Virtaukset & Reaktorit

Koko: px
Aloita esitys sivulta:

Download "Virtaukset & Reaktorit"

Transkriptio

1 Virtukset & Rektorit Pumut j utkistot 1 Kertus, virtustekniikn erusteet Virtustekniikk käsittelee levoss j liikkeessä olevi fluidej Viskositeetti kuv fluidin kykyä siirtää liikemäärää noeutt vstn kohtisuorss suunnss Fluidit ovt Newtonisi ti ei-newtonisi

2 Kertus Virtusteknisiä ongelmi voidn rtkist ineenergi- j liikemäärätseiden vull Kun virtusnoeutt ksvtetn, virtuksest tulee eästbiili j siihen syntyy yörteitä Turbulenssin lkmist voidn rvioid Reynoldsin luvun vull 3 Kertus Virtuksen yleisestä energitseest sdn johdettu Bernoullin yhtälö soivill yksinkertistuksill, kuten kitkton virtus ilmn ulkouolist työtä (umu) Teknisissä sovelluksiss kitk j umun vikutus itää ott huomioon 4

3 Oimistvoite tälle kerrlle Energitse tilnteelle, joss utkistoss on umu j kitkvstuksi (Bernoullin ljennus) Putki- j ikllisvstusten ymmärtäminen Pumun j utkiston ominiskäyrien ymmärtäminen, toimintisteen käsite 5 Oimistvoite tälle kerrlle Ktsus eri umutyyeihin Pumun ominiskäyrän merkitys Kvitoinnin merkitys j imuutkiston suunnittelu sen välttämiseksi Virtuksen säätö j sen vikutus toimintisteeseen 6

4 Pumu z z b W rh W = ( b - ) + rg( z b - z ) + 1 r( v b - bv ) + rh f ksvtt inett nost fluidi ksvtt noeutt komensoi kitkhäviöitä = + POT + KIN + Kitk 7 Pinehäviö Jetn usein khteen osn: Riiuvuus turbulentiss virtuksess v rh f = r x Ł DL D + z i ł v Suorn utken häviöt Pikllisvstukset Vstuskertoimi x j z voidn rvioid virtusolosuhteiden j utkiston rkenteen vull. Pinehäviöyhtälö ysyy smn näköisenä, mutt kertoimet vihtuvt tilnteest riiuen 8

5 Hgen Poiseuillen lki D 3hDL = D v Lminriss virtuksess inehäviö on suorn verrnnollinen viskositeettiin noeuteen Miten olikn turbulentiss? 9 Turbulentti virtus Putkivstuskerroin riiuu Putken krheudest Reynolsin luvust x = f (Re, k ) D Riiuvuus on monimutkisemi kuin lminriss virtuksess, eikä sitä sd rtkistu nlyyttisesti 10

6 Moodyn käyrästö x = 64 Re Jos virtus treeksi noe j utki krhe, utkivstuskerroin on lähes riiumton Re luvust 11 Turbulentin virtuksen utkivstuskerroin Colebrookin yhtälö 1 x = -,0log Ł k 3,7D,51 + Re x ł Imlisiittinen Rtkisu itertiivinen eli kokeilemll 1

7 Turbulentin virtuksen utkivstuskerroin Ekslisiittinen roksimtio 1 x k 5,0 k / D 13 = -,0 log - log + Ł 3,7D Re Ł 3,7 Re łł Ekslisiittinen Putkivstuskerroin ei esiinny oikell uolell 13 Pikllisvstukset Putkistoss olevist litteist johtuvt häviötermit rh f = r z i v Pikllisvstus x z ksii zet rh DL = r x + Ł D Mutkt Virtusmittrit Venttiilit Lämmönsiirtimet Rektorit f Suorn utken häviöt Riiuvuus turbulentiss virtuksess v zi ł Pikllisvstukset 14

8 Pikllisvstuksi - Venttiilejä = r z i v 15 Virtus huokoisess ineess Usein virtus thtuu huokoisess ineess, jonk rkenne ei ole täsmällisesti määritettävissä. Esimerkiksi kiinteillä ktlyyttirtikkeleill (llot, sylinterit) täytetty rektori Tällöin inehäviötä voidn rvioid Ergunin yhtälöllä: h v DP / L = 150 Ł D ł ( 1- e) e 3 r v + 1,75 Ł D 1- e 3 ł e Lmirri vikutus Turbulentti vikutus 16

9 Putkiston suunnittelu - virtusyhtälö = + ot + kin + rh f = DH = DH + DH ot + DH kin + H = DH Pumu utkisto Pumun tuottm ineen lisäys on sm kuin ineen nostotrve utkistoss 17 Virtusyhtälö z z b = + ot + kin + rh f = Lähtö- j tuloikn ine-ero määräytyy yleensä lähtötietoin: - ikn ine tunnettu, - ikss b vditn tietty ine 18

10 Virtusyhtälö z z b = + ot + kin + rh f = Lähtö- j tuloikn korkeusero määräytyy lähtötietoin 19 Virtusyhtälö z z b = + ot + kin + rh f = Kineettinen ine j inehäviöt riiuvt virtusnoeuden neliöstä turbulentiss virtuksess h f DL = x Ł D + z i ł v vb v kin = r b - Ł ł Vkiokokoisess utkess kineettinen inehäviö on 0 kokoonuristumttomlle virtukselle 0

11 Putkiston kokonisinehäviö h f DL = x Ł D + z i v ł + ot Virtusnoeus m/s Virtusnoeus m 3 /h 1 Putkiston kokonisinehäviö DL h f = x + zi D Ł ł v + ot Virtusnoeus m/s Virtusnoeus m 3 /h Miltä käyrä näyttää, jos virtus kulkee voimest stist lemn olevn voimeen stin? Mikä on luonnollinen virtusnoeus tällöin (ilmn umu)?

