen pedagoginen hyödyntäminen Geogebra Ilmainen dynaaminen matematiikkaohjelmisto osoitteessa http://www.geogebra.org Geogebra-sovellusversion voi asentaa tietokoneilla ja
LisätiedotMAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.
KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen
LisätiedotSuhteellisia osuuksia ilmaistaessa käytetään prosenttilukujen ohella myös murtolukuja.
PROSENTTILASKUT Prosenttilaskuun ja sen sovelluksiin, jotka ovat kerto- ja jakolaskun sovelluksia, perustuu suuri osa kaikesta laskennasta, jonka avulla talousyksikön toimintaa suunnitellaan ja seurataan.
LisätiedotMATEMATIIKKA VL LUOKKA. Laaja-alainen osaaminen. liittyvät sisältöalueet
MATEMATIIKKA VL.7-9 7.LUOKKA Opetuksen tavoitteet Tavoitteisiin liittyvät sisältöalueet Laaja-alainen osaaminen Merkitys, arvot ja asenteet T1 vahvistaa oppilaan motivaatiota, myönteistä minäkuvaa ja itseluottamusta
Lisätiedot7 Matematiikka. 3. luokka
7 Matematiikka Matematiikka on tapa hahmottaa ja jäsentää ympäröivää maailmaa. Lapsi löytää ja omaksuu leikin, toiminnan sekä keskustelujen avulla matemaattisia käsitteitä, termejä, symboleja ja periaatteita.
LisätiedotProsentti- ja korkolaskut 1
Prosentti- ja korkolaskut 1 Prosentti on sadasosa jostakin, kuten sentti eurosta ja senttimetri metristä. Yksi ruutu on 1 prosentti koko neliöstä, eli 1% Kuinka monta prosenttia on vihreitä ruutuja neliöstä?
LisätiedotTalousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa
Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran / m kertaa vuodessa / jatkuvasti Diskonttaus
LisätiedotTämä. Tili-ja kulutusluotot. -aineisto on tarkoitettu täydentämään. Liiketalouden matematiikka 2. kirjan sisältöä.
Tämä Tili-ja kulutusluotot -aineisto on tarkoitettu täydentämään Liiketalouden matematiikka 2 kirjan sisältöä. 1 Sisällysluettelo TILI- JA KULUTUSLUOTOT...3 Esim. 1... 4 Esim. 2... 6 Esim. 3... 7 Esim.
LisätiedotViimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC.
Kotitehtäviä 6. Aihepiiri Rahoitusmuodot Ratkaisuehdotuksia 1. Pankki lainaa 100000 bullet-luoton. Laina-aika on 4kk ja luoton (vuotuinen) korkokanta 8% Luoton korot maksetaan kuukausittain ja laskutapa
LisätiedotKorkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat
Korkolasku, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti i = p 100
LisätiedotYHTEENVETO LAINATARJOUKSISTA 17.6.2015
1 YHTEENVETO LAINATARJOUKSISTA 17.6.2015 Danske Bank Oyj Kuntarahoitus Oyj Rantasalmen Osuuspankki Lainan määrä 1.000.000 euroa 1.000.000 euroa 1.000.000 euroa Laina-aika 10 vuotta 15 vuotta 15 vuotta
LisätiedotTalousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen
Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran
LisätiedotPäättöarvioinnin kriteerit arvosanalle hyvä (8)
Tavoitteet Jokaisella oppilaalla on peruskoulun aikana mahdollisuus hankkia matemaattiset perustiedot ja -taidot, jotka antavat valmiuden luovaan matemaattiseen ajatteluun ja taitojen soveltamiseen eri
LisätiedotKuutio % Kappaleet kertaus
Kuutio % Kappaleet 1-6 + kertaus % 1 1. Prosentti 1 % = 1 100 = 0,01 Prosentti on sadasosa. 2 % = = 20 % = = Alleviivattu muoto on 200 % = = nimeltään prosenttikerroin Esimerkki 1. Kuinka monta prosenttia
LisätiedotKorkolasku ja diskonttaus, L6
Korkolasku ja diskonttaus, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti
LisätiedotVerkkokurssin tuotantoprosessi
Verkkokurssin tuotantoprosessi Tietotekniikan perusteet Excel-osion sisältökäsikirjoitus Heini Puuska Sisältö 1 Aiheen esittely... 3 2 Aiheeseen liittyvien käsitteiden esittely... 3 2.1 Lainapääoma...
