3.3 Funktion raja-arvo
|
|
- Hanna-Mari Laine
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε. Raja-arvoa varten riittää tarkastella jonoja z n z 0, z n A\{z 0 }. Funktiolla on raja-arvo c, jos ja vain jos kaikille tällaisille jonoille on voimassa lim f(z n) = c. n Esimerkki. f(z) = Re z z on määritelty joukossa A = C\{0} ja 0 A. Onko olemassa raja-arvoa lim f(z)? z 0 Olkoon z n = 1. Silloin Re z n n = 1 = z n n ja f(z n ) = Re z = 1, joten z lim n f(z n ) = 1, lim z n = 0. Olkoon z n = i. Silloin Re z n n = 0 ja f(z n ) = 0, joten lim n f(z n ) = 0, lim z n = 0. Raja-arvoa ei siis ole olemassa. Funktio f on jatkuva pisteessä z 0 A, jos lim z z 0 f(z) = f(z 0 ). Kuvaus f on jatkuva joukossa A, jos se on jatkuva jokaisessa A:n pisteessä. Oletetaan, että A on avoin joukko. Silloin f : A B on jatkuva, jos ja vain jos jokaisen avoimen joukon U C alkukuva f 1 (U) on avoin. Funktio f = u + iv on jatkuva, jos ja vain jos u : A R ja v : A R ovat jatkuvia. Olkoon I = [0, 1] yksikköväli. Polulla γ tarkoitetaan jatkuvaa kuvausta γ : I C Tällöin γ(0) on polun alkupiste, γ(1) on polun loppupiste ja γ(i) on polun kantaja eli jälki. Jos γ(i) A, niin γ on joukon A polku. Pisteet γ(0) ja γ(1) on tällöin yhdistetty polulla γ joukossa A. Jos A:n kaksi pistettä voidaan aina yhdistää polulla A:ssa, niin A on polkuyhtenäinen. Jos A on lisäksi avoin, niin A on alue. Esimerkiksi joukko {z Im z = 0} on polkuyhtenäinen, mutta se ei ole avoin. Sen sijaan esimerkiksi yksikkökiekko U(0, 1) on sekä avoin että polkuyhtenäinen, eli siis alue. Polkuyhtenäisen joukon kuva jatkuvassa kuvauksessa on polkuyhtenäinen (kuva 32). 45
2 γ x γ(i) y A f f(y) f γ(i) f(x) B = f(a) Kuva 32: Polkuyhtenäisen joukon kuva jatkuvassa kuvauksessa on polkuyhtenäinen 3.4 Analyyttinen funktio Olkoon f : G C kuvaus, G C. Jotta voisimme derivoida, joudumme olettamaan, että G on avoin joukko. Integrointia varten joudumme olettamaan, että G on polkuyhtenäinen. Avoimet ja yhtenäiset joukot ovat alueita. Jatkossa oletamme siis yleensä, että funktioden määrittelyjoukot ovat alueita. z r r z + 0 U(z, r) U(0, r) Kuva 33: Olkoon G alue ja z G. Tällöin on olemassa r > 0 siten, että U(r, z) = {z + < r} G. Funktio f(z + ) f(z) h() = on määritelty punkteeratussa kiekossa U (0, r) = { 0 < < r} = U(0, r)\{0} 46