12 Pumun ominiskäyrät Nostokorkeus Hyötysuhde Imuosn inehäviö D h H = f(v) & = f(v) & NPSH = f(v) & Tehontrve P B = f(v) & 3 Nostokorkeus 4

13 Pumu utkistoss Mksimi ine suljettu venttiiliä vsten. Putkistojärjestelmän suunnitteluine riiuu usein tästä Pumun tuottm ine Tyyillinen käyrä keskikoumulle Tilvuusvirtus m 3 /h 5 Pumun tuottm ine j utkiston inehäviö Toimintiste Tilvuusvirtus m 3 /h = + ot + kin + rh f = 6

14 Putken koon vlint Suositellun virtusnoeuden vull Sllitun inehäviön erusteell Otimoimll kustnnuksi 7 Suositeltuj virtusnoeuksi 8

15 Esimerkki tenttitehtävästä Vesiränni rkennetn,5 15 cm ludst nulmll sivuludt ohjludn molemmin uolin. Rännin ituus on 100 m j kltevuus on %. Ludn innn krheus on 0,0015 m. Vedenint rännissä on 1/4 rännin yläreun lemn. Veden mukn kulkeutuv hiekk j svi lisäävät virtusvstust 5 % uhtseen veteen verrttun. Lske rännin veden tilvuusvirt (m 3 /h), kun veden lämötil on 10 C. 9 Vesiränni... Esimerkki tenttitehtävästä Piirretään kuv j hhmotelln tilnne mielessä Kirjoitetn tseet Pohditn oletuksi (mitä termejä tseeseen tulee) Etsitään ineominisuuksi j muit trvittvi tietoj Mietitään mitä rtkistn j missä se esiintyy yhtälöissä. Usein rvtn joku suure j lsketn mllin (tseiden ym.) erusteell onko rvus oikein (iteroidn). Tässä esim. rvtn virtusnoeus, lsketn Re, lsketn utkivstus, trkstetn virtusnoeuden rvus. 30

16 Pumun vlint Siirrettävä inemäärä j nostokorkeus Siirrettävän fluidin ineominisuudet (viskositeetti, tiheys) sekä muut ominisuudet, kuten myrkyllisyys, lvuus jne. Pine j lämötil lku- j louisteessä Nesteintojen korkeuserot Sijoitusikk: ulkon/sisällä, voidnko sijoitt vsti imettävän nesteen intn nähden Stndrdointi: yritään käyttämänä smnlisi umuj jos mhdollist vrossyistä 31 Toimint-lue 3

17 Hmmsrtsumu 33 Mäntäumu 34

18 Keskikoumu Tvllisin teollisuudess käytetty umu Käytetään hyvin monenlisten nesteiden siirtoon Keskikoumujen ksiteettilue on hyvin lj 10 l/min 400 m 3 /min Nostokorkeuslue on lj 35 Keskikoumu Pumu j moottori 36

19 Siiiyörä (Juoksuyörä) Pyörivä siiiyörä Aj nesteen esän reunoille j ineyhteeseen Imee uutt nestettä keskelle 37 Pine umun imuss s s Kitkhäviöt lentvt inett, lisäksi korkeussem vikutt 38

20 Kvitointi Jos ine litt nesteen höyrynineen se lk kiehu Myöhemmin kult tiivistyvät j romhtvt ksn. Tämä iheutt melu j ineiskuj jotk vurioittvt umu Kulien muodostuminen Kulien tiivistyminen 39 Kvitoinnin estäminen Nesteen minimiineen umuss oltv suuremi kuin nesteen höyrynine Miten toteutetn? 40

21 Kvitoinnin estäminen Pumun sijoitus ls nesteen hydrostttinen ine hyödyksi Lämötil ls höyrynine lhinen Putkiston inehäviö ieneksi Erikoisumut, joill lhinen NPSH vtimus 41 NPSH (Net Positive Suction Hed) Netto Positiivinen Imu Korkeus Imuliss olevn ineen j nesteen höyrynineen välinen ero NPSH = - s v 4

22 NPSH NPSHR (Net Positive Suction Hed Required) - Pinereservi, jok umun imuukoss on oltv, jott umuss ei thdu kvitointi. - Riiuu umun rkenteest - NPSHR rvon nt umun vlmistj NPSHA (Net Positive Suction Hed Avilble) - Pinereservi, jok umun imuukoss todell on - NPSHA:n lskee rosessin suunnittelij suunnittelemns imuutkiston erusteell NPSHA > NPSHR + suunnitteluvr vähintään 0,5 1 m 43 NPSHA NPSHA:t voi rvioid meknisen energin tseen vull s s rh W = ( s - ) + rg(z s - z ) + r s Ł s v - v + ł rh f 44

23 Esimerkki: Säiliössä kiehuv nestettä (ti kiehumisisteessään olev, kulivn nesteen umminen suorn on huono rtkisu) s = v s 45 s Säiliössä kiehuv nestettä s = v ( - v) vs NPSHA = - s - hf g Ø Œ º r ø œ ß ( z z ) s 46

24 s s Säiliössä kiehuv nestettä 1 Ø v ø s NPSHA = - Œs + hf œ + - g º ß ( z z ) s Korkeuseron (hydrostttisen ineen) tulee komensoid noeus- j virtushäviöt + NPSHR eli umun sisäiset häviöt NPSHA NPSHR+vr 47 Kylmä neste ositiivinen voi oll negtiivinen ( - v) vs NPSHA = - s - hf g Ø Œ º r itää oll ositiivinen, NPSHA NPSHR+vr ø œ ß ( z z ) s umu voi sijit säiliön yläuolell Ei käynnistetä kuivn! 48

25 Virtuksen säätö + ot 1 rh f DL = r x + Ł D v zi ł v 1 v Mitä thtuu kun vesihn käännetään ienemmälle? 49 Pine ksv umun Virtuksen säätö Pikllisvstus ksv venttiilin kohdll oistouolell 1 + ot rh f DL = r x + Ł D v zi ł v v 1 v Tilvuusvirtus ienenee 50

26 Esimerkki tenttitehtävästä Joest hlutn ott jäähdytysvettä 50 m3/h lämmönsiirtoverkostoon, jonk syöttökohdss vllitsee 135 kp ine j jok sijitsee 4,5 m joen vedenint ylemänä. Putkiston imuukko on 1,5 m joen vedeninnn luolell. Putkiston ituus 15 m j utken sisählkisij on 150 mm. Putkistoss on sihti (z=6,0), neljä lutsventtiiliä j seitsemän 90 mutk (R/D=). Putkimterili on vlurut. Soiiko umustehtävään keskikoumu, jonk krkteristik on seurv: V/(m 3 /h) H /m 35 34,0 31,5 8,7 5,5 3,0 19,0 15,5 1,5 Joen vedeninnn korkeus ysyy vkion j veden keskilämötil on Joest hlutn ott jäähdytysvettä... Piirrä kviokuv tilnteest Kirjoit tse, jälleen kerrn meknisen energin tse. Mieti mitkä ovt tuntemttomi Etsi ineominisuudet Esimerkki tenttitehtävästä Putkivstuskerroin tuntemton, riiuu Re luvust Lske utkistokäyrän isteitä: rv tilvuusvirt Re, lske utkistovstus (mistä?), muist muut vstukset utkiston vstus ilmoitettun korkeuten tilvuusvirrn funktion Piirrä smn kuvn utkistokäyrä j umukäyrä j mieti vstus tehtävän kysymykseen 5

