1 TILASTOJEN KÄYTTÖ 7. Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10
|
|
- Lotta Hakala
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 SISÄLTÖ 1 TILASTOJEN KÄYTTÖ 7 Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10 Tilastoaineisto 11 Peruskäsitteitä 11 Tilastoaineiston luonne 13 Mittaaminen 14 Tilastotietojen hankinta 20 Valmiit tilastot 20 Aineiston kerääminen 21 Otannan suorittaminen 23 2 TILASTOJEN ESITTÄMINEN 29 Taulukointi 29 Luokittelu 34 Kaksiulotteinen taulukko 36 Taulukon ulkoasu ja muotoilu 40 Graafinen esittäminen 46 Kuviotyypit 47 Pylväskuviot ja histogrammit 49 Ympyräkaavio eli sektorikuvio 55 Murtoviivakuvio 56 Parvikuvio 59 Teemakartat 60 Visuaalisia näkökohtia 61 3 TUNNUSLUKUJA 66 Sijaintilukuja 66 Keskiarvo 66 Mediaani 71 Fraktiilit 72 Moodi 74 Hajontalukuja 77 Vaihteluväli 77 Kvartiiliväli 78 Keskihajonta 79 Varianssi 81 Variaatiokerroin 81 Standardoitu muuttuja 82
2 Muita tunnuslukuja 82 Vinous 82 Huipukkuus 83 Keskiarvon luottamusväli 83 Keskivirhe 84 Tunnuslukuja kuvaavia graafisia esityksiä 86 Vertailu 91 4 TILASTOLLINEN RIIPPUVUUS 95 Korrelaatio 95 Korrelaatiokerroin 98 Pearsonin korrelaatiokerroin 99 Spearmanin järjestyskorrelaatiokerroin 102 Kontingenssikerroin 103 Regressio 108 Lineaarinen regressiomalli AIKASARJAT 113 Aikasarjan vaihtelukomponentit 116 Trendin arviointi ja tasoitus 118 Kausivaihtelut 121 Indeksit 124 Yksinkertainen indeksi 124 Ryhmäindeksit 125 Näennäinen muutos ja reaalinen muutos TODENNÄKÖISYYSLASKENTAA 134 Kombinatoriikkaa 135 Tuloperiaate 135 Permutaatio 137 Variaatio 138 Kombinaatio 139 Todennäköisyys 143 Todennäköisyyden tilastollinen määrittely 143 Todennäköisyyden klassinen määrittely 144 Todennäköisyyden yleinen määrittely 146 Laskusääntöjä 146 Vastatapahtuman todennäköisyys 147 Yhteenlaskusääntö 148 Kertolaskusääntö 149 Ehdollinen todennäköisyys 151 Kokonaistodennäköisyys ja Bayesin kaava 152
3 Todennäköisyysjakaumia 160 Satunnaismuuttuja ja todennäköisyysjakauma 160 Kertymäfunktio 161 Todennäköisyysjakauman tunnuslukuja 162 Binomijakauma 164 Poisson-jakauma 167 Normaalijakauma 170 Eksponenttijakauma TILASTOLLINEN PÄÄTTELY 179 Estimointi 180 Luottamusväli 180 Keskivirhe 181 Tilastolliset testit 183 Testaukseen liittyviä käsitteitä 183 Testin valinta 185 Testauksen päävaiheet 185 Jakauman normaalisuuden tutkiminen 186 Riippuvuuden testaaminen 188 χ 2 -riippumattomuustesti 188 Korrelaatiokertoimen testaus 190 Keskiarvotestejä 192 Yhden otoksen keskiarvon T-testi 192 Kahden otoksen keskiarvojen T-testi 194 Muita testejä 196 χ 2 -yhteensopivuustesti TEHTÄVIEN VASTAUKSIA 204 LIITTEET 1 Kunta-aineisto Sairaala-aineiston muuttujamäärittely Eri mitta-asteikon muuttujille soveltuvat tunnusluvut Tilastollisen tutkimuksen vaiheet Hakusanasto 223