3 ja 0 on U (0, r):n kasautumispiste (kuva 33). Edellä olleen määritelmän mukaisesti voidaan tutkia raja-arvon a = lim 0 h() = lim 0 f(z + ) f(z) olemassaoloa. Jos tämä raja-arvo on olemassa, niin f on differentioituva pisteessä z ja luku a = f (z) on f:n derivaatta tässä pisteessä. Funktio, joka on differentioituva alueen G jokaisessa pisteessä, on analyyttinen G:ssä. Analyyttisyyden määritelmä on erittäin vahva. Siitä seuraa mm., että myös f on analyyttinen, jolloin edelleen f on analyyttinen jne. Analyyttisellä funktiolla on siis kaikkien kertalukujen derivaatat. Vastaava tulos ei tietenkään päde differentioituville reaalifunktioille. Funktio on analyyttinen pisteessä z, jos se on analyyttinen jossakin tämän pisteen ympäristössä. Kompleksifunktion derivaatan määrittely erotusosamäärän avulla on mahdollista, koska kompleksiluvut voidaan jakaa keskenään. Jos tarkastellaan vektorimuuttujan x R n vektoriarvoisia funktioita f : R n R n, niin derivaatan määrittely tällä tavalla ei onnistu, kun n 3. Tämä johtuu siitä, että lukualuetta ei voida laajentaa tasoa useampiulotteiseksi. (Hamilton ja kvaternionit 1844.) Kirjoitetaan f(z + ) f(z) ε() = a. Silloin f(z + ) f(z) = a + ε(), (8) joten a on funktion f derivaatta pisteessä z, jos ja vain jos kehitelmä (8) pätee ja ε() 0, kun 0. Tätä kautta kompleksinen derivaatta a = f (z) ja Analyysi 4:n yleinen derivaatta (lineaarikuvauksena) liittyvät toisiinsa. Esimerkkejä. 1. Vakiokuvaus f(z) = c on analyyttinen koko tasossa ja f (z) 0, sillä f(z + ) f(z) = Tässä 0 = f (z) ja ε() Identtinen kuvaus f(z) z on analyyttinen koko tasossa ja f (z) 1, sillä f(z + ) f(z) = = Tässä 1 = f (z) ja ε() Funktio f(z) = z 2 on analyyttinen koko tasossa ja f (z) = 2z, sillä f(z + ) f(z) = (z + ) 2 z 2 = z 2 + 2z + 2 z 2 = 2z +. 47
4 Tässä f (z) = 2z ja ε() = 0, kun Funktiolla f(z) = z ei ole derivaattaa missään pisteessä z C. Todistus. Tarkastellaan erotusosamäärää säteillä(kuva (34) f(z + ) f(z) = z + z = t, t > 0 ja = it, t > 0. = it te iϕ ϕ t Kuva 34: f(z + ) f(z) f(z + ) f(z) = 1, kun = t > 0 = it it = 1, kun = it, t > 0. Annetaan t 0+. Erotusosamäärällä on eri raja-arvot (1 ja -1) näillä säteillä, joten sillä ei ole raja-arvoa kompleksitason topologiassa. On mielenkiintoista huomata, että erotusosamäärällä on raja-arvo jokaisella origosta lähtevällä -tason säteellä = te iϕ : f(z + ) f(z) = = te iϕ te iϕ = e 2iϕ = cos 2ϕ i sin 2ϕ. Jokaisella origon kautta kulkevalla suoralla saadaan eri raja-arvo. Kehitelmän (8) avulla voidaan tavalliseen tapaan perustella summan, tulon, osamäärän, käänteisfunktion ja yhdistetyn funktion derivointikaavat 48
5 kompleksifunktioille. Esimerkiksi, jos niin joten f 1 (z + ) f 1 (z) = a 1 + ε 1 (), f 2 (z + ) f 2 (z) = a 2 + ε 2 (), (f 1 + f 2 )(z + ) (f 1 + f 2 )(z) = (a 1 + a 2 ) + (ε 1 () + ε 2 ()), (f 1 + f 2 ) (z) = f 1(z) + f 2(z). Käänteisfunktion derivaatta: Oletetaan, että funktiolla f on pisteessä z derivaatta f (z) 0 ja että pisteellä z on ympäristö U siten, että käänteisfunktio f 1 on määritelty ja jatkuva pisteen = f(z) V = f(u). Silloin f 1 on differentioituva