. P A Sähkömagnetismi, 7 op Vanhoja tenttitehtäviä
|
|
- Taisto Kokkonen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 766319A Sähkömgnetismi, 7 op Vnhoj tenttitehtäviä 1. Puoliympyrän muotoon tivutettu suv on vrttu tsisesti siten, että vrus pituusyksikköä kohti on λ. Puoliympyrän säde on. Lske sähkökenttä puoliympyrän krevuuskeskipisteessä P.. P 2. Kksi johtv sylinteriä (pituus L) on setettu sisäkkäin siten, että niiden keskikselit yhtyvät. Sisemmän sylinterin säde on j ulommn b. Sylinterien välissä on ilm. Sisemmässä sylinterissä on vrus Q j ulommss +Q tsisesti jkutuneen. Määritä: ) sähkökenttä sylinterikuorten välissä, sylinterikuorten ulkopuolell j sisemmän sylinterikuoren sisäpuolell. b) sylinterikuorten välinen potentiliero, c) näiden khden vrtun sylinterikuoren muodostmn systeemin sähköstttinen potentilienergi. b +Q Q 3. Määritä ll olevn kuvn virtpiiristä lähdejännitteet ε1 j ε2 sekä pisteen b potentiliero pisteeseen nähden.
2 4. Pitkässä suorss virtjohtimess kulkee virt I, kuten ll olevss kuvss on esitetty. Suorkiteen muotoinen virtsilmukk, jonk lyhyiden sivujen pituus on j pitkien sivujen pituus b, on lähellä virtjohdint smss tsoss johtimen knss siten, että silmukn pitkät sivut ovt yhdensuuntiset johtimen knss. Virtsilmukk liikutetn kohti johdint nopeudell v. Määritä silmukkn indusoitunut jännite j indusoituneen virrn suunt. b 5. Hyvin pitkä suv on vrttu tsisesti siten, että vrus pituusyksikköä kohti on λ. ) Lske sähkökenttä pisteessä P, jok on etäisyydellä suvn toisest päästä suvn kutt kulkevll (kuvitteellisell) suorll. Ktso kuv! b) Lske potentili -kohdss esitellyssä pisteessä P. P 6. Tsolevykondensttorin toisess levyssä on pintvrustiheys +σ j toisess σ. Levyjen välissä on eristettä, jonk eristevkio on ε. Määritä E-kenttä, D-kenttä j P-kenttä eristeessä sekä polrisoitunut pintvrustiheys eristeen pinnoill. 7. ) Äärettömän lj johtv tso on setettu sähkökenttään E siten, että sähkökenttä on kohtisuorss tso vstn. Määritä tson pintoihin indusoitunut vruskte σ. b) Äärettömän lj eristeestä vlmistettu tso (eristevkio ε) on setettu sähkökenttään E siten, että sähkökenttä on kohtisuorss tso vstn. Määritä pintvrustiheys tson molemmill pinnoill. E
3 8. All olevss kuvss on ilmtäytteinen toroidi, jonk keskisäde on j poikkipint-l S. Toroidiss on N johdinkierrost j siinä kulkee virt I. Ympyränmuotoinen (säde r) virtsilmukk on setettu kuvn mukisesti toroidin ympärille. ) Määritä B-kenttä toroidin sisällä. b) Määritä mgneettivuo toroidin sisällä. c) Määritä virtsilmukn läpi kulkev mgneettivuo. d) Määritä toroidin j virtsilmukn välinen keskinäisinduktnssi. S 9. Kel, kondensttori j kksi identtistä vstust on kytketty vihtojännitelähteeseen ll olevn kuvn mukisesti. Vstuksien resistnssi on = 200 Ω, keln induktnssi L = 5,00 H, kondensttorin kpsitnssi C = 50,0 µf, jännitteen kulmtjuus ω = 50,0 rd j jännitteen mplitudi V0 = 50,0 V. Määritä ylemmän hrn kompleksinen virt IYLÄ j lemmn hrn kompleksinen virt IALA. I YLÄ C IKOK I ALA L ~