27 Pumun tehon lskent 10 % milmn sähkönkulutuksest menee umukseen Meknisen energin tseest sdn seurvi yhtälöitä umun vtimlle teholle P E = m& h h E r P E = V& h E h Sähkömoottorin hyötysuhde Pumun hyötysuhde 53 Esimerkki ) Lske trvittv teho, kun umtn 100 t/h kylmää vettä 40 m korkeuteen. Prosessin ine ei muutu. Pumun kokonishyötysuhde on 75%. b) Kemin litetekniikk oiskellut rosessisuunnittelij tekee innovtion, jonk vull nostokorkeus sdn udotettu khteenkymmeneen metriin. Kuink mont hehkulmun vihtmist energinsäästölmuksi tämä innovtio vst, jos rvioidn että lmu on äällä 6 tunti vuorokudess j umu 8000 h/vuodess? 54

28 Toimint-lue Pumttv määrä voi tuntu isolt, mutt se on teollisuudess ihn normli. Esim. Olkiluodon uuden ydinvoimln jäähdytysvesitrve on yli m 3 /h (1/4 kymijoest) 55 Vesi kylmää r»1000 kg/m 3 Oletetn kitkhäviöt j kineettinen ine mitättömiksi nostokorkeuteen verrttun. Säiliöt smss ineess nostokorkeudest ino inetermi = rgh = 1000 kg/m3 9,81 m/s 40 m = P 56

29 Tilvuusvirt V& kg / h = 1000kg / m 3600s / h 3 = 0,0778m 3 / s Tehoksi sdn V& 3 0,0778m / s 39400P PE = = = 14533W» 15kW h 0,75 TOT 57 Nostokorkeus uto uoleen tehonkulutuskin uto uoleen (hyötysuhde oletetn smksi) Kulutus innovtiivisemmll rosessivihtoehdoll on siis 767 W 58

30 Arvioidn lmunvihtojen määrä siten, että hehkulmun teho olisi 60 W j energisäästölmun 11 W. Ero on siis 49 W Lmujen määräksi sdn 767W 49W 4h 6h 8000h / 365d / 4h / d» 540 lmu 59 Sekoitus Sekoitus on eräs keskeisistä kemin tekniikkn liittyvistä tehtävistä Esimerkkejä: regenssien sminen hyvään kontktiin sekoitusrektoreiss ilmn ti muun disergoidun fsin kul- ti isrkoon ienentäminen ineensiirron tehostmiseksi tuotteen homogenisointi ltuvihteluiden minimoimiseksi 60

31 Sekoitus Oleellisi suureit ovt mm. tehonkulutus j sekoitusik. Niitä voidn rvioid erilisist korreltioist P 1,5 0,5 3 5 = N PrN D N q = 5, 1/ 3 D N T H N P on sekoittimen teholuku (sekoitintyyikohtinen, esim. Rushton turbiini N = 5,) r = sekoitettvn fluidin tiheys (kg/m 3 ) N = sekoittimen yörimisnoeus (1/s) D = sekoittimen hlkisij (m) q = sekoitusik (s) 61 Sekoitus Aksilisi sekoittimi (virtus ääosin kselin suunnss) Rdilisi sekoittimi (virtus ääosin sivuille) 6

32 Kertus Lminriss virtuksess vstus (inehäviö) on - Suorn verrnnollinen viskositeettiin - Suorn verrnnollinen noeuteen Turbulentiss virtuksess vstus on - Suorn verrnnollinen tiheyteen - Verrnnollinen noeuden toiseen otenssiin - Verrnnollinen utken krheuteen (eälinerisesti) Putkivstukset voidn jk suorn utken iheuttmn vstukseen j ikllisvstuksiin 63 Kertus DL h f = x + zi D Ł ł v + ot Virtusnoeus m/s Virtusnoeus m 3 /h 64

33 Kertus Toimintiste = + ot + kin + rh f = 65 Kertus Erilisi umutyyejä on hyvin ljon. Keskikoumu on rosessitekniikss yleisimmin käytetty tyyi. Pumun ominisuuksi kuvtn ominiskäyrillä. Nämä kertovt umun suorituskyvyn muutoksist virtusnoeuden muuttuess 66

34 Kertus Kvitointi trkoitt sitä, että umun imuyhteessä syntyy kuli jotk romhtvt ksn ineuolell. Tämä vhingoitt umu Kvitointilttiutt kuv termi NPSH - NPSHA umun imuutkistoss - NPSHR umun ominisuus 67 Kertus Imuutkisto on suunniteltv siten, että NPSHA on riittävän ljon suuremi kuin NPSHR Virtust säädetään yleensä umun ineuolell olevll säätöventtiilillä. Sillä voidn vikutt ikllisvstukseen, jolloin toimintiste muuttuu Sekoitus on eräs keskeisistä virtusteknisistä ongelmist 68

1 Virtaustekniikka... 2 1.1 Fluidi... 2 1.2 Viskositeetti... 2 1.2.1 Viskositeetin riippuvuus lämpötilasta... 3 1.2.2 Rajaviskositeetti... 4 1.

1 Virtaustekniikka... 2 1.1 Fluidi... 2 1.2 Viskositeetti... 2 1.2.1 Viskositeetin riippuvuus lämpötilasta... 3 1.2.2 Rajaviskositeetti... 4 1. Virtustekniikk.... Fluidi.... Viskositeetti..... Viskositeetin riiuuus lämötilst... 3.. Rjiskositeetti... 4.3 Newtoniset j ei-newtoniset fluidit... 4.3. Newtoniset fluidit... 4.3. Ei-Newtoniset fluidit...