pisteessä ja ( f 1 ) () = 1 f (z) = 1 f (f 1 ()). Todistus. (Huomaa merkinnän muuttuminen. Nyt on = f(z). Merkitään siksi z:n lisäystä h:lla (kuva 35).) z z + h U f + k = f(z + h) = f(z) V = f(u) Kuva 35: Oletusten nojalla f : U V on jatkuva bijektio, jonka käänteiskuvaus f 1 : V U on jatkuva. Jos + k V, k 0, niin merkitään f 1 ( + k) = z + h. Silloin h 0 ja k 0 jos ja vain jos h 0. Silloin f 1 ( + k) f() k = = z + h z f(z + h) f(z) = h f (z)h + hε(h) 1 f (z) + ε(h) 1, kun k 0. f (z) Esimerkki. Funktio f(z) = z 2 49
6 H f = f(z) = z 2 E z = f 1 () = Kuva 36: Kuvaus z z 2 on injektio ylemmässä puolitasossa H on injektio ylemmässä puolitasossa H = {z Im z > 0} ja E = f(h) on pitkin positiivista reaaliakselia aukileikattu taso C\[0, [. Neliöjuuri voidaan määritellä kuvauksena f 1 : E H. Merkitään f 1 () =. Osoitetaan, että f 1 on jatkuva E:ssä. Olkoon 1, 2 E ja z 1 = x 1 + iy 1 = 1 z 2 = x 2 + iy 2 = 2, jolloin y 1 > 0 ja y 2 > 0. Saadaan arvio 2 1 = z 2 2 z1 2 = z 2 z 1 z 1 + z 2 = z 2 z 1 (x 1 + x 2 ) 2 (y 1 + y 2 ) 2 z 2 z 1 (y 1 + y 2 ) > y 1 z 2 z 1, mistä saadaan z 2 z 1 < 2 1 y 1. Pidetään 1 (ja siis myös y 1 ) vakiona ja annetaan 2 1. Silloin 2 1 0, joten myös z 2 z 1 = Näin ollen on jatkuva pisteessä 1. Koska 1 (ja 2 ) valittiin mielivaltaisesti E:stä, on jatkuva E:ssä. 50
7 Käänteisfunktion derivaattaa koskevasta tuloksesta seuraa, että on derivoituva E:ssä ja sen derivatta on 1 f (z) = 1 f ( ) = 1 2, sillä f(z) = z 2 ja f (z) = 2z. Vastaavalla tavalla nähdään, että kuutiojuuri on jatkuva E:ssä ja sen derivaatta on 1 f (z) = 1 f ( 3 ) = 1 3( 3 ). 2 Tulos yleistyy n:teen juureen n. = f(z) = z 3 z = 3 E Kuva 37: Kuvaus z z 3 ja sen käänteiskuvaus 3.5 Cauchy-Riemannin -yhtälöt Olkoon f : A C kuvaus ja z A joukon A sisäpiste. Oletetaan, että f on differentioituva pisteessä z = x + iy, jolloin f(z + ) f(z) = a + ε(), (9) missä ε() 0, kun 0. Hajotetaan kaikki termit reaali- ja imaginaariosiinsa: f(z) = u(x, y) + iv(x, y) a = α + iβ = h + ik ε() = ε 1 () + iε 2 (). 51
8 Yhtälö (9) hajoaa tällöin kahdeksi reaaliseksi yhtälöksi: Koska u(x + h, y + k) u(x, y) = αh βk + hε 1 () kε 2 () v(x + h, y + k) v(x, y) = βh + αk + kε 1 () + hε 2 (). hε 1 () kε 2 () 2 = (h, k) (ε 1 (), ε 2 ()) 2 on Scharzin ey. (h, k) 2 (ε 1 (), ε 2 ()) 2 = (h 2 + k 2 )(ε 1 () 2 + ε 2 () 2 ), hε 1 () kε 2 () lim h 2 +k 2 0 h2 + k 2 = 0 lim 0 ε() = 0. Näin ollen funktio u : A R on (Analyysi 3:n ja Analyysi 4:n mielessä) differentioituva pisteessä z = (x, y) ja D 1 u = u x = α, D 2 u = u y = β. Samalla perusteella v : A R on differentioituva pisteessä z = (x, y) ja D 1 v = v x = β, D 2 v = v y = α. Funktiot u ja v toteuttavat siis ns. Cauchy-Riemannin differentiaaliyhtälöt { ux = v y (10) u y = v x. Oletetaan kääntäen, että funktiot u : A R ja v : A R ovat differentioituvia joukon A sisäpistessä z = (x, y) ja toteuttavat tässä pisteessä Cauchy- Riemannin differentiaaliyhtälöt (10). Muodostetaan funktio f = u+iy : A C. Väite: f on differentioituva pisteessä z ja f (z) = u x (x, y) + iv x (x, y) = v y (x, y) u y (x, y). Todistus: Differentioituvuuden määritelmän perusteella u:lla ja v:llä on kehitelmät u(x + h, y + k) u(x, y) = u x (x, y)h + u y (x, y)k + ε 1 () v(x + h, y + k) v(x, y) = v x (x, y)h + v y (x, y)k + ε 2 (), 52
9 missä = h + ik ja ε j () 0, kun 0, j = 1, 2,.... Yhtälöiden (10) nojalla on f(z + ) f(z) = u x h + u y k + iv x h + iv y k + ε 1 () + i ε 2 () Merkitään Silloin missä ε() 0, kun 0. On siis todistettu = u x h + iv y k + i(v x h iu y k) + ε 1 () + i ε 2 () = u x h + iu x k + i(v x h + iv x k) + (ε 1 () + iε 2 ()) = u x + iv x + (ε 1 () + iε 2 ()) = (u x + iv x ) + (ε 1() + iε 2 )). a = u x (x, y) + iv x (x, y) ε() = (ε 1() + iε 2 ()). f(z + ) f(z) = a + ε(), Lause 2 Funktio f = u + iv : G C on analyyttinen alueessa G, jos ja vain jos funktiot u : G R ja v : G R ovat G:ssä differentioituvia ja toteuttavat Cauchy-Riemannin yhtälöt (10). Oletetaan, että olemme unohtaneet Cauchy-Riemannin yhtälöt. Miten ne voidaan palauttaa mieleen? Oletetaan, että derivaatta f (z) = lim 0 f(z + ) f(z) on olemassa pisteessä z G. Valitaan :lle sopivia teitä lähestyä nollaa, kun = h + ik = (h, k) ja z = x + iy = (x, y): 1) menee reaalisena kohti nollaa. Merkitään = h = (h, 0) f(z + ) f(z) = = u(x + h, y) + iv(x + h, y)u(x, y) iv(x, y) h u(x + h, y) u(x, y) v(x + h, y) v(x, y) + i h h u x (x, y) + iv x (x, y) = f (z). 53
10 2) menee puhtaasti imaginaarisena kohti nollaa. Merkitään = ik = (0, k). f(z + ) f(z) u(x, y + k) + iv(x, y + k) u(x, y) iv(x, y) = ik u(x, y + k) u(x, y) i(v(x, y + k) v(x, y)) = i + k ik iu y (x, y) + v y (x, y) = v y (x, y) iu y (x, y) = f (z). Näin ollen u x + iv x = v y iu y eli Cauchy-Riemannin yhtälöt (10) on löydetty. Kohdassa 1 on f:n osittaisderivaatta x:n suhteen: f x (x, y) = lim h 0 f(z + h) f(z) h = f (z), h R. Kohdassa 2 on f:n osittaisderivaatta y:n suhteen vakiolla kerrottuna: f y (x, y) = lim k 0 f(z + ik) f(z) k = i lim k 0 f(z + ik) f(z) ik = lim k 0 i(f(z + ik) f(z)) ik = if (z), k R. Siis f x (x, y) = 1 i f y(x, y) = if y (x, y). Saadaan Cauchy-Riemannin yhtälöiden kompleksimuoto f x = if y. 54
1 Analyyttiset funktiot
Analyyttiset funktiot. Kompleksimuuttujan kompleksiarvoinen funktio Olkoot A ja B kompleksitason C osajoukkoja. Kuvausta f : A B sanotaan kompleksimuuttujan kompleksiarvoiseksi funktioksi. Usein on B C..Vakiokuvaus.
(a) avoin, yhtenäinen, rajoitettu, alue.