4 10. All olevss kuvss on toroidi, jonk ympärillä on NT johdinkierrost. Toroidin poikkipintl on ST j pituus L. Toroidi lävistää hyvin lyhyen ympyränmuotoisen keln, joss on NK johdinkierrost j jonk pint-l on SK. Systeemissä ei ole ferromgneettisi mterilej. Mikä on systeemin keskinäisinduktnssi? 11. All olevss kuvss on kel (induktnssi L) j vstus (resistnssi 2) kytketty srjn j niiden rinnlle on kytketty kondensttori (kpsitnssi C). Kolmen edellä minitun komponentin muodostmn systeemin knss srjn on kytketty vstus, jonk resistnssi on 1. Määritä koko systeemin impednssi. L 2 1 C 12. ) Kirjoit Mxwellin yhtälöt tyhjiössä. b) Kerro ilmn kvoj, mitä nämä Mxwellin yhtälöt kuvvt. 13. Ljn johdekppleen yksi pint on tso, joss on vkiovruskte. Pisteen P j tson välinen potentiliero on V0. Pisteen P etäisyys tsost on y. Määritä tson vruskte. P y
5 14. ) Lske sähkökenttä, kun sähköstttinen potentili on muoto x dz b y ce 2 missä, b, c j d ovt vkioit. b) Lske, millinen vrustiheys iheutt )-kohdn mukisen potentilin All olevn kuvn mukisess toroidiss on rutsydän. Toroidin j rutsydämen pituus on L j poikkipint-l A. utsydämen suhteellinen permebiliteetti on μ. Olet permebiliteetti vkioksi. Toroidiss kulkee virt I j siinä on N johdinkierrost. Lske B-kenttä, H-kenttä j mgnetoitum rutsydämessä sekä pintvirt rutsydämen pinnss. 16. Käytettävissä on kksi pitkää poikkipint-lltn ympyränmuotoist suor solenoidi. Poikkipint-lt ovt S1 j S2, S1 > S2. Johdinkierrosten lukumäärä pituusyksikköä kohden on molemmiss sm n j solenoidien pituus on myös sm. ) Miten solenoidit tulee sett, jott niiden keskinäisinduktnssi on mhdollisimmn suuri? Perustele! b) Lske solenoidien välinen keskinäisinduktnssi )-kohdss esittämässäsi tilnteess.
766319A Sähkömagnetismi, 7 op Kertaustehtäviä, 1. välikokeen alue Vastaukset tehtävien jälkeen
76619A Sähkömgnetismi, 7 op Kertustehtäviä, 1. välikokeen lue Vstukset tehtävien jälkeen 1. Kolme pistevrust sijitsee xy-koordintistoss ll olevn kuvn mukisesti. Vrus +Q sijitsee kohdss x =, toinen vrus
Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä. Tentaattorina on ollut näissä tenteissä sama henkilö kuin tänä vuonna eli Hanna Pulkkinen.
Tässä on vnhoj Sähkömgnetismin kesäkurssin tenttejä. Tentttorin on ollut näissä tenteissä sm henkilö kuin tänä vuonn eli Hnn Pulkkinen. 766319A Sähkömgnetismi, kesäkurssi 2012 Päätekoe 11.6.2012 1. Esitä
Teoriaa tähän jaksoon on talvikurssin luentomonisteessa luvussa 10. Siihen on linkki sivulta
Jkso 10. Sähkömgneettinen induktio Näytä ti plut tämän jkson tehtävät viimeistään tiistin 13.6.2017. Ekstr-tehtävät vstvt kolme tvllist tehtävää, kun lsketn lskuhrjoituspisteitä. Teori tähän jksoon on
Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.
Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä
a P en.pdf KOKEET;
Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten
SATE1050 Piirianalyysi II syksy kevät / 8 Laskuharjoitus 12 / Siirtojohdot taajuusalueessa, ketjumatriisi
SAT5 Piirinlyysi syksy 6 kevät 7 / 8 Tehtävä. Lske kuvss esitetyssä piirissä sisäänmenoimpednssi siirtojohdon ketjumtriisin vull, kun ) johdon loppupää on voin ) johdon loppupää on oikosuljettu c) johto
Sähkömagneettinen induktio
ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä
SATE1140 Piirianalyysi, osa 1 kevät /7 Laskuharjoitus 9: Teheveninin ja Nortonin menetelmät
SATE1140 Piirinlyysi, os 1 kevät 2018 1 /7 Tehtävä 1. Lske ortonin menetelmän vull ll olevss kuvss esitetyssä piirissä jännite U 3. 20 A, E 345 V, E 660 V, Z 130, Z 30, Z 545. 3 Z 1 Z 2 E 2 Z 3 U 3 Kuv
Ristitulo ja skalaarikolmitulo
Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden
SATE.2010 Dynaaminen kenttäteoria syksy / 5 Laskuharjoitus 1: Siirrosvirta ja indusoitunut sähkömotorinen voima
ATE.1 Dynminen kenttäteori syksy 11 1 / 5 Lskuhrjoitus 1: iirrosvirt j inusoitunut sähkömotorinen voim Tehtävä 1. Määritä tjuus, millä johtvuusvirrn tiheys on kksinkertinen verrttun siirrosvirrn tiheyteen
SATE2140 Dynaaminen kenttäteoria syksy / 6 Laskuharjoitus 0: Siirrosvirta ja indusoitunut sähkömotorinen voima
ATE14 Dynminen kenttäteori syksy 1 1 / skuhrjoitus : iirrosvirt j inusoitunut sähkömotorinen voim Tehtävä 1. All olevss kuvss esitetyssä pitkässä virtlngss kulkee virt i 1 (t) j sen vieressä on kuvn mukinen
SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 7 / Kapasitanssi ja eristeaineet
SATE0 Stttinen kenttäteoi kevät 07 / Lskuhjoitus 7 / Kpsitnssi j eisteineet Tehtävä. All olevss kuvss sisimmän johteen ( = mm) potentilieo uloimpn johtimeen ( = 00 mm) nähen on 40 V. Alueell < < 50 mm
Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen
Jakso 8. Ampèren laki Esimerkki 8.: Johda pitkän suoran virtajohtimen (virta ) aiheuttaman magneettikentän lauseke johtimen ulkopuolella etäisyydellä r johtimesta. Ratkaisu: Käytetään Ampèren lakia C 0
SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 7 / Kapasitanssi ja eristeaineet
ATE0 tttinen kenttäteoi kevät 06 / 6 Lskuhjoitus 7 / Kpsitnssi j eisteineet Tehtävä. Kuvss esitetyn kpelin sisimmän johteen ( =,5 mm) potentilieo uloimpn johtimeen ( = 00 mm) nähen on 00. Alueell,5 <
b) (max 3p) Värähtelijän jaksonajan ja taajuuden välinen yhteys on T = 1/ f (++), eli
1 Lbortoriokokeess keveen kierrejouseen ripustettiin eri mssisi punnuksi. Punnust vedettiin lspäin j sntneen hrmonisen värähteln jksonik mitttiin. Värähtelijän tjus f = 2π 1 k mp. Oheisess tulukoss on
9 A I N. Alkuperäinen piiri. Nortonin ekvivalentti R T = R N + - U T = I N R N. Théveninin ekvivalentti DEE-11110 SÄHKÖTEKNIIKAN PERUSTEET
DEE11110 SÄHKÖTEKNIIKAN PERUSTEET http://www.tut.fi/smg/course.php?id=57 Rtkisut Hrjoitukset 3, 2014 Tehtävä 1. Pyydetään muodostmn nnetun piirin Nortonin ekvivlentti. Nortonin, smoin kuin Theveninin,
SATE.10xx Staattisen kenttäteorian laajentaminen Sähkömagneettiseksi kenttäteoriaksi
ATE.1xx tttisen kenttäteorin ljentminen ähkömgneettiseksi kenttäteoriksi syksy 212 1 / 5 skuhrjoitus 1: iirrosvirt j inusoitunut sähkömotorinen voim Tehtävä 1. Määritä tjuus, millä johtvuusvirrn tiheys
Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina
Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain
b) (max 3p) Värähtelijän jaksonajan ja taajuuden välinen yhteys on T = 1/ f, eli missä k on jousen jousivakio. Neliöimällä yllä oleva yhtälö saadaan
A1 Lbortoriokokeess keveen kierrejouseen ripustettiin eri mssisi punnuksi. Punnust vedettiin lspäin j sntneen hrmonisen värähteln jksonik mitttiin. Värähtelijän tjus f = 2π 1 k mp. Oheisess tulukoss on
ELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö j mgnetismi (5 op) Henrik Wllén Kevät 2018 Tämä luentomterili on suurelt osin Smi Kujln j Jri J. Hännisen tuottm Luentoviikko 3 Sähköpotentili (YF 23) Oppimistvoitteet Sähköinen potentilienergi
766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN
766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN Laske nämä tehtävät, jos koet, että sinulla on aukkoja Soveltavan sähkömagnetiikan perusasioiden hallinnassa. Älä välitä tehtävien numeroinnista.