Lisätiedot

Y56 Mikron jatkokurssi kl 2008: HARJOITUSTEHTÄVÄT 2 Mallivastaukset

Y56 Mikron jatkokurssi kl 2008: HARJOITUSTEHTÄVÄT 2 Mallivastaukset Y6 Mikron jtkokurssi kl 008: HARJOITUSTEHTÄVÄT Mllivstukset Kuluttjn vlint (Muokttu Burketist 006, 07) Olkoon Mrkon udjettirjoite = 40 Mrkoll on hvin kättätvät referenssit j Mrkon rjusustituutiosuhde on

Lisätiedot

6 Kertausosa. 6 Kertausosa

6 Kertausosa. 6 Kertausosa Kertusos Kertusos. ) b). ) b). ) ( ( ) : ) ( : ) b) { : [ ( ) ]} { :[ - ]} { : } -{ - } -{} c) ( ) : - ( ) ( ) ( ) ( 9) 9 9 Kertusos. ) ( ) b) ( ). ) ) ) b) / / c) : 7 7. ) ) ) b) Kertusos c) : 7 ( 9)

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,

Lisätiedot

missä t on matkaan raosta varjostimelle kuluva aika. Jos suihkun elektronien liikemäärä x- sunnassa on p x,on min y0min 0min

missä t on matkaan raosta varjostimelle kuluva aika. Jos suihkun elektronien liikemäärä x- sunnassa on p x,on min y0min 0min S-11446 Fysiikk IV (Sf), I Välikoe 154 1 Elektronisuihku, joss elektronien noeus on v, suu kohtisuorsti rkoon, jonk leveys on d Ron läi kuljettun elektronit osuvt etäisyydellä D olevn vrjostimeen Mikä

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

Sarjaratkaisun etsiminen Maplella

Sarjaratkaisun etsiminen Maplella Srjrtkisun etsiminen Mplell Olkoon trksteltvn ensimmäisen kertluvun differentiliyhtälö: > diffyht:= diff(y(x, x=1y(x^; d diffyht := = dx y( x 1 y( x Tälle pyritään etsimään srjrtkisu origokeskisenä potenssisrjn.

Lisätiedot

VESIPATTERIN ASENNUS TBLA Thermo Guard-jäätymissuojalla GOLD koko 11-32, versio B

VESIPATTERIN ASENNUS TBLA Thermo Guard-jäätymissuojalla GOLD koko 11-32, versio B VESIPATTERIN ASENNUS TBLA -jäätymissuojll GOLD koko 11-32, versio B ASENNUS 1. Knvliitäntä on tehtävä seurvsti: ) TBLA 000-031 j 000-040 Vesiptteri voidn sent suorn kierresumttuun knvn. Ptteri on vrustettu

Lisätiedot

R4 Harjoitustehtävien ratkaisut

R4 Harjoitustehtävien ratkaisut . Mitkä seurvist lusekkeist eivät ole polynomej? Miksi eivät? Polynomin termine eksponentti on luonnollinen luku, ne lusekkeet, joiss eksponentti ei ole luonnollinen luku ei ole myöskään polynomi.. x x

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

Kertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet

Kertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet Kertaus 3 Putkisto ja häviöt, pyörivät koneet KJR-C2003 Virtausmekaniikan perusteet Käsitteelliset tehtävät Käsitteelliset tehtävät Ulkopuoliset virtaukset Miten Reynoldsin luku vaikuttaa rajakerrokseen?

Lisätiedot

L 0 L. (a) Entropian ääriarvo löydetään derivaatan nollakohdasta, dl = al 0 L )

L 0 L. (a) Entropian ääriarvo löydetään derivaatan nollakohdasta, dl = al 0 L ) 76638A Termofysiikk Hrjoitus no. 6, rtkisut syyslukukusi 014) 1. Trkstelln L:n pituist nuh, jonk termodynmiikn perusreltio on de = d Q + d W = T ds + F dl, 1) missä F on voim, joll nuh venytetään reversiibelisti

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

Nesteen ominaisuudet ja nestetilavuuden mallinnus

Nesteen ominaisuudet ja nestetilavuuden mallinnus Kon-4.47 Hydraulijärjestelmien mallintaminen ja simulointi Nesteen ominaisuudet ja nestetilavuuden mallinnus Hydrauliikka on tehon siirtoa nesteen välityksellä. Jos yrit ymmärtämään hydrauliikkaa, on sinun

Lisätiedot

Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus

Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus NodeCount(v /* lskee solmun v lipuun solmujen lukumäärän */ if solmu v on null return 0 else return + NodeCount(v.left + NodeCount(v.right Rekursio: lgoritmi kutsuu itseään Usein hjot j hllitse -perite:

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta.

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta. MAA Loppukoe 5.. Jussi Tyni Tee pisteytysruudukko konseptin yläreunn! Vstuksiin väliviheet, jotk perustelevt vstuksesi! Lue ohjeet huolellisesti! A-Osio. Vlitse seurvist kolmest tehtävästä kksi, joihin

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa. Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä

Lisätiedot

4 Pinta-alasovelluksia

4 Pinta-alasovelluksia Pint-lsovelluksi. Kuvjn lle jäävä pint-l voidn määrittää, jos kuvj on -kselin yläpuolell. Välillä [, 5] funktion f kuvj on -kselin lpuolell. Peiltn funktion f kuvj -kselin suhteen, jolloin sdn funktion

Lisätiedot

14. Putkivirtausten ratkaiseminen. KJR-C2003 Virtausmekaniikan perusteet

14. Putkivirtausten ratkaiseminen. KJR-C2003 Virtausmekaniikan perusteet 14. Putkivirtausten ratkaiseminen KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten erilaisia putkistovirtausongelmia ratkaistaan? Motivointi: putkijärjestelmien mitoittaminen sekä painehäviöiden

Lisätiedot

9 A I N. Alkuperäinen piiri. Nortonin ekvivalentti R T = R N + - U T = I N R N. Théveninin ekvivalentti DEE-11110 SÄHKÖTEKNIIKAN PERUSTEET

9 A I N. Alkuperäinen piiri. Nortonin ekvivalentti R T = R N + - U T = I N R N. Théveninin ekvivalentti DEE-11110 SÄHKÖTEKNIIKAN PERUSTEET DEE11110 SÄHKÖTEKNIIKAN PERUSTEET http://www.tut.fi/smg/course.php?id=57 Rtkisut Hrjoitukset 3, 2014 Tehtävä 1. Pyydetään muodostmn nnetun piirin Nortonin ekvivlentti. Nortonin, smoin kuin Theveninin,

Lisätiedot

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek S-446, FYSIIKKA IV (Sf) Kevät 5, HSf Rtkisut HSf- Kvnttimekninen hrmoninen värähtelijä on perustillln (mss m) Värähtelyn mplitudi on A () ske p (Värähtelijä sijitsee välillä A ) (b) Vert p :tä vstv kineettistä