Lisätiedot9 VEROTUS, TALLETUKSET JA LAINAT
9 VEROTUS, TALLETUKSET JA LAINAT ALOITA PERUSTEISTA 370A. Kunnallisveroprosentti oli 19,5, joten 31 200 tuloista oli maksettava kunnallisveroa 0,195 31 200 = 6084. Vastaus: 6084 euroa 371A. a) Hajuveden
Lisätiedot1 KAUPALLISIA SOVELLUKSIA 7. 1.1 Tulovero 8
SISÄLTÖ 1 KAUPALLISIA SOVELLUKSIA 7 1.1 Tulovero 8 1.2 Hintaan vaikuttavia tekijöitä 13 - Arvonlisävero 13 - Myyntipalkkio ja myyntikate 15 - Alennus ja hävikki 17 1.3 Indeksit 22 - Indeksin käsite 22
LisätiedotTalousmatematiikka (3 op)
Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu
LisätiedotMATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013
MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013 PROSENTTILASKENTA Prosentti on 1/100 tai 0,01. Esimerkki 40. Lukuarvo % 0,42 42 0,013 1,3 1,002 100,2 1/25 100/25=4 23/45 51,1
LisätiedotMatematiikka vuosiluokat 7 9
Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa
Lisätiedot1 lk Tavoitteet. 2 lk Tavoitteet
MATEMATIIKKA Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.
Lisätiedot1.1 Suhteisjako 8. Euro 14 Valuuttakurssit 15 Kurssimuutokset ja rahan arvo 18. Tulovero 21 Ansiotulon vero 21 Pääomatulon vero 23
SISÄLTÖ 1 KAUPALLISIA SOVELLUKSIA 7 1.1 Suhteisjako 8 1.2 Valuutat 14 Euro 14 Valuuttakurssit 15 Kurssimuutokset ja rahan arvo 18 1.3 Verotus 21 Tulovero 21 Ansiotulon vero 21 Pääomatulon vero 23 Varallisuusvero
LisätiedotTUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN. Katri Währn
TUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN Katri Währn 2013 JOHDANTO Myyntityön koulutusohjelman matematiikan valintakoe perustuu koulumatematiikkaan riippumatta siitä, onko hakijan
Lisätiedot(1) Desimaaliluvut ja lukujen pyöristäminen
(1) Desimaaliluvut ja lukujen pyöristäminen Luvun pyöristäminen Mikäli ensimmäinen pois jäävä numero on 5 tai suurempi, korotetaan sen vasemmalla puolella olevan numeron arvoa yhdellä. Luku 123, 3476 yhden
Lisätiedot(1) Katetuottolaskelma
(1) Katetuottolaskelma Katetuottolaskelmalla tarkastellaan yrityksen kannattavuutta myyntituotto - muuttuvat kustannukset (mukut) = katetuotto katetuotto - kiinteät kustannukset (kikut) = tulos (voitto
LisätiedotMATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen
MATEMATIIKKA Oppimäärän vaihtaminen Opiskelijan siirtyessä matematiikan pitkästä oppimäärästä lyhyempään hänen suorittamansa pitkän oppimäärän opinnot luetaan hyväksi lyhyemmässä oppimäärässä siinä määrin
LisätiedotMerkitys, arvot ja asenteet 7 Ei vaikuta arvosanan
Oppiaineen nimi: MATEMATIIKKA 7-9 Vuosiluokat Opetuksen tavoite Sisältöalueet Laaja-alainen osaaminen Arvioinnin kohteet oppiaineessa Hyvä/arvosanan kahdeksan osaaminen Merkitys, arvot ja asenteet 7 Ei
LisätiedotOPS OPPIMISTAVOITTEET JA OPETUKSEN KESKEISET SISÄLLÖT MATEMATIIKKA
OPS OPPIMISTAVOITTEET JA OPETUKSEN MATEMATIIKKA 2013 2014 MATEMATIIKKA Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä
LisätiedotMAS- linjan matematiikan kurssit
Muutokset Vantaankosken koulun Matemaattis-luonnontieteellisen linjan (MAS) opetussuunnitelmaan lukuvuonna 2012 2013 aloittavista 7. luokista alkaen Kurssisisällöt ja -ajoitus ovat muuttuneet matematiikan
Lisätiedotkymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla
7.6.1 MATEMATIIKKA VUOSILUOKAT 3 5 Vuosiluokkien 3 5 matematiikan opetuksen ydintehtävinä ovat matemaattisen ajattelun kehittäminen, matemaattisten ajattelumallien oppimisen pohjustaminen, lukukäsitteen
LisätiedotProsenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g?
PERUSPROSENTTILASKUT Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? Kuinka paljon 12 % on 350 grammasta? 350 g 12 % % g 12 x 100 350 12 x 100 350 100
Lisätiedotdiskonttaus ja summamerkintä, L6
diskonttaus ja summamerkintä, L6 1 Edellä aina laskettiin kasvanut pääoma alkupääoman ja koron perusteella. Seuraavaksi pohdimme käänteistä ongelmaa: Miten suuri tulee alkupääoman K 0 olla, jotta n jakson
LisätiedotOppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein:
9.8. MATEMATIIKKA Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: AK 1 = Ihmisenä kasvaminen AK 2 = Kulttuuri-identiteetti
LisätiedotMatematiikka. Vuosiluokkien 1 2 yhteiset tavoitteet
9.2.4. Matematiikka Koulumme matematiikan opetus antaa oppilaalle välineitä ja taitoja ratkaista arkipäivän ongelmia matemaattisen ajattelun avulla. Opetus tarjoaa oppilaalle välineen oppia tunnistamaan
Lisätiedot8 8 x = x. x x = 350 g
PERUSPROSENTTILASKUT Esimerkki. Kuinka paljon koko pitsa painaa? Mistä määrästä 8 % on 28 grammaa? 100 % 8 %? g 28 g % g 8 28 100 x 8 8 x = 100 28 100 28 x 100 28 8 x x = 350 g TEHTÄVIÄ 1. Laske. a) 5
LisätiedotHELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN
HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE - kykenee keskittymään matematiikan opiskeluun - kykenee kertomaan suullisesti matemaattisesta ajattelustaan
LisätiedotTavoite T2 kannustaa oppilasta ottamaan vastuuta matematiikan oppimisesta sekä yksin että yhdessä toimien
Tavoite 5 6 7 8 9 10 T2 kannustaa ottamaan vastuuta oppimisesta sekä yksin että yhdessä toimien on läsnä oppitunnilla. ottaa vastuuta omasta oppimisestaan. ottaa vastuuta omasta oppimisestaan ja kykenee
LisätiedotLUOKKA 1 LUOKKA 2 lukumäärä, lukusana ja numerosymboli. yhteydet luonnollisilla luvuilla luonnollisilla luvuilla
7.2.3. MATEMATIIKKA 88 TAVOITTEET: : oppii keskittymään, kuuntelemaan ja kommunikoimaan sekä kehittämään ajattelemistaan; ymmärtää lukukäsitteen ja oppii siihen soveltuvia peruslaskutaitoja; oppii perustelemaan
Lisätiedot2. a- ja b-kohdat selviä, kunhan kutakuinkin tarkka, niin a-kohta 1 p b-kohta 1 p
LYHYT MATEMATIIKKA PRELIMINÄÄRIKOE 2.2.2018 RATKAISUT 1. a) 3,50 b) 56 c) 43300 km d) 15 e) 21.08 f) 23.9. kukin oikea vastaus a-kohdassa pelkkä 3,50 ilman yksikköä kelpuutetaan, samoin c-kohdassa pelkkä
LisätiedotOn olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin.