7.lk matematiikka. Geometria 1
7.lk mtemtiikk 1 Htnpään koulu 7B j 7C Kevät 2017 2 Sisällys 1. Koordintisto... 4 2. Kulmien nimeäminen j luokittelu... 8 3. Kulmien mittminen j piirtäminen... 10 4. Ristikulmt j vieruskulmt... 14 5. Suort,
A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta.
MAA Loppukoe 5.. Jussi Tyni Tee pisteytysruudukko konseptin yläreunn! Vstuksiin väliviheet, jotk perustelevt vstuksesi! Lue ohjeet huolellisesti! A-Osio. Vlitse seurvist kolmest tehtävästä kksi, joihin
θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö
22 LINSSIT JA LINSSIJÄRJSTLMÄT 22. Linssien kuvusyhtälö Trkstelln luksi vlon tittumist pllopinnll (krevuussäde R j krevuuskeskipiste C) kuvn mukisess geometriss. Tässä vlo siis tulee ineest ineeseen 2
Sähköstaattinen potentiaalienergia lasketaan jatkuville varausjakaumille käyttäen energiatiheyden
Jkso 4. Sähkösttkst muut Tämän oson lskuj e tvtse nättää. Tämän jkson tehtävät ovt sllsltt el tähän on ksttu kkk ne sähkösttkn st, jot e kästelt edellsssä jksoss. Se e tkot, että nämä st evät ols täketä.
4.1 Sähkökentän vaikutus atomeihin ja molekyyleihin
Luku 4 Eristeet 4.1 Sähkökentän vikutus tomeihin j molekyyleihin Eristeet ovt ineit, joiss kikki elektronit ovt sitoutuneit tomeihin ti molekyyleihin, eivätkä voi liikku vpsti kuten johde-elektronit johteiss.
33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ
TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien
Coulombin laki. Sähkökentän E voimakkuus E = F q
Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =
Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan
Luku 6 Sähköstatiikan reunaehtoproleemat 6.1 Laplacen ja Poissonin yhtälöt Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan ( φ) = ρ ε 0, (6.1) josta 2 φ = ρ ε 0. (6.2) Tämä tulos on nimeltään
Kuva 1. n i n v. (2 p.) b) Laske avaimiesi etäisyys x altaan seinämästä. (4 p.) c) Kuinka paljon lunta voi sulaa enintään Lassen suksien alla?
TKK, TTY, LTY, OY, ÅA, TY j VY insinööriosstojen vlintkuulustelujen fysiikn koe 26.5.2004 Merkitse jokiseen koepperiin nimesi, hkijnumerosi j tehtäväsrjn kirjin. Lske jokinen tehtävä siististi omlle sivulleen.
S1 S2 U 1 I 4 R 1 U 2. Solmu 1 I 3 R 1 R 2 R 3 I R 1 U 12 R 2 I 1 I 2 I 4 I 5 OK1, 2010 OK1, Kuva1. 40mA. 10 Kuva2 R 2. Kuva3.
V 40mA 00 Kuv 0 40 0 Kuv OK, 008. Muunn kuvn piiri virtlähteeksi j rinnkkisresistnssiksi (piirrä lopputulos).. Lske kuvn piiristä 0 :n vstuksen läpi kulkev virt. Ovtko kikki piirin vstukset keskenään rinnnkytkettyjä?
Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1
Pinopiste Snomme ts-ineiseksi kpplett, jonk mteriliss ei ole sisäisiä tiheyden vihteluj. Tällisen kppleen pinopisteen sijinti voidn joskus päätellä kppleen muodon perusteell. Esimerkiksi ts-ineisen pllon
Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä
Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä
LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat
(0) LINSSI- JA PEILITYÖ MOTIVOINTI Tutustutn linsseihin j peileihin geometrisen optiikn mittuksiss Tutkitn vlon käyttäytymistä linsseissä j peileissä Määritetään linssien j peilien polttopisteet Optiset
RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m
1. Johtuvia häiiöitä mitataan LISN:n avulla EN55022-standadin mukaisessa johtuvan häiiön mittauksessa. a. 20 MHz taajuudella laite tuottaa 1.5 mv suuuista häiiösignaalia. Läpäiseekö laite standadin B-luokan
Jakso 7. Lorentz-voima
Jkso 7. Loentz-voim Mgnetismi-ilmiö on monelle mysteei. Siksi sen vull voidn helposti huijt ihmisiä j myydä kiken milmn polttoineen säästäjiä utoihin. Edelleen on kuitenkin kysymys Coulombin voimst eli
Jakso 5. Johteet ja eristeet Johteista
Jakso 5. Johteet ja eristeet Johteista Johteet ja eristeet käyttäytyvät sähkökentässä eri tavalla. Koska johteessa on vaaasti liikkuvia varauksia, ne siirtyvät joko sähkökentän suuntaan (ositiiviset varaukset)
a) Lasketaan sähkökenttä pallon ulkopuolella
Jakso 2. Gaussin laki simerkki 2.1: Positiivinen varaus Q on jakautunut tasaisesti R-säteiseen palloon. Laske sähkökenttä pallon a) ulkopuolella ja b) sisäpuolella etäisyydellä r pallon keskipisteestä.
Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän
3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina
Tee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi!
MAA8 Koe 4.4.016 Jussi Tyni Tee B-osion konseptiin etusivulle pisteytysruudukko! Muist kirjt nimesi j ryhmäsi. Väliviheet perustelevt vstuksesi! A-osio. Ilmn lskint. MAOLi s käyttää. Mksimissn 1h ik. Lske
( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x,
Pyrmidi Anlyyttinen geometri tehtävien rtkisut sivu Päivitetty 9..6 8 Prbeli on niiden pisteiden (, y) joukko, jotk ovt yhtä kukn johtosuorst j polttopisteestä. Pisteen (, y ) etäisyys suorst y = on d
Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio
Sähkömagnetismi 2 Aiheena tänään Virtasilmukka magneettikentässä Sähkömagneettinen induktio Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Käämiin vaikuttava momentti Magneettikentässä olevaan
Elektrodynamiikan tenttitehtäviä kl 2018
Elektrodynamiikan tenttitehtäviä kl 2018 Seuraavista 30 tehtävästä viisi tulee Elektrodynamiikka I:n loppukokeeseen 6.3.2018. Koska nämä tehtävät ovat kurssin koetehtäviä, vihjeitä niiden ratkaisemiseen
SATE2180 Kenttäteorian perusteet syksy / 5 Laskuharjoitus 5 / Laplacen yhtälö ja Ampèren laki
STE80 Kenttäteorian perusteet syksy 08 / 5 Tehtävä. Karteesisessa koordinaatistossa potentiaalin nollareferenssitaso on y = 4,5 cm. Määritä johteelle (y = 0) potentiaali ja varaustiheys, kun E = 6,67 0
Fysiikka 1. Kondensaattorit ja kapasitanssi. Antti Haarto
Fysiikka Konensaattorit ja kapasitanssi ntti Haarto 4..3 Yleistä Konensaattori toimii virtapiirissä sähköisen potentiaalin varastona Kapasitanssi on konensaattorin varauksen Q ja jännitteen suhe Yksikkö
Sisällys. Alkusanat. Alkusanat. Tehtävien ratkaisuja
Sisällys Alkusnt Tehtävien rtkisuj Vektorit (MAA) Vektoreill lskeminen Vektorit geometrin käytössä 9 Vektorit koordintistoss Lisätehtäviä Todennäköisyys j tilstot (MAA) Tilstot Todennäköisyys Todennäköisyysjkum
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Mat Systeemien Identifiointi. 4. harjoitus
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.4129 Systeemien Identifiointi 4. harjoitus 1. a) Laske valkoisen kohinan spektraalitiheys. b) Tarkastellaan ARMA-prosessia C(q 1 )y = D(q 1 )e,
Kirjallinen teoriakoe
11 Kirjllinen teorikoe Päivämäärä: Osllistujn nimi: Kirjllinen teorikoe Arviointi koostuu khdest osst: "yleiset kysymykset "j lskutehtävät" Kokeen hyväksytty rj on 51% molemmist osioist erikseen. St 1
Asennusohje EPP-0790-FI-4/02. Kutistemuovijatkos Yksivaiheiset muovieristeiset. Cu-lanka kosketussuojalla 12 kv & 24 kv.