1. Hahmottele seuraavat tasojoukot. Mitkä niistä ovat avoimia, suljettuja, kompakteja, rajoitettuja, yhtenäisiä, alueita? (a) {z C 1 < 2z + 1 < 2} (b) {z C z i + z + i = 4} (c) {z C z + Im z < 1} (d) {z
Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1
1. Selvitä missä tason pisteissä annetut funktiot ovat derivoituvia/analyyttisiä. Määrää funktion derivaatta niissä pisteissä, joissa se on olemassa. (a) (x, y) 2x + ixy 2 (b) (x, y) cos x cosh y i sin
1 Kompleksitason geometriaa ja topologiaa
1 Kompleksitason geometriaa ja topologiaa Tavallisessa analyyttisessä geometriassa käyrien yhtälöt esitetään x-koordinaattien ja y-koordinaattien avulla, esimerkiksi y = 1 x esittää tasasivuista hyperbeliä,
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 2. Kompleksitason topologiaa Kompleksianalyysi on kompleksiarvoisten kompleksimuuttujien funktioiden teoriaa. Tällä kurssilla käsittelemme vain
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 3. Kompleksinen derivointi 3.1. Määritelmä. Olkoon G kompleksitason C epätyjä osajoukko. Olkoon z 0 joukon G sisäpiste. Funktio f : G C on kompleksisesti
Kompleksianalyysi viikko 3
Kompleksianalyysi viikko 3 Jukka Kemppainen Mathematics Division Derivaatta Oletetaan seuraavassa, että joukko A C on avoin, eli jokaista z 0 A kohti on olemassa sellainen ǫ > 0, että z z 0 < ǫ z A. f
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 212 RITVA HURRI-SYRJÄNEN 6.1. Poluista. 6. Kompleksinen integrointi Olkoon [α, β] suljettu reaaliakselin väli, α < β, ja olkoon A kompleksitason avoin joukko. Polku on
Täydellisyysaksiooman kertaus
Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja
r > y x z x = z y + y x z y + y x = r y x + y x = r
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.
Kompleksianalyysi, viikko 4
Kompleksianalyysi, viikko 4 Jukka Kemppainen Mathematics Division Reaalimuuttujan kompleksiarvoisen funktion integraali Aloitetaan reaalimuuttujan kompleksiarvoisen funktion integraalin määrittelyllä,
Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot
3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,
a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1)
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Osoita, että kompleksilukujen yhteenlasku määriteltynä tasopisteiden kautta koordinaateittain on liitännäinen, so. z + (z + z ) = (z + z )
Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2018 Harjoitus 2 Ratkaisuehdotukset Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa määritelty kuvaus B(0, 1) := x R 2 : x
KOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 11. Integrointi erillisen erikoispisteen ympäri Olkoot f analyyttinen punkteeratussa kiekossa D(z 0.r\{z 0 }. Funktiolla f on erikoispiste z 0.
Kompleksianalyysi, viikko 6
Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että
Derivaatta: funktion approksimaatio lineaarikuvauksella.
Viikko 5 Tällä viikolla yleistetään R 2 :n ja R 3 :n vektorialgebran peruskäsitteet n-ulotteiseen avaruuteen R n, ja määritellään lineaarikuvaus. Tarkastellaan funktioita, joiden määrittelyjoukko on n-ulotteisen
Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 18 Harjoitus 6 Ratkaisuehdotukset Tehtävä 1. Osoita, että sileille Jordan-poluille on voimassa : I R n ja : J R n (I) = (J) jos ja vain
Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.
Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan
u = 2 u (9.1) x + 2 u
9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,
DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS
DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko
2 Funktion derivaatta
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 2 Funktion derivaatta 1. Määritä derivaatan määritelmää käyttäen f (), kun (a), (b) 1 ( > 0). 2. Tutki, onko funktio sin(2) sin 1, kun 0, 2 0, kun = 0, derivoituva
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 7. Integaalilauseita 7.1. Gousatin lemma. (Edouad Jean-Baptiste Gousat, 1858-1936, anskalainen matemaatikko) Olkoon R tason suljettu suoakaide,
1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2
Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................
IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
Matematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
Mat-1.1331 Matematiikan pk KP3-i - kertaus
Mat-.33 Matematiikan pk KP3-i - kertaus J.v.Pfaler TKK 24. lokakuuta 2007 Kurssin ensimmäisen puoliskon selkäranka on Kompleksitason funktioiden teoria, sisältäen analyyttiset funktiot, auchy integraali
Diskreetti derivaatta
Diskreetti derivaatta LuK-tutkielma Saara Sadinmaa 43571 Matemaattisten tieteiden koulutusohjelma Oulun yliopisto Syksy 017 Sisältö Johdanto 1 Peruskäsitteitä 3 Ominaisuuksia 4 3 Esimerkkejä 8 4 Potenssifunktioita
Kompleksianalyysi Funktiot
Kompleksianalyysi Funktiot Jukka Kemppainen Mathematics Division Kompleksimuuttujan funktio Aloitetaan funktion määritelmällä. Määr. 1 Kompleksimuuttujan funktio f : C C on sääntö, joka liittää joukkoon
MATP153 Approbatur 1B Harjoitus 4 Maanantai
MATP53 Approbatur B Harjoitus 4 Maanantai 3..05. Halutaan määritellä funktio f siten, että f() =. Missä pisteissä + funktio voidaan määritellä tällä lausekkeella? Missä pisteissä funktio on näin määriteltynä
Kompleksianalyysi, viikko 5
Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa
sin(x2 + y 2 ) x 2 + y 2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 2017 Harjoitus 2 Ratkaisuedotukset 2.1. Tutki funktion g : R 2 R, g(0, 0) = 0, jatkuvuutta. g(x, y) = sin(x2 + y 2 ) x 2 + y 2, kun (x,
VII. KOMPLEKSILUVUT. VII.1. Laskutoimitukset
VII. KOMPLEKSILUVUT Kompleksilukujen joukko on VII.1. Laskutoimitukset C = {(x, y x R ja y R} ; siis joukkona C = taso R 2. Kun z = (x, y C, niin x R on z:n reaaliosa ja y R imaginaariosa, merkitään x
Tenttiin valmentavia harjoituksia
Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo
Luento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdoituksia Rami Luisto Sivuja: 5
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 9 3.11.009 alkavalle viikolle Ratkaisuedoituksia Rami Luisto Sivuja: 5 Näissä arjoituksissa saa käyttää kaikkia koulusta tuttuja koulusta tuttujen
Harmoniset funktiot kompleksialueessa ja konformikuvaukset
Harmoniset funktiot kompleksialueessa ja konformikuvaukset Hanna-Kaisa Karttunen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 2014 Tiivistelmä: Hanna-Kaisa Karttunen,
Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.
HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on
Vektorianalyysi II (MAT21020), syksy 2018
Vektorianalyysi II (MAT21020), syksy 2018 Ylimääräisiä harjoitustehtäviä 1. Osoita, että normin neliö f : R n R, f(x) = x 2 on differentioituva pisteessä a R n ja, että sen derivaatalle on voimassa 2.
y z = (x, y) Kuva 1: Euklidinen taso R 2
Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z
2 Funktion derivaatta
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 2 Funktion derivaatta 2.1 Määritelmiä ja perusominaisuuksia 1. Määritä suoraan derivaatan määritelmää käyttäen f (0), kun (a) + 1, (b) (2 + ) sin(3). 2. Olkoon
RIEMANNIN KUVAUSLAUSE. Sirpa Patteri
RIEMANNIN KUVAUSLAUSE Sirpa Patteri 2 RIEMANNIN KUVAUSLAUSE Johdanto Georg Bernhard Riemann (826-866) esitti kuvauslauseen väitöskirjassaan vuonna 85. Hän käytti todistuksessaan Dirichlet n periaatetta,
Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2017 Harjoitus 1 Ratkaisuehdotukset 11 Osoita, että vektorifunktio f = (f 1,, f m ): R n R m, on jatkuva, jos ja vain jos jokainen komponenttifunktio
LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k
LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä
Luku 4. Derivoituvien funktioiden ominaisuuksia.
1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa
VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4
VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 Jokaisen tehtävän jälkeen on pieni kommentti tehtävään liittyen Nämä eivät sisällä mitään kovin kriittistä tietoa tehtävään liittyen, joten niistä ei tarvitse välittää
3.4 Käänteiskuvauslause ja implisiittifunktiolause
3.4 Käänteiskuvauslause ja implisiittifunktiolause Tässä luvussa käsitellään kahta keskeistä vektorianalyysin lausetta. Esitellään aluksi kyseiset lauseet ja tutustutaan niiden käyttötapoihin. Lause 3.4.1
Funktioteoria I. Helsingin yliopisto Matematiikan ja tilastotieteen laitos Syyslukukausi 2009
Funktioteoria I Helsingin yliopisto Matematiikan ja tilastotieteen laitos Syyslukukausi 2009 Kari Astalan muistiinpanoista (2005) muokannut Pekka Nieminen Kuvat: Martti Nikunen Funktioteorian eli kompleksianalyysin
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 01 RITVA HURRI-SYRJÄNEN 5. Eksponenttifunktio ja sini- ja kosinifunktiot Kertausta. (1 Reaaliselle eksponenttifunktiolle e x : R R + pätee e x x k = kaikilla x R. k! (