4 1-7 Mitkä kunta-aineiston muuttujat ovat kvalitatiivisia ja mitkä kvantitatiivisia? 1-8 Määritä kunta-aineiston kaikkien muuttujien mitta-asteikot. 1-9 Määritä Sairaala-aineiston muuttujien mitta-asteikot Ravintolan asiakkailla oli tilaisuus antaa palautetta seuraavalla lomakkeella: Erinomainen Hyvä Tyydyttävä Huono 1. Ruuan laatu O O O O 2. Ruokalistan monipuolisuus O O O O 3. Palvelun ystävällisyys O O O O 4. Palvelun asiantuntemus O O O O 5. Hinta-laatusuhde O O O O a) Mikä kyselyn tavoitteena ilmeisesti oli? Seuraavassa on 20 palautetun lomakkeen tiedot (ilman tekstejä): Vastaaja 1 Vastaaja 2 Vastaaja 3 Vastaaja 4 1. Ο Ο Ο 1. Ο Ο Ο 1. Ο Ο Ο 1. Ο Ο Ο 2. Ο Ο Ο 2. Ο Ο Ο 2. Ο Ο Ο 2. Ο Ο Ο 3. Ο Ο Ο 3. Ο Ο Ο 3. Ο Ο Ο 3. Ο Ο Ο 4. Ο Ο Ο 4. Ο Ο Ο 4. Ο Ο Ο 4. Ο Ο Ο 5. Ο Ο Ο 5. Ο Ο Ο 5. Ο Ο Ο 5. Ο Ο Ο Vastaaja 5 Vastaaja 6 Vastaaja 7 Vastaaja 8 1. Ο Ο Ο 1. Ο Ο Ο 1. Ο Ο Ο 1. Ο Ο Ο 2. Ο Ο Ο 2. Ο Ο Ο 2. Ο Ο Ο 2. Ο Ο Ο 3. Ο Ο Ο 3. Ο Ο Ο 3. Ο Ο Ο 3. Ο Ο Ο 4. Ο Ο Ο 4. Ο Ο Ο 4. Ο Ο Ο 4. Ο Ο Ο 5. Ο Ο Ο 5. Ο Ο Ο 5. Ο Ο Ο 5. Ο Ο Ο Vastaaja 9 Vastaaja 10 Vastaaja 11 Vastaaja Ο Ο Ο 1. Ο Ο Ο 1. Ο Ο Ο 1. Ο Ο Ο 2. Ο Ο Ο 2. Ο Ο Ο 2. Ο Ο Ο 2. Ο Ο Ο 3. Ο Ο Ο 3. Ο Ο Ο 3. Ο Ο Ο 3. Ο Ο Ο 4. Ο Ο Ο 4. Ο Ο Ο 4. Ο Ο Ο 4. Ο Ο Ο 5. Ο Ο Ο 5. Ο Ο Ο 5. Ο Ο Ο 5. Ο Ο Ο Vastaaja 13 Vastaaja 14 Vastaaja 15 Vastaaja Ο Ο Ο 1. Ο Ο Ο 1. Ο Ο Ο 1. Ο Ο Ο 2. Ο Ο Ο 2. Ο Ο Ο 2. Ο Ο Ο 2. Ο Ο Ο 3. Ο Ο Ο 3. Ο Ο Ο 3. Ο Ο Ο 3. Ο Ο Ο 4. Ο Ο Ο 4. Ο Ο Ο 4. Ο Ο Ο 4. Ο Ο Ο 5. Ο Ο Ο 5. Ο Ο Ο 5. Ο Ο Ο 5. Ο Ο Ο jatkuu...
5 Esim. 2.1 Tarkastellaan Suomen kuntien sijoittumista eri lääneihin. Jakautuminen voidaan esittää tiivistetysti seuraavasti: Lääni Kuntien lukumäärä Suhteellinen eli frekvenssi frekvenssi Etelä-Suomen 89 19,7 % Länsi-Suomen ,4 % Itä-Suomen 68 15,0 % Oulun 52 11,5 % Lapin 22 4,9 % Ahvenanmaan 16 3,5 % Yhteensä ,0 % Taulukko muodostaa läänijakauman. Esiintymiskertojen lukumäärää ilmaisevia lukuja sanotaan frekvensseiksi. Muuttujan arvot ja vastaavat frekvenssit muodostavat frekvenssijakauman. Jos lasketaan, kuinka monta prosenttia kunnista sijaitsee kussakin läänissä, saadaan vastaava suhteellinen frekvenssi. Suhteelliset frekvenssit ovat prosenttilukuja, jotka ilmoittavat kyseisen muuttujan arvon esiintymisen prosenttiosuuden kaikista havainnoista. Prosenttilukujen käyttö on järkevää, mikäli havaintoja on riittävän paljon. SPSS-tilasto-ohjelmassa frekvenssitaulukot saa kätevimmin valinnalla Analyze, Descriptive Statistics, Frequencies... Excelissä on useitakin funktioita, jotka laskevat lukumääriä. Seuraavassa frekvenssit ja suhteelliset frekvenssit on laskettu Excelin pivot-taulukkoon.