Asennusohje EPP-0790-FI-4/02 Kutistemuovijtkos Yksiviheiset muovieristeiset kpelit Cu-lnk kosketussuojll 12 kv & 24 kv Tyyppi: MXSU Tyco Electronics Finlnd Oy Energy Division Konlntie 47 F 00390 Helsinki
10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA
MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion
Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut
Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.
Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto
ysiikka 1 Coulombin laki ja sähkökenttä Antti Haarto 7.1.1 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä voi syntyä
Preliminäärikoe Pitkä Matematiikka 5.2.2013
Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)
Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO
Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten
RTS 16:2. Tässä ohjeessa esitetään ajoneuvojen ja yleisimpien autotyyppien mittoja, massoja sekä liikenteeseen hyväksymistä koskevia rajoituksia.
RTS 16:2 RT XX-XXXXX KH XX-XXXXX Infr x-x AJONEUVOJEN MITTOJA OHJEET xxxkuu 2016 1 (8) korv RT 98-10914 Tässä ohjeess esitetään joneuvojen j yleisimpien utotyyppien mittoj, mssoj sekä liikenteeseen hyväksymistä
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän
VEKTOREILLA LASKEMINEN
..07 VEKTOREILL LSKEMINEN YHTEENLSKU VEKTORIT, M4 Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on vektorin
VEKTOREILLA LASKEMINEN
3..07 VEKTOREILLA LASKEMINEN YHTEENLASKU VEKTORIT, MAA Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on
RATKAISUT: 18. Sähkökenttä
Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että
Asennusopas. Daikin Altherma - Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi
Dikin Altherm - Mtln lämpötiln Monolocin vrlämmitin EKMBUHCAV EKMBUHCA9W Suomi Sisällysluettelo Sisällysluettelo Tietoj sikirjst. Tieto tästä sikirjst... Tietoj pkkuksest. Vrlämmitin..... Vrusteiden poistminen
Riemannin integraalista
Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:
766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua
7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri
FYSP1082 / K4 HELMHOLTZIN KELAT
FYSP1082 / K4 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funktiona. Sähkömagnetismia ja
Johdanto. 1 Teoriaa. 1.1 Sähkönjohtimen aiheuttama magneettikenttä
FYSP105 / K2 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funtiona. Sähkömagnetismia ja työssä
Magneettikentät. Haarto & Karhunen. www.turkuamk.fi
Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan
R4 Harjoitustehtävien ratkaisut
. Mitkä seurvist lusekkeist eivät ole polynomej? Miksi eivät? Polynomin termine eksponentti on luonnollinen luku, ne lusekkeet, joiss eksponentti ei ole luonnollinen luku ei ole myöskään polynomi.. x x
Suorakaidekanavat. lindab suorakaidekanavat
Suorkideknvt lind suorkideknvt lind suorkideknvt Sisällysluettelo Suorkideknvt Knv LKR... Liitosost Liitoslist LS... Liitoslist LS-... Kulmyhde LBR... Liitoslist LS... S-mutk LBXR... LBSR... Liitoslist
Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan
3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden
ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jussi Sievänen, n86640 Tuomas Yli-Rahnasto, n85769 Markku Taikina-aho, n85766 SATE.2010 Dynaaminen Kenttäteoria ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA
VEKTORILASKENTA. Timo Mäkelä SISÄLTÖ: 1 VEKTORIN KÄSITE...1
VEKTORILASKENTA Timo Mäkelä SISÄLTÖ: VEKTORIN KÄSITE VEKTOREIDEN ERUSLASKUTOIMITUKSET VEKTOREIDEN YHTEENLASKU VEKTOREIDEN VÄHENNYSLASKU 4 VEKTORIN KERTOMINEN LUVULLA6 4 VEKTORILAUSEKKEIDEN KÄSITTELY7 TASON
MITEN MÄÄRITÄN ASYMPTOOTIT?