Rahoitusmuodot HUOM. Tässä esitetään vain teoriaa ja joitakin esimerkkejä. Enemmän esimerkkejä ja laskuja löytyy ratkaistuina EXCEL-tiedostosta "Rahoitusmuodot - laskut ja esimerkit", joka on MOODLESSA
LisätiedotCopyright Isto Jokinen 2013 MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. Isto Jokinen 2013 SISÄLTÖ. Pinta-alojen laskeminen
Copyright Isto Jokinen 01 MTEMTIIKK Matematiikkaa pintakäsittelijöille POJ. Isto Jokinen 01 SISÄLTÖ Pinta-alojen laskeminen Tilavuuksien laskeminen Prosenttilaskut Käyttö opetuksessa tekijän luvalla 1
LisätiedotTalousmatematiikan perusteet: Luento 2. Sarjat Sovelluksia korkolaskentaan
Talousmatematiikan perusteet: Luento 2 Sarjat Sovelluksia korkolaskentaan Viime luennolla Lukujono on päättyvä tai päättymätön jono reaalilukuja a 1, a 2,, a n, joita sanotaan jonon termeiksi. Erikoistapauksia
LisätiedotOppilas oppii Luvut ja laskutoimitukset Geometria Mittaaminen ja taulukot ymmärtämään lukukäsitteen ja oppii käyttämään
6.3.4 Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.
LisätiedotLaaja-alaiseen osaamiseen liittyvät painotukset matematiikassa vuosiluokilla 1-9
Matematiikan tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden ymmärtämiselle
LisätiedotTilastoja yleisurheillen
Koostanut Elina Viro Opettajalle Tilastoja yleisurheillen Kohderyhmä: Luokat 7-9 Esitiedot: Prosenttilaskenta Taustalla oleva matematiikka: Frekvenssi, suhteellinen frekvenssi, moodi, mediaani, keskiarvo,
LisätiedotHELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE
HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE kykenee keskittymään matematiikan opiskeluun kykenee kertomaan suullisesti matemaattisesta ajattelustaan
LisätiedotKuutio ja OPS 2016 K U U T I O OPS 2016. Oppiaineen tehtävä. Oppimiskäsitys
Kuutio ja OPS 2016 Uusittu Kuutio noudattaa vuoden 2016 opetussuunnitelman perusteita ja vastaa digitaalisen kehityksen mukanaan tuomiin haasteisiin. Sen monipuoliset tehtävät ja mielenkiintoiset teemasivut
LisätiedotProsenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g?
PERUSPROSENTTILASKUT Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? Kuinka paljon 12 % on 350 grammasta? 350 g 12 % % g 12 x 100 350 12 x 100 350 100
LisätiedotS5-S9 L1, L2, L4, L5, L6, L7 havaintojensa pohjalta kannustaa oppilasta esittämään ratkaisujaan ja päätelmiään muille
MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaan loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden
LisätiedotMATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen.
MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ. Isto Jokinen 013 SISÄLTÖ 1.Pinta-alojen laskeminen.tilavuuksien laskeminen PINTA-ALOJEN LASKEMINEN Pintakäsittelyalan työtehtävissä on pinta-alojen
LisätiedotMATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen.
MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ. Isto Jokinen 013 SISÄLTÖ 1.Pinta-alojen laskeminen.tilavuuksien laskeminen PINTA-ALOJEN LASKEMINEN Pintakäsittelyalan työtehtävissä on pinta-alojen
LisätiedotNäillä sivuilla Tilastomatematiikan esimerkit, joissa käsitellään tietokoneen käyttöä tilastollissa operaatioissa, on tehty Excel-2007 -versiolla.