Lisätiedot

Luku 14 Kuluttajan ylijäämä

Luku 14 Kuluttajan ylijäämä Kl 9 5 Luku 4 Kuluttjn ylijäämä Kuluttjn ylijäämän käsite on erittäin ljon käytetty hyvinvointitloustieteessä. Käsite erustuu hyödyn mksimoinnin j kysyntäkäyrän väliseen yhteyteen, eli siihen, että kysyntäkäyrä

Lisätiedot

NESTEIDEN ja ja KAASUJEN MEKANIIKKA

NESTEIDEN ja ja KAASUJEN MEKANIIKKA NESTEIDEN ja KSUJEN MEKNIIKK Väliaineen astus Kaaleen liikkuessa nesteessä tai kaasussa, kaaleeseen törmääät molekyylit ja aine-erot erot aiheuttaat siihen liikkeen suunnalle astakkaisen astusoiman, jonka

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS 0 MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 30 PISTEYTYSKOKOUS 0 ) Sijoitetn x 0 Rtkistn = 0/04,0000 b) Jos neliön sivu on s, niin lävistäjä on s Ehto: s 6 s + s = 6, s 6 3 4s 6,70, joten piiri ) Suorn yhtälö

Lisätiedot

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita. 8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

S Fysiikka III (EST), Tentti

S Fysiikka III (EST), Tentti S-114.137 Fysiikk III (ES), entti 30.8.006 1. Lämpövoimkone toteutt oheisen kuvn Crnotin prosessi. Koneess on työineen yksi mooli ideliksu. Lske yksitomisen ksun kierroksen ikn tekemän työn suhde kksitomisen

Lisätiedot

Kuva 1. n i n v. (2 p.) b) Laske avaimiesi etäisyys x altaan seinämästä. (4 p.) c) Kuinka paljon lunta voi sulaa enintään Lassen suksien alla?

Kuva 1. n i n v. (2 p.) b) Laske avaimiesi etäisyys x altaan seinämästä. (4 p.) c) Kuinka paljon lunta voi sulaa enintään Lassen suksien alla? TKK, TTY, LTY, OY, ÅA, TY j VY insinööriosstojen vlintkuulustelujen fysiikn koe 26.5.2004 Merkitse jokiseen koepperiin nimesi, hkijnumerosi j tehtäväsrjn kirjin. Lske jokinen tehtävä siististi omlle sivulleen.

Lisätiedot

Mikrotalousteoria 2, 2008, osa III

Mikrotalousteoria 2, 2008, osa III Sisältö Mikrotlousteori 2, 2008, os III Yrityksen tuotntofunktiost 2 Pnosten substituoitvuus 2 3 Yrityksen teori 3 4 Mittkvedut tuotnnoss 5 5 Yksikkökustnnusten j skltuottojen steen välinen yhteys 5 6

Lisätiedot

Tee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi!

Tee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi! MAA8 Koe 4.4.016 Jussi Tyni Tee B-osion konseptiin etusivulle pisteytysruudukko! Muist kirjt nimesi j ryhmäsi. Väliviheet perustelevt vstuksesi! A-osio. Ilmn lskint. MAOLi s käyttää. Mksimissn 1h ik. Lske

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1 Pinopiste Snomme ts-ineiseksi kpplett, jonk mteriliss ei ole sisäisiä tiheyden vihteluj. Tällisen kppleen pinopisteen sijinti voidn joskus päätellä kppleen muodon perusteell. Esimerkiksi ts-ineisen pllon

Lisätiedot

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

II.1. Suppeneminen., kun x > 0. Tavallinen lasku II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä

Lisätiedot

Ristitulo ja skalaarikolmitulo

Ristitulo ja skalaarikolmitulo Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden

Lisätiedot

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus. KOLMIULOTTEISI KPPLEIT Tsogeometriss käsiteltiin kuvioit vin ydessä tsoss. vruusgeometriss tsoon tulee kolms ulottuvuus, jolloin sdn kppleen tilvuus. SUORKULMINEN SÄRMIÖ Suorkulmisess särmiössä kikki kulmt

Lisätiedot

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x,

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x, Pyrmidi Anlyyttinen geometri tehtävien rtkisut sivu Päivitetty 9..6 8 Prbeli on niiden pisteiden (, y) joukko, jotk ovt yhtä kukn johtosuorst j polttopisteestä. Pisteen (, y ) etäisyys suorst y = on d

Lisätiedot

Teoriaa tähän jaksoon on talvikurssin luentomonisteessa luvussa 10. Siihen on linkki sivulta

Teoriaa tähän jaksoon on talvikurssin luentomonisteessa luvussa 10. Siihen on linkki sivulta Jkso 10. Sähkömgneettinen induktio Näytä ti plut tämän jkson tehtävät viimeistään tiistin 13.6.2017. Ekstr-tehtävät vstvt kolme tvllist tehtävää, kun lsketn lskuhrjoituspisteitä. Teori tähän jksoon on

Lisätiedot

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe 16.2.2018 13:00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin. Arvioinnin

Lisätiedot

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

17. Pyörivät virtauskoneet. KJR-C2003 Virtausmekaniikan perusteet

17. Pyörivät virtauskoneet. KJR-C2003 Virtausmekaniikan perusteet 17. Pyörivät virtauskoneet KJR-C2003 Virtausmekaniikan perusteet Päivän anti Mikä on pyörivä virtauskone ja miten sen toimintaa ja suorituskykyä voidaan tarkastella opitun perusteella? Motivointi: pyörivät

Lisätiedot

601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44,

601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44, Pyrmidi 3 Geometri tehtävien rtkisut sivu 08 60 Olkoon tuntemton kteetti j tuntemttomt kulmt j β Rtkistn kulmt. 8,4 cos 8,4 cos 45,579... 46 β 90 60 4 Rtkistn vrjon pituus 3 44,470... 44 Rtkistn kteetti.

Lisätiedot

766328A Termofysiikka Harjoitus no. 12, ratkaisut (syyslukukausi 2014)

766328A Termofysiikka Harjoitus no. 12, ratkaisut (syyslukukausi 2014) 7668A Termofysiikk Hrjoitus no 1, rtkisut (syyslukukusi 14) 1 Lämpötilss T K elektronien energit eivät ylitä Fermin energi (ɛ i ɛ F ), lämpötilprmetri β j kemillinen potentili vst Fermin energi (µ() ɛ

Lisätiedot

Jäykän kappaleen tasokinetiikka harjoitustehtäviä

Jäykän kappaleen tasokinetiikka harjoitustehtäviä ynmiikk 1 Liite lukuun 6. Jäykän kppleen tskinetiikk - hrjitustehtäviä 6.1 vlvpkettiutn mss n 1500 kg. ut lähtee levst liikkeelle 10 % ylämäkeen j svutt vkikiihtyvyydellä npeuden 50 km / h 1 10 60 m mtkll.