MITEN MÄÄRITÄN ASYMPTOOTIT? Asmptootti Asmptootti on suor ti muu kärä, jot funktion kuvj f() rjtt lähest, kun muuttujn rvot lähestvät tiettä luku ti ääretöntä. Rjoitutn luksi niihin tpuksiin, joiss smptootti
5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Hrjoitustehtäviä syksy 4. Millä reliluvun rvoill ) 9 =, b) + +, e) 5?. Kirjoit Σ-merkkiä käyttäen summt 4, ) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + + 4 + + 99, d)
.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek
S-446, FYSIIKKA IV (Sf) Kevät 5, HSf Rtkisut HSf- Kvnttimekninen hrmoninen värähtelijä on perustillln (mss m) Värähtelyn mplitudi on A () ske p (Värähtelijä sijitsee välillä A ) (b) Vert p :tä vstv kineettistä
II.1. Suppeneminen., kun x > 0. Tavallinen lasku
II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä
Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan
Luku 27 Magnetismi Mikä aiheuttaa magneettikentän? Magneettivuon tiheys Virtajohtimeen ja varattuun hiukkaseen vaikuttava voima magneettikentässä Magneettinen dipoli Hallin ilmiö Luku 27 Tavoiteet Määrittää
4 Pinta-alasovelluksia
Pint-lsovelluksi. Kuvjn lle jäävä pint-l voidn määrittää, jos kuvj on -kselin yläpuolell. Välillä [, 5] funktion f kuvj on -kselin lpuolell. Peiltn funktion f kuvj -kselin suhteen, jolloin sdn funktion
SATE2180 Kenttäteorian perusteet syksy / 6 Laskuharjoitus 7 / Siirrosvirta ja indusoitunut sähkömotorinen voima
ATE18 Kenäeorin perusee syksy 18 1 / 6 Lskuhrjoius 7 / iirrosvir j inusoiunu sähkömoorinen voim Tehävä 1. All olevn kuvn mukinen piiri on sinimuooisesi värähelevässä j epähomogeenisess mgneeikenässä sin
Säännöllisten operaattoreiden täydentäviä muistiinpanoja
Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS
0 MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 30 PISTEYTYSKOKOUS 0 ) Sijoitetn x 0 Rtkistn = 0/04,0000 b) Jos neliön sivu on s, niin lävistäjä on s Ehto: s 6 s + s = 6, s 6 3 4s 6,70, joten piiri ) Suorn yhtälö
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 8 / versio 3. marraskuuta 2015 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 8. marraskuuta 2016 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu Tasoaaltoyhtälöt
Kapasitiivinen ja induktiivinen kytkeytyminen
Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina
Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7
Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput
14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä.
Luku 14 Lineaaripiirit Lineaaripiireillä ymmärretään verkkoja, joiden jokaisessa haarassa jännite on verrannollinen virtaan, ts. Ohmin laki on voimassa. Lineaariset piirit voivat siis sisältää jännitelähteitä,
601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44,
Pyrmidi 3 Geometri tehtävien rtkisut sivu 08 60 Olkoon tuntemton kteetti j tuntemttomt kulmt j β Rtkistn kulmt. 8,4 cos 8,4 cos 45,579... 46 β 90 60 4 Rtkistn vrjon pituus 3 44,470... 44 Rtkistn kteetti.