6 - Vedä muuttujaa lääni vastaava kenttäpainike Pudota rivikentät tähän-osaan. - Vedä muuttujaa lääni vastaava kenttäpainike Pudota tieto-osat tähän-osaan -Vedä lääniä vastaava kenttäpainike pivot-taulukkoon, jolloin saat uuden sarakkeen suhteellisia frekvenssejä varten. Taulukon muotoa voi muokata vetämällä hiirellä solua Tiedot (ykköspainike pohjassa) tai käyttämällä automaattista muotoilua.
7 Fraktiileja käytetään jakauman sijainnin ilmoittamiseen. Esimerkiksi jonkin ammattiryhmän ansiotasoa kuvattaessa ilmoitetaan palkka, jota vähemmän saa 90 % kyseisen ammattiryhmän työntekijöistä. Lasten kasvua seurataan muodostamalla koko ikäryhmän vastaavien muuttujien ala- ja yläkvartiilit. Käyttämällä esimerkiksi ala- ja yläkvartiilia sekä mediaania saadaan jakauman sijainnista melko hyvä kuva. TYYPPIARVO ELI MOODI Kunta-aineiston muuttujille lääni, kuntamuoto ja kieli ei voi laskea keskiarvoa eikä määrittää mediaania. Voidaan ainoastaan todeta, että esimerkiksi suomenkielisiä kuntia on eniten. Suomi on tyypillisin kieli. Tyyppiarvo eli tyypillinen arvo eli moodi, Mo, on arvo, joka esiintyy useimmin. Sen määrittäminen voidaan tehdä myös kvalitatiivisille eli laatueroasteikon muuttujille, joille ei voida määrittää muita tilastollisia tunnuslukuja. Voidaan puhua esimerkiksi tyypillisestä suomalaisesta tai tyypillisestä perheestä, jolloin kuitenkin yleensä yhdistellään monia eri ominaisuuksia, jotka esiintyvät väestössä muita ominaisuuksia useammin. Henkilöä tai perhettä, jolla olisi kaikki tyypilliset ominaisuudet, ei käytännössä ole olemassa. EU:n komission jäsenten ikäjakaumassa (esim. 3.1) on kaksi tyypillisintä arvoa: iät 52 vuotta ja 56 vuotta. Aineisto on kaksimoodinen eli bimodaalinen. Lisäksi kyseinen aineisto on niin pieni, että sattuman vaikutus moodin määräytymiseen on melko suuri. Koska moodi on se muuttujan arvo, joka esiintyy useimmin, se käy ilmi frekvenssijakaumasta suurimman frekvenssin kohdalta. Jos muuttuja saa paljon eri arvoja tai on jatkuva, se on luokiteltava ennen moodin määrittämistä. Luokitellussa aineistossa tyyppiarvona pidetään yleensä sitä luokkaa tai sen luokan keskikohtaa, jonka frekvenssi on suurin. On huomattava, että luokittelu saattaa vaikuttaa moodin määräytymiseen. Esim. 3.6 Esimerkin 2.3 frekvenssijakaumasta käy ilmi, että kunta-aineistossa kyseisellä luokittelulla tyypillisin asuntojen keskimääräinen koko on 90 m 2 99 m 2. Tyyppiarvon etuna on, että se on helppo määrittää ja sen muuttujalle asettamat vaatimukset ovat pienet. Esimerkiksi kaupunginvaltuuston paikkaluku voidaan ilmoittaa tilastona, jossa muuttuja on poliittinen puolue. Tämä muuttuja on laadullinen eikä sen arvoja voida panna esimerkiksi suuruusjärjestykseen. Huono puoli on, että tyyppiarvo kuvaa vain vähän jakauman keskimääräistä sijaintia.