Lisätiedot

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 1.9.2017 klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.

Lisätiedot

766319A Sähkömagnetismi, 7 op Kertaustehtäviä, 1. välikokeen alue Vastaukset tehtävien jälkeen

766319A Sähkömagnetismi, 7 op Kertaustehtäviä, 1. välikokeen alue Vastaukset tehtävien jälkeen 76619A Sähkömgnetismi, 7 op Kertustehtäviä, 1. välikokeen lue Vstukset tehtävien jälkeen 1. Kolme pistevrust sijitsee xy-koordintistoss ll olevn kuvn mukisesti. Vrus +Q sijitsee kohdss x =, toinen vrus

Lisätiedot

Puolijohdekomponenttien perusteet A Ratkaisut 1, Kevät Tarvittava akseptoridouppaus p-tyypin kerrokseen saadaan kaavalla

Puolijohdekomponenttien perusteet A Ratkaisut 1, Kevät Tarvittava akseptoridouppaus p-tyypin kerrokseen saadaan kaavalla OY/PJKOMP R1 17 Puolijohkoonnttin rustt 5171A Rtkisut 1, Kvät 17 1. ( Trvittv kstoriouus tyyin krroksn sn kvll kbt ln Ł ni ni Ł kbt 1 ( 1 c,85 V 17» 1,8 1 c. 17 1 c Ł,59V Mtrilivkiot on otttu luntoonistn

Lisätiedot

Max. nostokorkeus Teho (kw) LVR3-7-220V 3 32 5 44 0,55 10 50Hz ~ 220 V G1. LVR3-7-380V 3 32 5 44 0,55 10 50Hz ~ 380 V G1

Max. nostokorkeus Teho (kw) LVR3-7-220V 3 32 5 44 0,55 10 50Hz ~ 220 V G1. LVR3-7-380V 3 32 5 44 0,55 10 50Hz ~ 380 V G1 Kuvaus Virhehälytyksenestopumppu, jolla korvataan pienten vuotojen aiheuttama vedenhukka automaattisen sprinkleripumpun turhan käynnistymisen estämiseksi. Tekniset tiedot Tyyppi: Monivaiheinen keskipakopumppu

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2013

Preliminäärikoe Pitkä Matematiikka 5.2.2013 Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)

Lisätiedot

2.1 Vaillinaiset yhtälöt

2.1 Vaillinaiset yhtälöt .1 Villiniset yhtälöt Yhtälö, jok sievenee muotoon x + bx + c = 0 (*) on yleistä normlimuoto olev toisen steen yhtälö. Tämän rtkiseminen ei olekn enää yhtä meknist kuin normlimuotoisen ensisteen yhtälön

Lisätiedot

Runkovesijohtoputket

Runkovesijohtoputket Runkovesijohtoputket PUTKET JA PUTKEN OSAT SSAB:n vlmistmi pinnoitettuj putki j putken osi käytetään lähinnä runkovesijohtolinjoihin, joiden hlkisij on DN 400-1200. Ost vlmistetn teräksisistä pineputkist

Lisätiedot

Kertausosa. Kertausosa. 3. Merkitään. Vastaus: 2. a) b) 600 g. 4. a)

Kertausosa. Kertausosa. 3. Merkitään. Vastaus: 2. a) b) 600 g. 4. a) Kertusos Kertusos ). ) : j 7 0 7 ) 0 :( ) c) :( ). Merkitää merirosvorht (kg) sukltrffelit (kg) ) 7, 0 hit: /kg hit: 7 /kg ) 00 g 0,kg 7 0,,0,,0, 0, (kg) :. ) Vstus: ) 7, 0 ( ) ) 00 g. ) 0 7 9 7 0 0 Kertusos

Lisätiedot

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö 22 LINSSIT JA LINSSIJÄRJSTLMÄT 22. Linssien kuvusyhtälö Trkstelln luksi vlon tittumist pllopinnll (krevuussäde R j krevuuskeskipiste C) kuvn mukisess geometriss. Tässä vlo siis tulee ineest ineeseen 2

Lisätiedot

7.lk matematiikka. Geometria 1

7.lk matematiikka. Geometria 1 7.lk mtemtiikk 1 Htnpään koulu 7B j 7C Kevät 2017 2 Sisällys 1. Koordintisto... 4 2. Kulmien nimeäminen j luokittelu... 8 3. Kulmien mittminen j piirtäminen... 10 4. Ristikulmt j vieruskulmt... 14 5. Suort,

Lisätiedot

b) (max 3p) Värähtelijän jaksonajan ja taajuuden välinen yhteys on T = 1/ f (++), eli

b) (max 3p) Värähtelijän jaksonajan ja taajuuden välinen yhteys on T = 1/ f (++), eli 1 Lbortoriokokeess keveen kierrejouseen ripustettiin eri mssisi punnuksi. Punnust vedettiin lspäin j sntneen hrmonisen värähteln jksonik mitttiin. Värähtelijän tjus f = 2π 1 k mp. Oheisess tulukoss on

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä

Lisätiedot

Aalto-yliopisto, Teknillisen fysiikan laitos PHYS-E0460 Reaktorifysiikan perusteet Harjoitus 5, mallivastaukset Syksy 2016

Aalto-yliopisto, Teknillisen fysiikan laitos PHYS-E0460 Reaktorifysiikan perusteet Harjoitus 5, mallivastaukset Syksy 2016 Alto-yliopisto, Teknillisen fysiikn litos Sipilä/Heikinheimo PHYS-E0460 Rektorifysiikn perusteet Hrjoitus 5, mllivstukset Syksy 2016 Tehtävä 2 on tämän hrjoituskierroksen tulutehtävä Vlmistudu esittelemään