Näillä sivuilla Tilastomatematiikan esimerkit, joissa käsitellään tietokoneen käyttöä tilastollissa operaatioissa, on tehty Excel-2007 -versiolla. Nämä ohjeet, samoin kuin Tilastomatematiikan kirjakaan,
LisätiedotYHTEENVETO LAINATARJOUKSISTA 13.11.2014 (vesi- ja viemärilaitos)
YHTEENVETO LAINATARJOUKSISTA 13.11.2014 (vesi- ja viemärilaitos) 1 Danske Bank Oyj Kuntarahoitus Oyj Nordea Pankki Suomi Oyj Lainan määrä 220.000 euroa 220.000 euroa 220.000 euroa Laina-aika 10 vuotta
Lisätiedot3 Eksponentiaalinen malli
Eksponentiaalinen malli Eksponentiaalinen kasvaminen ja väheneminen 6. Kulunut aika (h) Bakteerien määrä 0 80 0 60 0 0 7 7 0 0 0 6. 90 % 0,90 Pienennöksiä (kpl) Piirroksen korkeus (cm) 0,90 6,0, 0,90 6,0,06,
LisätiedotAki Taanila YHDEN SELITTÄJÄN REGRESSIO
Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...
Lisätiedot7. laskuharjoituskierros, vko 10, ratkaisut
7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,
LisätiedotMATEMATIIKKA PAOJ2 Harjoitustehtävät
MATEMATIIKKA PAOJ2 Harjoitustehtävät 6. Laske kuvan suorakulmion pinta-ala. ( T ) 1. Täytä taulukko m 12 1,45 0,805 2. Täytä taulukko mm 12345 4321 765 23,5 7. Laske kuvan suorakulmion pinta-ala.( T )
LisätiedotProsenttilaskentaa osa 2
Prosenttilaskentaa osa 2 % 1 9. Perusarvon laskeminen Perusarvo = alkuperäinen arvo Esimerkki 1. Mikä on a) luku, josta 72 % on 216 b) aika, josta 40 % on 38 min c) matka, josta 5 % on 400 m Esimerkki
LisätiedotYHTEENVETO LAINATARJOUKSISTA 2.3.2015
1 YHTEENVETO LAINATARJOUKSISTA 2.3.2015 Danske Bank Oyj Kuntarahoitus Oyj Nordea Pankki Suomi Oyj Laina-aika 1+ 9 vuotta 10 tai 15 vuotta 10 vuotta Lyhennykset Tasalyhennyksin puolivuosittain. Tasalyhennyksin
LisätiedotEHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat
EHDOTUS Matemaattisten aineiden opettajien liitto MAOL ry 12.2.2015 Asemamiehenkatu 4 00520 HELSINKI Opetushallitus Hakaniemenranta 6 00530 Helsinki EHDOTUS Matematiikan opetussuunnitelmien perusteiden
LisätiedotMAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi
MAB 9 kertaus MAB 1 Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi Kertolaskussa osoittajat ja nimittäjät kerrotaan keskenään Jakolasku lasketaan kertomalla
Lisätiedot1.3 Prosenttilaskuja. pa b = 100
1.3 Prosenttilaskuja Yksi prosentti jostakin luvusta tai suureesta on tämän sadasosa ja saadaan siis jakamalla ao. luku tai suure luvulla. Jos luku b on p % luvusta a, toisin sanoen jos luku b on p kpl
LisätiedotPituus- ja pinta-alayksiköt. m dm cm mm. km hm dam m. a) neljän pienen kohteen pituus millimetreiksi, senttimetreiksi ja desimetreiksi
Pituus- ja pinta-alayksiköt 1 Pituusyksiköt Pituuden perusyksikkö on metri, ja se lyhennetään pienellä m-kirjaimella. Pienempiä ja suurempia pituusyksiköitä saadaan kertomalla tai jakamalla luvulla 10,
LisätiedotTasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.
Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.
Lisätiedot1.2 Hintaan vaikuttavia tekijöitä 13 - Arvonlisävero 13 - Myyntipalkkio ja myyntikate 15 - Alennus ja hävikki 17
SISÄLTÖ 1 KAUPALLISIA SOVELLUKSIA 7 1.1 Tulovero 8 1.2 Hintaan vaikuttavia tekijöitä 13 - Arvonlisävero 13 - Myyntipalkkio ja myyntikate 15 - Alennus ja hävikki 17 1.3 Indeksit 22 - Indeksin käsite 22
LisätiedotMitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10
SISÄLTÖ 1 TILASTOJEN KÄYTTÖ 7 Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10 Tilastoaineisto 11 Peruskäsitteitä 11 Tilastoaineiston luonne 13 Mittaaminen
LisätiedotKORJAUSMATIIKKA 3, TEHTÄVÄT
1 SISÄLTÖ KORJAUSMATIIKKA, TEHTÄVÄT 1) Potenssi 2) Juuri ) Polynomit ) Ensimmäisen asteen yleinen yhtälön ratkaisu 5) Yhtälöt ongelmaratkaisuissa ja toisen asteen yhtälön ratkaisukaava TEHTÄVÄT: Käythän
Lisätiedot1.1. RATIONAALILUVUN NELIÖ
1.1. RATIONAALILUVUN NELIÖ 1. Käyttäen tietoa a = a a laske: a) 8 b) ) c) 0, d) ) 1 e) 1) f) +,) g) 7 h) ) i). Laske näiden lukujen neliöt: 17 9 1,6 1. Laske: ) a) ) b). Laske a, kun 5) 1 ) 11 11 81. j)
LisätiedotMATEMATIIKKA. Oppiaineen tehtävä
14.4.4 MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden
LisätiedotOppilas oppii Luvut ja laskutoimitukset Geometria Mittaaminen ja taulukot ymmärtämään lukukäsitteen ja oppii käyttämään
101 7.3.4 Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.
Lisätiedot4. Nokian osakkeen arvo oli eräänä päivänä 12,70 ja kaksi päivää myöhemmin 11,22. Kuinka monta prosenttia osakkeen arvo oli muuttunut?
Perustehtävät 1. Kuinka monta prosenttia a) 5 on luvusta 75 b) 13 cm on 2,2 metristä? 2. Laske a) 15 % luvusta 2340 b) 0,3 % 12000 km:stä. 3. Tuotteen alkuperäinen hinta on a. Kuinka monta prosenttia hinta
LisätiedotTalousmatematiikan perusteet: Luento 2. Lukujonot Sarjat Sovelluksia korkolaskentaan
Talousmatematiikan perusteet: Luento 2 Lukujonot Sarjat Sovelluksia korkolaskentaan Lukujonoista Miten jatkaisit seuraavia lukujonoja? 1, 3, 5, 7, 1, 2, 4, 8, 1, 3, 9, 27, 1, 1, 2, 3, 5, 8, 8.1.2018 2
LisätiedotTekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)
K1 a) Tekijä MAA Polynomifunktiot ja -yhtälöt 6.8.016 ( + + ) + ( ) = + + + = + + + = + 4 b) 4 4 ( 5 + ) ( 5 + 1) = 5 + + 5 + 1 4 = + + + 4 = + 5 5 1 1 Vastaus a) 4 + b) 4 + 1 K a) f ( ) = + 1 f () = +
LisätiedotSISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?
SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?...7 TILASTO...7 TILASTOTIEDE...8 HISTORIAA...9 TILASTOTIETEEN NYKYINEN ASEMA...9 TILASTOLLISTEN MENETELMIEN ROOLIT ERI TYYPPISET AINEISTOT JA ONGELMAT...10
LisätiedotKenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)
Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
LisätiedotMatematiikka VUOSILUOKKA 3. Ylöjärven opetussuunnitelma 2004
Ylöjärven opetussuunnitelma 2004 Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen
LisätiedotCasion fx-cg20 ylioppilaskirjoituksissa apuna
Casion fx-cg20 ylioppilaskirjoituksissa apuna Grafiikkalaskin on oivallinen apuväline ongelmien ratkaisun tukena. Sen avulla voi piirtää kuvaajat, ratkaista yhtälöt ja yhtälöryhmät, suorittaa funktioanalyysin
LisätiedotRATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.
RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion
LisätiedotPERUSYHTÄLÖ, JOKA OSOITTAA YHTÄÄLTÄ LUOTON JA TOISAALTA LYHENNYSTEN JA MAKSUJEN VASTAAVUUDEN:
6 LIITE PERUSYHTÄLÖ, JOKA OSOITTAA YHTÄÄLTÄ LUOTON JA TOISAALTA LYHENNYSTEN JA MAKSUJEN VASTAAVUUDEN: K m K 1 A K t K m A K K t K ' K 1 Kirjainten ja merkkien selitykset: ' ' K luoton numero K lyhennyksen
Lisätiedot6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 %
6 Kertausosa 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % Osakkeen arvo vuoden lopussa 1,289 0,957 12,63 = 15,580... 15,58 b) Indeksin muutos: 6500 1,1304...
LisätiedotJuuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K1. a) Ratkaistaan suorakulmaisen kolmion kateetin pituus x tangentin avulla. tan9 x,5,5 x,5 tan 9 x 2,8... x» 2,8 (cm) Kateetin pituus x on 2,8 cm. b) Ratkaistaan vinokulmaisen kolmion sivun pituus
LisätiedotMAB3 - Harjoitustehtävien ratkaisut:
MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla
Lisätiedot( 3) ( 5) ( 7) ( 2) ( 6) ( 4) Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 105 Päivitetty
Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 15 Päivitetty 19..6 31 Tapa 1 Ratkaistaan yhtälöryhmä käyttämällä sijoituskeinoa. x y+ z = x y + 3z = 3x 4y+ z = Ratkaistaan yhtälöstä (1) muuttuja
LisätiedotAlgoritmit C++ Kauko Kolehmainen
Algoritmit C++ Kauko Kolehmainen Algoritmit - C++ Kirjoittanut Taitto Kansi Kustantaja Kauko Kolehmainen Kauko Kolehmainen Frank Chaumont Oy Edita Ab IT Press PL 760 00043 EDITA Sähköpostiosoite Internet
LisätiedotGeometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio
Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun
LisätiedotA-osa (ilman laskinta)
A-osa (ilman laskinta) 1. a) Tehtävässä käsketään ratkaista yhtälö à selvittää muuttuja x. Pieni hankaluus on siinä että funktiot ovat yhtälössä vain funktiomerkinnän avulla, niihin täytyy sijoittaa funktioiden
Lisätiedot1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
LisätiedotDiskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi
TOD.NÄK JA TILASTOT, MAA0 Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi Kuten tilastojakaumia voitiin esittää tunnuslukujen (keskiarvo, moodi, mediaani, jne.) avulla, niin vastaavasti
Lisätiedot1 TILASTOJEN KÄYTTÖ 7. Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10
SISÄLTÖ 1 TILASTOJEN KÄYTTÖ 7 Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10 Tilastoaineisto 11 Peruskäsitteitä 11 Tilastoaineiston luonne 13 Mittaaminen
LisätiedotMopoilua. Tavoitteet: TEEMA 1:
Koostanut: Elina Viro Opettajalle Mopoilua Kohderyhmä: 9. luokka Esitiedot: Prosenttilaskenta, ensimmäisen asteen yhtälö, koordinaatisto Taustalla oleva matematiikka: Funktiot, funktion kuvaaja, prosenttilaskenta,
Lisätiedot