1. Määritä funktion f : [ 1, 3], f (x)= x 3 3x, suurin ja pienin arvo.
Matematiikan ja tilastotieteen laitos Differentiaalilaskenta, syksy 01 Lisätetävät Ratkaisut 1. Määritä funktion f : [ 1, 3], suurin ja pienin arvo. f (x)= x 3 3x, Ratkaisu. Funktio f on jatkuva suljetulla
JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali
JYVÄSKYLÄN YLIOPISTO MTEMTIIKN J TILSTOTIETEEN LITOS Integraalilaskenta Harjoitus 4 5.4.4. Olkoon := {(x, y) R x π, sin x y sin x}. Laske käyräintegraali + (y dx + x dy) a) suoraan; ja b) Greenin lauseen
Matematiikan peruskurssi 2
Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi
saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 4 Funktion raja-arvo 4. Määritelmä. Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: f) A < ε aina, kun 0 < a < δ, saadaan kvanttorien järjestystä vaihtamalla
Kuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
Derivaatta. Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen.
Derivaatta Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen. Määritelmä Funktio f : A C on derivoituva pisteessä z 0 A jos raja-arvo (riippumatta
Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.
Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],
Kompleksiluvut., 15. kesäkuuta /57
Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan väitteiden todistamista tai kumoamista vastaesimerkin
Kompleksitermiset jonot ja sarjat
Kompleksitermiset jonot ja sarjat Aalto MS-C300, 205, v., Kari Eloranta Tutkitaan kompleksitermisten jonojen ja sarjojen ominaisuuksia. Päätavoite on kompleksifunktioiden sarjakehitelmien ymmärrys. Määritelmä
Analyyttinen jatke ja Riemannin pinnat
Analyyttinen jatke ja Riemannin pinnat Eero Hakavuori Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2014 Tiivistelmä: Eero Hakavuori, Analyyttinen jatke ja Riemannin
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 1. Möbius-kuvauksista 13. Konformikuvauksista 13.1. Johdantoa. Seuraavassa α ja β ovat annettuja kompleksilukuja ja k ja t 0 ovat reaalisia vakioita.
Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon
Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä 4.1.3. Olkoot : [a, b] R m paloittain C 1 -polku välin [a, b] jaon P = {a = t 1 < < t k = b} ja joukko D R m sellainen, että ([a, b])
0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 7. 2. 2009 alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan
1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ
Matematiikan tilastotieteen laitos Differentiaalilaskenta, syksy 2015 Lisätehtävät 1 Ratkaisut 1. Olkoon f :, x+1, x 1, f (x)= x+3, x>1 Piirrä funktion kuvaa välillä [ 1, 3]. (a) Tutki ra-arvon (ε, δ)-määritelmän
z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2
BM20A5700 - Integraauunnokset Harjoitus 2 1. Laske seuraavat raja-arvot. -kohta ratkeaa, kun pistät sekä yläkerran että alakerran muotoon (z z 1 )(z z 2 ), missä siis z 1 ja z 2 ovat näiden lausekkeiden
Metriset avaruudet. Erno Kauranen. 1 Versio: 10. lokakuuta 2016, 00:00
1 Metriset avaruudet Erno Kauranen 1 Versio: 10. lokakuuta 2016, 00:00 1. Sisätulo ja normiavaruus................................................. 3 2. Metrinen avaruus........................................................
Taustatietoja ja perusteita
Taustatietoja ja perusteita Vektorit: x R n pystyvektoreita, transpoosi x T Sisätulo: x T y = n i=1 x i y i Normi: x = x T x = ni=1 x 2 i Etäisyys: Kahden R n :n vektorin välinen etäisyys x y 1 Avoin pallo:
JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.