11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS
11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.
1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla
Fy3: Sähkö 1. Tasavirta Virtapiirin komponenttien piirrosmerkit Virtapiiriä havainnollistetaan kytkentäkaaviolla Sähkövirta I Sähkövirran suunta on valittu jännitelähteen plusnavasta miinusnapaan (elektronit
Viivaintegraali: "Pac- Man" - tulkinta. Viivaintegraali: "Pac- Man" - tulkinta. "Perinteisempi" tulkinta: 1D 3/19/13
Viivintegrli: "Pc- Mn" - tulkint Otetn funk:o f(,), jok riippuu muudujist j. Jokiselle, tson pisteellä funk:oll on siis joku rvo. Tpillisiä fsiklis- kemillisi esimerkkejä voisivt oll esimerkiksi mss:hes
SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV
SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV Faradayn laki E B t Muuttuva magneettivuon tiheys B aiheuttaa ympärilleen sähkökentän E pyörteen. Sähkökentän
TOROIDIN MAGNEETTIKENTTÄ
TOROIDIN MAGNEETTIKENTTÄ 1 Johdanto Suljettu virtasilmukka synnyttää ympärilleen magneettikentän. Kun virtasilmukoita liitetään peräkkäin yhteen, saadaan solenoidi ja solenoidista puolestaan toroidi, kun
Kertaustehtävien ratkaisut
Rtkisuist Nämä Trigoometriset fuktiot j lukujoot kurssi kertustehtävie j -srjoje rtkisut perustuvt oppikirj tietoihi j meetelmii. Kustki tehtävästä o yleesä vi yksi rtkisu, mikä ei kuitek trkoit sitä,
1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [
1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x
= ωε ε ε o =8,853 pf/m
KUDOKSEN POLARISOITUMINEN SÄHKÖKENTÄSSÄ E ε,, jε r, jε, r i =,, ε r, i r, i E Efektiivinen johtavuus σ eff ( ω = = ωε ε ε o =8,853 pf/m,, r 2πf ) o Tyypillisiä arvoja radiotaajuukislla Kompleksinen permittiivisyys
Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.
KOLMIULOTTEISI KPPLEIT Tsogeometriss käsiteltiin kuvioit vin ydessä tsoss. vruusgeometriss tsoon tulee kolms ulottuvuus, jolloin sdn kppleen tilvuus. SUORKULMINEN SÄRMIÖ Suorkulmisess särmiössä kikki kulmt
SUORAKULMAINEN KOLMIO
Clulus Lukion Täydentävä ineisto 45 0 45 60 ( - ) + SUORKULMINEN KOLMIO Pvo Jäppinen lpo Kupiinen Mtti Räsänen Suorkulminen kolmio Suorkulminen kolmio Käsillä olev Lukion Clulus -srjn täydennysmterili
Luku 23. Esitiedot Työ, konservatiivinen voima ja mekaaninen potentiaalienergia Sähkökenttä
Luku 23 Tavoitteet: Määritellä potentiaalienergia potentiaali ja potentiaaliero ja selvittää, miten ne liittyvät toisiinsa Määrittää pistevarauksen potentiaali ja sen avulla mielivaltaisen varausjakauman
T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.
T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä
Jäykän kappaleen tasokinetiikka harjoitustehtäviä
ynmiikk 1 Liite lukuun 6. Jäykän kppleen tskinetiikk - hrjitustehtäviä 6.1 vlvpkettiutn mss n 1500 kg. ut lähtee levst liikkeelle 10 % ylämäkeen j svutt vkikiihtyvyydellä npeuden 50 km / h 1 10 60 m mtkll.
Eristeet. - q. Johdannoksi vähän sähköisestä dipolista. Eristeistä
risteet Johdannoksi vähän sähköisestä diolista Diolin muodostaa kaksi itseisarvoltaan yhtä suurta vastakkaismerkkistä varausta, jotka ovat lähellä toisiaan. +q - q a Jos diolin varauksien itseisarvo on