8 5-8 Tutki oheisen kuvion maasta muuttaneiden lukumääriä eri ajankohtina. Millaista vaihtelua aikasarjassa esiintyy? Näyttääkö kuukausittainen vaihtelu lisääntyvän vai vähenevän? Mihin suuntaan muuttomäärät näyttävät kehittyvän vuositasolla? Maasta muuttaneet kuukausittain vuosina Lukumäärä Joulu Marras Loka Syys Elo Heinä Kesä Touko Huhti Maalis Helmi Tammi 5-9 Avioerojen lukumäärä Suomessa oli kuukausittain vuosina seuraavan taulukon mukainen (lähde: Tilastokeskus): Tammikuu Helmikuu Maaliskuu Huhtikuu Toukokuu Kesäkuu Heinäkuu Elokuu Syyskuu Lokakuu Marraskuu Joulukuu Tarkastele aikasarjaa graafisesti. Minkä tyyppistä vaihtelua sarjassa esiintyy? Tasoita aikasarja liukuvan keskiarvon menetelmällä. Miten määrä näyttää vuositasolla kehittyneen?
9 Jos likimain normaalisti jakautuneen aineiston keskiarvo (odotusarvo) ja keskihajonta tunnetaan, tiheysfunktion kuvaajan voi piirtää esimerkiksi Excelillä samoin kuin muidenkin funktioiden kuvaajia. Normaalijakaumaan liittyviä todennäköisyyksiä voi laskea määrittämällä tiheysfunktion määrätyn integraalin arvoja. Se on kuitenkin työlästä. Todennäköisyyksiä on myös taulukoitu, mutta kätevintä ne on laskea työvälineohjelmilla kertymäfunktion arvojen avulla. Esim.6.34 Synnyttäjien ikä Suomessa noudattaa likimain normaalijakaumaa. Vuonna 1998 synnyttäjien keskimääräinen ikä oli 29,9 vuotta ja iän keskihajonta 5,3 vuotta (lähde: Stakes). Lasketaan a) todennäköisyys, että satunnaisesti valittu synnyttäjä on iältään korkeintaan 25-vuotias b) todennäköisyys, että satunnaisesti valittu synnyttäjä on yli 40-vuotias c) todennäköisyys, että satunnaisesti valitun synnyttäjän ikä on välillä 25 vuotta vuotta d) ikä, jota vanhempia on 10 % synnyttäjistä. Seuraavassa todennäköisyydet on laskettu Excelin tilastofunktiolla NORM.JAKAUMA. a) P(x 25 vuotta) = F(25) 0, ,76 % synnyttäjistä on siis 25-vuotiaita tai nuorempia
10 Tällöin saatiin seuraava tulos: Group Statistics Kolmiulotteinen hahmottaminen Sukupuoli mies nainen Std. Std. Error N Mean Deviation Mean 16 22,31 11,05 2, ,18 9,56 2,88 Kolmiulotteinen hahmottaminen Equal variances assumed Equal variances not assumed Levene's Test for Equality of Variances F Independent Samples Test Sig. t df t-test for Equality of Means Sig. (2-tail ed) Mean Differ ence Std. Error Differe 95% Confidence Interval of the Difference nce Lower Upper,257,617 -,699 25,491-2,87 4,10-11,32 5,58 -,719 23,56,479-2,87 3,99-11,12 5,38 Ensimmäinen testi (Levene) on varianssitesti. Sen merkitsevyyden (0,617) perusteella voidaan päätellä, että varianssit perusjoukossa ovat likimain yhtä suuret. Tällöin varsinainen T-testi luetaan ylemmältä riviltä. Koska p-arvo (hylkäämisvirheen todennäköisyys) on 0,491, nollahypoteesi jää voimaan. Testin perusteella tyttöjen ja poikien suoriutumista kielellistä valmiutta vaativista tehtävistä voidaan pitää perusjoukossa likimain yhtä hyvänä. Saatu ero keskiarvoissa voi siis johtua sattumasta.
Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10
SISÄLTÖ 1 TILASTOJEN KÄYTTÖ 7 Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10 Tilastoaineisto 11 Peruskäsitteitä 11 Tilastoaineiston luonne 13 Mittaaminen
SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?
SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?...7 TILASTO...7 TILASTOTIEDE...8 HISTORIAA...9 TILASTOTIETEEN NYKYINEN ASEMA...9 TILASTOLLISTEN MENETELMIEN ROOLIT ERI TYYPPISET AINEISTOT JA ONGELMAT...10
SPSS-perusteet. Sisältö
SPSS-perusteet Sisältö Ikkunat 3 Päävalikot 5 Valikot 6 Aineiston käsittely 6 Muuttujamuunnokset 7 Aineistojen kuvailu analyysit 8 Havaintomatriisin luominen ja käsittely 10 Muulla sovelluksella tehdyn
pisteet Frekvenssi frekvenssi Yhteensä
806118P JOHDATUS TILASTOTIETEESEEN Loppukoe 15.3.2018 (Jari Päkkilä) 1. Kevään -17 Johdaus tilastotieteeseen -kurssin opiskelijoiden harjoitusaktiivisuudesta saatujen pisteiden frekvenssijakauma: Harjoitus-
1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
Esim. Pulssi-muuttujan frekvenssijakauma, aineisto luentomoniste liite 4
18.9.2018/1 MTTTP1, luento 18.9.2018 KERTAUSTA Esim. Pulssi-muuttujan frekvenssijakauma, aineisto luentomoniste liite 4 pyöristetyt todelliset luokka- frekvenssi luokkarajat luokkarajat keskus 42 52 41,5
Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?
MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo
Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1
Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 11. lokakuuta 2007 Antti Rasila () TodB 11. lokakuuta 2007 1 / 15 1 Johdantoa tilastotieteeseen Peruskäsitteitä Tilastollisen kuvailun ja päättelyn menetelmiä
Kandidaatintutkielman aineistonhankinta ja analyysi
Kandidaatintutkielman aineistonhankinta ja analyysi Anna-Kaisa Ylitalo M 315, anna-kaisa.ylitalo@jyu.fi Musiikin, taiteen ja kulttuurin tutkimuksen laitos Jyväskylän yliopisto 2018 2 Havaintomatriisi Havaintomatriisi
3. a) Mitkä ovat tilastolliset mitta-asteikot? b) Millä tavalla nominaaliasteikollisen muuttujan jakauman voi esittää?
Seuraavassa muutamia lisätehtäviä 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15, 4, 0,, 4,
Ohjeita kvantitatiiviseen tutkimukseen
1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 2 KVANTITATIIVISEN TUTKIMUSAINEISTON ANALYYSI Sisältö: 1. Frekvenssi- ja prosenttijakaumat.2
MTTTP5, luento Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta)
MTTTP5, luento 7.12.2017 7.12.2017/1 6.1.3 Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta) y = lepopulssi x = sukupuoli y = musikaalisuus x = sukupuoli
Tilastotieteen kertaus. Kuusinen/Heliövaara 1
Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa
tilastotieteen kertaus
tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla
Harjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
voidaan hylätä, pienempi vai suurempi kuin 1 %?
[TILTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2011 http://www.uta.fi/~strale/tiltp1/index.html 30.9.2011 klo 13:07:54 HARJOITUS 5 viikko 41 Ryhmät ke 08.30 10.00 ls. C8 Leppälä to 12.15 13.45 ls. A2a Laine
1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa:
Lisätehtäviä (siis vanhoja tenttikysymyksiä) 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15,
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas TEOREETTISISTA JAKAUMISTA Usein johtopäätösten teko helpottuu huomattavasti, jos tarkasteltavan muuttujan perusjoukon jakauma noudattaa
Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta
Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman
Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo.
Kertaus Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Luokiteltu aineisto. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Hajontaluvut luokittelemattomalle
Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, kevät 2019 https://coursepages.uta.fi/mtttp1/kevat-2019/ HARJOITUS 3 Joitain ratkaisuja 1. x =(8+9+6+7+10)/5 = 8, s 2 = ((8 8) 2 + (9 8) 2 +(6 8) 2 + (7 8) 2 ) +
Kvantitatiiviset tutkimusmenetelmät maantieteessä
Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi
Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta
Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)
KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä!
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun
Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 3 viikko 40 Joitain ratkaisuja 1. Suoritetaan standardointi. Standardoidut arvot ovat z 1 =
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3
OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset
Leikkijunan kunto toimiva ei-toimiva Työvuoro aamuvuoro päivävuoro iltavuoro
Lisätehtäviä 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15, 4, 0,, 4, 3, 3, 8, 3, 9, 11, 19,
Til.yks. x y z
Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)
Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja
1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma
Teema 9: Tilastollinen merkitsevyystestaus
Teema 9: Tilastollinen merkitsevyystestaus Tärkeä päättelyn osa-alue on tilastollinen merkitsevyystestaus, johon päästään luontevasti edellisen teeman aiheista: voidaan kysyä, menevätkö kahden vertailtavan
Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO...
Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA...9 1.2 AIHEESEEN PEREHTYMINEN...9 1.3
Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012
Luentokalvoja tilastollisesta päättelystä Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Otanta Otantamenetelmiä Näyte Tilastollinen päättely Otantavirhe Otanta Tavoitteena edustava otos = perusjoukko
MTTTP1, luento KERTAUSTA
26.9.2017/1 MTTTP1, luento 26.9.2017 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut
MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu
5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017
MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu
10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2
MTTTP1, luento KERTAUSTA
25.9.2018/1 MTTTP1, luento 25.9.2018 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas f 332 = 3 Kvartiilit(302, 365, 413) Kvartiilit: missä sijaitsee keskimmäinen 50 % aineistosta? Kvartiilit(302, 365, 413) Keskiarvo (362.2) Keskiarvo
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen 1 Jakaumaoletuksien testaamiseen soveltuvat testit χ 2 -yhteensopivuustesti yksi otos otoksen
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4
Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 6 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA... 7 1.2 AIHEESEEN PEREHTYMINEN...
Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
Määrällisen aineiston esittämistapoja. Aki Taanila
Määrällisen aineiston esittämistapoja Aki Taanila 24.4.2017 1 Kategoriset muuttujat Lukumääriä Prosentteja (muista n-arvot) Pylväitä 2 Yhteenvetotaulukko (frekvenssitaulukko) TAULUKKO 1. Asunnon tyyppi
1 PROSENTTILASKENTAA 7
SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö
Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.04 Tilastollisen analyysin perusteet, kevät 007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen Jakaumaoletuksien testaamiseen soveltuvat testit χ -yhteensopivuustesti yksi otos otoksen vertaaminen
GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus
GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus Mitä jäi mieleen viime viikosta? Mitä mieltä olet tehtävistä, joissa GeoGebralla työskentely yhdistetään paperilla jaettaviin ohjeisiin
Harjoittele tulkintoja
Harjoittele tulkintoja Syksy 9: KT (55 op) Kvantitatiivisen aineiston keruu ja analyysi SPSS tulosteiden tulkintaa/til Analyysit perustuvat aineistoon: Haavio-Mannila, Elina & Kontula, Osmo (1993): Suomalainen
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi
A130A0650-K Tilastollisen tutkimuksen perusteet 6 op Tentti / Anssi Tarkiainen & Maija Hujala
Kaavakokoelma, testinvalintakaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1 a) Konepajan on hyväksyttävä alihankkijalta saatu tavaraerä, mikäli viallisten komponenttien
MTTTP5, luento Luottamusväli, määritelmä
23.11.2017/1 MTTTP5, luento 23.11.2017 Luottamusväli, määritelmä Olkoot A ja B satunnaisotoksen perusteella määriteltyjä satunnaismuuttujia. Väli (A, B) on parametrin 100(1 - ) %:n luottamusväli, jos P(A
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko
ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45.
Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 8.8% 8.9%.%.% 9.7%.7% Etelä Länsi Itä Oulu Lappi Ahvenanmaa Länsi Etelä Itä Oulu Lappi Ahvenanmaa Läänien
Työvoima Palvelussuhdelajeittain %-jakautumat
Hallinto 2510 Hyvinvointitoimiala tammikuu 134,9 121,3-13,6 82,8 84,4 3,2 5,4 11,8 7,3 2,3 2,9 3,9 5,8 55,6 38,6 123,1 107,6 91,3 % 88,7 % helmikuu 133,9 118,8-15,1 82,3 83,4 3,9 5,5 11,1 7,6 2,6 3,6 8,1
Alkupiiri (5 min) Lämmittely (10 min) Liikkuvuus/Venyttely (5-10min) Kts. Kuntotekijät, liikkuvuus
Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia
Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma
c) A = pariton, B = ainakin 4. Nyt = silmäluku on5 Koska esim. P( P(A) P(B) =, eivät tapahtumat A ja B ole riippumattomia.
Tehtävien ratkaisuja 4. Palloja yhteensä 60 kpl. a) P(molemmat vihreitä) = P((1. pallo vihreä) ja (. pallo vihreä)) = P(1. pallo vihreä) P(. pallo vihreä 1. pallo vihreä) = 0.05 (yleinen kertolaskusääntö)
MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)
21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain
Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa?