JATKUVAT FUNKTIOT JATKUVUUS Jatkuva funktio Epäjatkuva funktio Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista., suomennos Matti Pauna JATKUVUUS Jatkuva funktio Epäjatkuva
1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa
1 ja perusominaisuuksia 2 Laskutoimitukset kompleksiluvuilla 3 Reaaliluvut ja kompleksiluvut Matematiikan peruskurssi KP3 I OSA 1: Johdatus kompleksilukuihin 4 Kompleksilukujen algebraa 5 Kompleksitaso
Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2
MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain
Kompleksianalyysi I. Helsingin yliopisto Matematiikan ja tilastotieteen laitos Syyslukukausi Kari Astala
Kompleksianalyysi I Helsingin yliopisto Matematiikan ja tilastotieteen laitos Syyslukukausi 2016 Kari Astala Teksti hyödyntää myös Pekka Niemisen ja Ritva Hurri-Syrjäsen aikaisempia muistiinpanoja. Kuvat:
y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali
6. Derivaatta 6.. Derivaatta ja differentiaali 72. Olkoon f () = 4. Etsi derivaatan määritelmän avulla f ( 3). f ( 3) = 08. 73. Muodosta funktion f () = derivaatta suoraan määritelmän mukaan, so. tarkastelemalla
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan
Reaaliset sin ja cos voidaan palauttaa eksponenttifunktioon Eulerin kaavan avulla: Jos x on reaaliluku, niin e ix = cos x i sin x
2 1. Trigonometriset ja hyperboliset funktiot Reaaliset sin ja cos voidaan palauttaa eksponenttifunktioon Eulerin kaavan avulla: Jos x on reaaliluku, niin e ix = cos x + i sin x, e ix = cos x i sin x Jos
KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut
KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen
Ratkaisuehdotus 2. kurssikokeeseen
Ratkaisuehdotus 2. kurssikokeeseen 4.2.202 (ratkaisuehdotus päivitetty 23.0.207) Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin
MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai
MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.
Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x
Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden
l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
5.6 Yhdistetty kuvaus
5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty
Analyysi I (sivuaineopiskelijoille)
Analyysi I (sivuaineopiskelijoille) Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2017 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 19 1 of 18 Kahden muuttujan funktioista
Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1
Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................
Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.
Vektorianalyysi I MAT21003 Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. syyskuuta 2017 1 Sisältö 1 Euklidinen avaruus 3 1.1 Euklidinen avaruus
Luku 2. Jatkuvien funktioiden ominaisuuksia.
1 MAT-1343 Laaja matematiikka 3 TTY 21 Risto Silvennoinen Luku 2. Jatkuvien funktioiden ominaisuuksia. Jatkossa väli I tarkoittaa jotakin seuraavista reaalilukuväleistä: ( ab, ) = { x a< x< b} = { x a
5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion
l 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
Pro gradu -tutkielma
Pro gradu -tutkielma Kolmen pisteen Schwarzin-Pickin lemma Ahmed Khalif Matematiikan Pro Gradu -tutkielma Helsingin yliopisto Matematiikan ja tilastotieteen laitos Joulukuu 2012 Tiivistelmä Tässä opinnäytetyössä
Kompleksiluvut Kompleksitaso Kompleksifunktiot ja kuvaukset Funktioiden raja-arvo, jatkuvuus ja derivaatta Eräitä kompleksifun.
17. lokakuuta 2016 Kompleksiluvut Kompleksiluku Kompleksiluku z on järjestetty reaalilukupari missä x ja y ovat reaalilukuja. z = (x, y), Lukuparin reaaliosa on x ja imaginaariosa on y. Lukuparin reaaliosa
1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7
Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.
Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )
Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään
U β T. (1) U β T. (2) {,X} T. (3)
1.1 a) Joukkoperhe T = α I T α P(X) on topologia. Todistus. Osoitetaan, että topologian määritelmän 1.1 ehdot (1), (2) ja (3) toteutuvat. Ehtoa (1) varten olkoon {U β β J} T. Pitää osoittaa, että U β T.
PERUSASIOITA ALGEBRASTA
PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen
Johdatus reaalifunktioihin P, 5op
Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti
8. Avoimen kuvauksen lause
116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen
Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011
Kuudennen eli viimeisen viikon luennot Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011 Perustuu Trench in verkkokirjan lukuihin 2.3. ja 2.4. Esko Turunen esko.turunen@tut.fi Jatkuvuuden