Lisätiedot

b) (max 3p) Värähtelijän jaksonajan ja taajuuden välinen yhteys on T = 1/ f, eli missä k on jousen jousivakio. Neliöimällä yllä oleva yhtälö saadaan

b) (max 3p) Värähtelijän jaksonajan ja taajuuden välinen yhteys on T = 1/ f, eli missä k on jousen jousivakio. Neliöimällä yllä oleva yhtälö saadaan A1 Lbortoriokokeess keveen kierrejouseen ripustettiin eri mssisi punnuksi. Punnust vedettiin lspäin j sntneen hrmonisen värähteln jksonik mitttiin. Värähtelijän tjus f = 2π 1 k mp. Oheisess tulukoss on

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 5 1 Jtkuvuus Trkstelln funktiot fx) josskin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jtkuv ti epäjtkuv. Jtkuvuuden ymmärtää prhiten trkstelemll epäjtkuv

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN ..07 VEKTOREILL LSKEMINEN YHTEENLSKU VEKTORIT, M4 Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on vektorin

Lisätiedot

OUML6421B3004. 3-tilaohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT

OUML6421B3004. 3-tilaohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT OUML6421B3004 3-tilohjttu venttiilimoottori KÄYTTÖKOHTEET i Lämmityksen säätö i Ilmnvihtojärjestelmät TUOTETIEDOT OMINAISUUDET Helppo j nope sent Ei trvitse erillistä sennustelinettä Ei trvitse liikepituuden

Lisätiedot

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014 763333A KIINTEÄN AINEEN FYSIIKKA Rtkisut 1 Kevät 014 1. Tehtävä: Lske, kuink mont hilpistettä on yksikkökopiss ) yksinkertisess kuutiollisess, b) tkk:ss j c) pkk:ss. (Ot huomioon, että esimerkiksi yksikkökopin

Lisätiedot

Laskut kirjoitetaan vasempaan reunaan, vastaukset tulevat oikeaan reunaan.

Laskut kirjoitetaan vasempaan reunaan, vastaukset tulevat oikeaan reunaan. 2. Peruslsket 2.1 Yhtee- j väheyslsku Lske: 23 14 9 MENU. Vlitse Mi Syötä lskuluseke. Pi EXE. Lskut kirjoitet vsemp reu, vstukset tulevt oike reu. 2.2 Näytö tyhjeys Vlitse Edit j pi Cler All. Pi OK. Huom!

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29 Numeeriset menetelmät TIEA381 Luento 9 Kirsi Vljus Jyväskylän yliopisto Luento 9 () Numeeriset menetelmät 17.4.2013 1 / 29 Luennon 9 sisältö Numeerisest integroinnist Newtonin j Cotesin kvt Luento 9 ()

Lisätiedot

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään. S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn

Lisätiedot

Asennus, venttiilisarja TBVL GOLD/COMPACT

Asennus, venttiilisarja TBVL GOLD/COMPACT Asennus, venttiilisrj TBVL GOLD/COMPACT. Yleistä Venttiilisrj TBVL on trkoitettu lämmitys-/jäähdytysptterin ohjukseen. Mukn tulee ()-tieventtiili, toimilite, kytkentäkpeli pikliittimillä, jäätymissuoj-nturi

Lisätiedot

. P A Sähkömagnetismi, 7 op Vanhoja tenttitehtäviä

. P A Sähkömagnetismi, 7 op Vanhoja tenttitehtäviä 766319A Sähkömgnetismi, 7 op Vnhoj tenttitehtäviä 1. Puoliympyrän muotoon tivutettu suv on vrttu tsisesti siten, että vrus pituusyksikköä kohti on λ. Puoliympyrän säde on. Lske sähkökenttä puoliympyrän

Lisätiedot

Kirjallinen teoriakoe

Kirjallinen teoriakoe 11 Kirjllinen teorikoe Päivämäärä: Osllistujn nimi: Kirjllinen teorikoe Arviointi koostuu khdest osst: "yleiset kysymykset "j lskutehtävät" Kokeen hyväksytty rj on 51% molemmist osioist erikseen. St 1

Lisätiedot

HAVAINNOINTI JA TUTKIMINEN

HAVAINNOINTI JA TUTKIMINEN ilumuoto st ksvtu luun ou perusk Tuntikehyksen os-lue: HAVAINNOINTI JA TUTKIMINEN A2 Aivomyrsky j unelmien leikkipuisto Kesto: 1 kksoistunti, 45 min + 45 min Aihe: Syvennetään jtuksi ympäristöstä liittyvästä

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.4 Rtkisut j rvostelu. Koululisen todistuksen keskirvo x on lskettu ) b) c) d) kymmenen ineen perusteell. Jos koululinen nostisi neljän ineen

Lisätiedot

MITEN MÄÄRITÄN ASYMPTOOTIT?

MITEN MÄÄRITÄN ASYMPTOOTIT? MITEN MÄÄRITÄN ASYMPTOOTIT? Asmptootti Asmptootti on suor ti muu kärä, jot funktion kuvj f() rjtt lähest, kun muuttujn rvot lähestvät tiettä luku ti ääretöntä. Rjoitutn luksi niihin tpuksiin, joiss smptootti

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN 3..07 VEKTOREILLA LASKEMINEN YHTEENLASKU VEKTORIT, MAA Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss

Lisätiedot

(c) Kuinka suuri suhteellinen virhe painehäviön laskennassa tehdään, jos virtaus oletetaan laminaariksi?

(c) Kuinka suuri suhteellinen virhe painehäviön laskennassa tehdään, jos virtaus oletetaan laminaariksi? Tehtävä 1 Vettä (10 astetta) virtaa suorassa valurautaisessa (cast iron) putkessa, jonka sisähalkaisija on 100 mm ja pituus 70 m. Tilavuusvirta on 15 litraa minuutissa. (a) Osoita, että virtaus on turbulenttia.

Lisätiedot

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko 3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu

Lisätiedot

MATEMATIIKAN HARJOITTELUMATERIAALI

MATEMATIIKAN HARJOITTELUMATERIAALI SAVONIA-AMMATTIKORKEAKOULU Tekniikk Infrrkentmisen j kivnnisln työnjohdon koulutus (ESR) MATEMATIIKAN HARJOITTELUMATERIAALI Hrjoitustehtävien rtkisut Ari Tuomenlehto - 0 - Hrjoitustehtävien rtkisut 1.

Lisätiedot

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku. Muodostetn vektorikentän kri-integrli yksinkertisen kren tpuksess. Plutetn mieleen, että joukko C R m on yksinkertinen kri, jos löytyy sellinen jtkuv bijektio γ : [, b] C, jok on ploittin C 1 -funktio

Lisätiedot

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä? Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.