21.3.2019/1 MTTTP1, luento 21.3.2019 7 TILASTOLLISEN PÄÄTTELYN PERUSTEITA Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 9. luento Pertti Palo 22.11.2012 Käytännön asioita Eihän kukaan paikallaolijoista tee 3 op kurssia? 2. seminaarin ilmoittautuminen. 2. harjoitustyön
Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä.
Tilastollinen tietojenkäsittely / SPSS Harjoitus 3 Tällä harjoituskerralla tarkastellaan harjoituksissa 2 tehtyjä SPSS-havaintoaineistoja KUNNAT, kyselya ja kyselyb. Aineistoihin tutustutaan mm. erilaisten
Normaalijakaumasta johdettuja jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma
/1. MTTTP1, luento Normaalijakauma (kertausta) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:
2.10.2018/1 MTTTP1, luento 2.10.2018 7.4 Normaalijakauma (kertausta) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 2.10.2018/2
Hannu mies LTK 180 Johanna nainen HuTK 168 Laura nainen LuTK 173 Jere mies NA 173 Riitta nainen LTK 164
86118P JOHDATUS TILASTOTIETEESEEN Harjoituksen 3 ratkaisut, viikko 5, kevät 19 1. a) Havaintomatriisissa on viisi riviä (eli tilastoyksikköä) ja neljä saraketta (eli muuttujaa). Hannu mies LTK 18 Johanna
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo
Määrällisen aineiston esittämistapoja. Aki Taanila
Määrällisen aineiston esittämistapoja Aki Taanila 7.11.2011 1 Muuttujat Aineiston esittämisen kannalta muuttujat voidaan jaotella kolmeen tyyppiin: Kategoriset (esimerkiksi sukupuoli, koulutus) Asteikolla
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Tilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
Kuvioita, taulukoita ja tunnuslukuja. Aki Taanila 2.2.2011
Kuvioita, taulukoita ja tunnuslukuja Aki Taanila 2.2.2011 1 Tilastokuviot Pylväs Piirakka Viiva Hajonta 2 Kuviossa huomioitavia asioita 1 Kuviolla tulee olla tarkoitus ja tehtävä (minkä tiedon haluat välittää
Estimointi. Vilkkumaa / Kuusinen 1
Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman
b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia.
806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 11.3.2011 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta
HAVAITUT JA ODOTETUT FREKVENSSIT
HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies
Mat Tilastollisen analyysin perusteet. Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi Diskreetit muuttujat,
Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio
17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla
Testit laatueroasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten
Tilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
Esimerkki 1: auringonkukan kasvun kuvailu
GeoGebran LASKENTATAULUKKO Esimerkki 1: auringonkukan kasvun kuvailu Auringonkukka (Helianthus annuus) on yksivuotinen kasvi, jonka varren pituus voi aurinkoisina kesinä hyvissä kasvuolosuhteissa Suomessakin
OPETUSSUUNNITELMALOMAKE
OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida
Väliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
OPETUSSUUNNITELMALOMAKE
OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida
Opiskelijanumero Yleisarvio Työläys Hyödyllisyys 12345A K K B U 3 3 3
Luku 6 Datajoukkojen jakaumat, tunnusluvut ja kuvaajat Lasse Leskelä Aalto-yliopisto. lokakuuta 207 6. Datajoukko ja datakehikko Tässä monisteessa datajoukko tarkoittaa järjestettyä listaa keskenään samantyyppisiä
Tilastollisia peruskäsitteitä ja Monte Carlo
Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia
/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:
4.10.2016/1 MTTTP1, luento 4.10.2016 7.4 Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 4.10.2016/2
Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä.
Tilastollinen tietojenkäsittely / SPSS Harjoitus 3 Tällä harjoituskerralla tarkastellaan harjoituksissa 2 tehtyjä SPSS-havaintoaineistoja KUNNAT, kyselya ja kyselyb. Jos epäilet, että aineistosi eivät
Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774
... Vinkkejä lopputyön raportin laadintaan. Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset)
LIITE Vinkkejä lopputyön raportin laadintaan Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset) 1. Johdanto Kerro johdannossa lukijalle, mitä jatkossa
MTTTP1, luento KERTAUSTA
19.3.2019/1 MTTTP1, luento 19.3.2019 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Ilman Ruotsia: r = 0.862 N Engl J Med 2012; 367:1562-1564. POIKKEAVAN HAVAINNON VAIKUTUS PAIRWISE VAI LISTWISE? Kun aineistossa on muuttujia, joilla
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156