Lisätiedot

OUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050

OUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050 OUML7421B3003 Jänniteohjttu venttiilimoottori TUOTETIEDOT OMINAISUUDET Helppo j nope sent Ei trvitse erillistä sennustelinettä Ei trvitse liikepituuden säätöä Momenttirjkytkimet Käsikäyttömhdollisuus Mikroprosessorin

Lisätiedot

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 26.5.2017 8:00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.

Lisätiedot

Viivaintegraali: "Pac- Man" - tulkinta. Viivaintegraali: "Pac- Man" - tulkinta. "Perinteisempi" tulkinta: 1D 3/19/13

Viivaintegraali: Pac- Man - tulkinta. Viivaintegraali: Pac- Man - tulkinta. Perinteisempi tulkinta: 1D 3/19/13 Viivintegrli: "Pc- Mn" - tulkint Otetn funk:o f(,), jok riippuu muudujist j. Jokiselle, tson pisteellä funk:oll on siis joku rvo. Tpillisiä fsiklis- kemillisi esimerkkejä voisivt oll esimerkiksi mss:hes

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2 Tietojenkäsittelyteori Kevät 2 Kierros,. 5. helmikuut Demonstrtiotehtävien rtkisut D: Sievennä seurvi säännöllisiä lusekkeit (so. konstruoi yksinkertisemmt lusekkeet smojen kielten kuvmiseen): ()

Lisätiedot

Ruiskuvalukappaleen valettavuus

Ruiskuvalukappaleen valettavuus Ruiskuvlukppleen vlettvuus Käännökset: Snn Nykänen, Tuul Höök Tmpereen teknillinen yliopisto Seinämänpksuus Yordnk Atnsov Technicl University of Gbrovo Seinämänpksuus vikutt huomttvsti ruiskuvletun kppleen

Lisätiedot

S FYSIIKKA III (ES) Syksy 2004, LH 10. Ratkaisut

S FYSIIKKA III (ES) Syksy 2004, LH 10. Ratkaisut S-4 FYSIIKKA III (ES) Syksy 004, LH 0 Rtksut LH0-* Jäähdytyskneen tmv Crnt n kne luvutt 0,0 kj lämöä hunelmn smll, kun kneen mttr tekee työtä 0,0 J Hunelmn lämötl n C () Kunk ljn lämöä kne tt lemmst lämösälöstä?

Lisätiedot

Suorakaidekanavat. lindab suorakaidekanavat

Suorakaidekanavat. lindab suorakaidekanavat Suorkideknvt lind suorkideknvt lind suorkideknvt Sisällysluettelo Suorkideknvt Knv LKR... Liitosost Liitoslist LS... Liitoslist LS-... Kulmyhde LBR... Liitoslist LS... S-mutk LBXR... LBSR... Liitoslist

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita. T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä

Lisätiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.

Lisätiedot

Asennus, venttiilisarja TBVL GOLD/COMPACT

Asennus, venttiilisarja TBVL GOLD/COMPACT FI.TBV.10929 Asennus, venttiilisrj TBVL GOLD/COMPACT 1. Yleistä Venttiilisrj TBVL on trkoitettu lämmitys-/jäähdytysptterin ohjukseen. Mukn tulee 2(3)-tieventtiili, toimilite, kytkentäkpeli pikliittimillä,

Lisätiedot

(b) Määritä pumpun todellinen nostokorkeus, jos pumpun hyötysuhde on 65 %. 160 mm. 100 mm. 650 rpm. Kuva 1: Tehtävän asettelu.

(b) Määritä pumpun todellinen nostokorkeus, jos pumpun hyötysuhde on 65 %. 160 mm. 100 mm. 650 rpm. Kuva 1: Tehtävän asettelu. Tehtävä 1 Kuvan keskipakopumppu pumppaa vettä (ρ = 998 kg/m 3 ) tilavuusvirralla 180 l/s. Pumpun pesän korkeus on mm. Oletetaan, että sisäänvirtauksessa absoluuttisella nopeudella ei ole tangentiaalista

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 3 Määrätyn integrlin lskeminen Aiemmin määrittelimme määrätyn integrlin f (x)dx funktion f (x) l- j yläsummien rj-rvon. Määrätyllä integrlill on kksi intuitiivist tulkint:.

Lisätiedot

Luku 13. Kertausta Hydrostaattinen paine Noste

Luku 13. Kertausta Hydrostaattinen paine Noste Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää

Lisätiedot

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS 11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.

Lisätiedot

3.7. Rekursiivisista lukujonoista

3.7. Rekursiivisista lukujonoista .7 Rekursiivisist lukujooist.7. Rekursiivisist lukujooist Kerrt vielä, että lukujoo void määritellä khdell eri tvll, joko käyttämällä lyyttistä säätöä ti rekursiivist säätöä. Joo määrittelemie rekursiivisesti

Lisätiedot

Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30

Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30 Digitlinen videonkäsittely Hrjoitus 5, vstukset tehtäviin 5-30 Tehtävä 5. ) D DCT sdn tekemällä ensin D DCT kullekin riville, j toistmll D DCT tuloksen sdun kuvn srkkeill. -D N-pisteen DCT:, k 0 N ( k),

Lisätiedot

Geometrinen lukujono. Ratkaisu. a2 = 50 4 = 200 a3 = = 800 a4 = = 3 200

Geometrinen lukujono. Ratkaisu. a2 = 50 4 = 200 a3 = = 800 a4 = = 3 200 Geometrie lukujoo 7. Geometrise lukujoo esimmäie jäse o = 0 j peräkkäiste jäsete suhde =. Määritä lukujoo kolme seurv jäsetä. = 0 = 00 = 0 = 800 = 0 = 00 8. Geometrie lukujoo lk seurvsti: ), 0, 0, b) 000,

Lisätiedot

Integraalilaskenta. Määrätty integraali

Integraalilaskenta. Määrätty integraali 9..08 Integrlilskent Määräämätön Etsitään funktiot Derivoinnille käänteistoimenpide integroiminen Integrlifunktio F(x), jolle F x = f x, lisäksi integrlifunktioille G x = F x + C. Vkion C lisäys (merkitys),

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Rtkisuist Nämä Trigoometriset fuktiot j lukujoot kurssi kertustehtävie j -srjoje rtkisut perustuvt oppikirj tietoihi j meetelmii. Kustki tehtävästä o yleesä vi yksi rtkisu, mikä ei kuitek trkoit sitä,

Lisätiedot