Esimerkki 1.1. Kahdeksikkopolku α: u (sin u, sin 2u) on helppo todeta injektioksi
|
|
- Sanna Hiltunen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 . Pinnoista.. Pinnan määritelmästä. Monisteen [] määritelmän 4.. mukainen pinta S on sama olio, jollaista abstraktimmassa differentiaaligeometriassa kutsutaan avaruuden R n alimonistoksi (tarkemmin upotetuksi alimonistoksi; immersoitu alimonisto on eri asia; engl. submanifold). On tärkeätä huomata, että jo alkeispinnan parametriesitykseltä ϕ: U S vaaditaan homeomorfisuus. Tämä on toisinaan pinnan parametriesityksille asetetuista ehdoista vaikein tarkistaa. Homeomorfisuusvaatimus varmistaa sen, että heuristisesti ilmaistuna pinta ei leikkaa itseään eikä sileän C -pinnan tapauksessa muodosta teräviä kärkiä. Toinen tärkeä asia on huomata, että lokaalien parametriesitysten ϕ x : U x S W x määrittelyjoukon U x tulee olla avoin joukko. Heuristisesti tämä tarkoittaa, että esimerkiksi kaksiulotteisella pinnalla ei ole reunaviivaa, vaikka havaintokuva saattaisi sellaiselta näyttää. Pintaa (ja vastaavasti monistoa), jolle reunaviivan (tai reuna-alimoniston) olemassaolo sallitaan, kutsutaan reunalliseksi pinnaksi (tai reunalliseksi monistoksi). Tällaisia tulee esiin kurssilla Integraalilaskenta. Määritelmän kanssa pitää kuitenkin olla tarkkana. Parametriesityksen määrittelyjoukon avoimuudesta seuraa erityisesti se, että alkeispinta ei voi olla kompakti. Esimerkki.. Kahdeksikkopolku α: u (sin u, sin u) on helppo todeta injektioksi välillä 0 < u < π. Kuvaus α: (0, π) α((0, π)) on siis jatkuva bijektio, mutta se ei kuitenkaan ole homeomorfismi; käänteiskuvaus on epäjatkuva pisteessä α(π) = (0, 0). Oheisessa kuvassa on parametrisarvoja 0 < u < π, π < u < 3π ja π < u < π vastaavat polun jäljet on piirretty eri värein. Huomaa: origossa polku 4 käy vain hetkellä t = π, eli käyrä ei leikkaa itseään. 0,75 0,5 0,5 0-0,5-0,5-0, ,75-0,5-0,5 0 0,5 0,5 0,75 Kuva.. Kahdeksikkopolku α: u (sin u, sin u), 0 < u < π, ja sen avulla muodostettu pinta (u, v) (sin u, sin u, v), 0 < u < π, < v <. Viimeksi muutettu
2 Esimerkki.. Pallo S := {(x, y, z) R 3 x + y + z = } voidaan käsitellä funktioiden kuvaajien avulla seuraavasti: Asetetaan U := {(u, v) R u + v < } ja f z,± : U R, f z,± (x, y) := ± (x + y ), f y,± : U R, f y,± (x, z) := ± (x + z ), f x,± : U R, f x,± (y, z) := ± (y + z ). Tässä pallon S peittämiseen tarvitaan kuusi joukkoa V z,± := {(x, y, z) R 3 ±z > 0}, V y,± := {(x, y, z) R 3 ±y > 0}, V x,± := {(x, y, z) R 3 ±x > 0}. Puolipallo {(x, y, z) R 3 x + y + z =, z 0} ei ole määritelmän mukainen sileä pinta. Toinen luonnollinen pallon parametrisointi saadaan pallokoordinaattien avulla: ϕ: ( π, π) ( π, π ) S, ϕ(θ, φ) := (cos θ cos φ, sin θ cos φ, sin φ). Pallokoordinaattienkaan tapauksessa yksi parametriesitys ei riitä. Toiseksi parametriesitykseksi voidaan valita ψ : ( π, π) ( π, π ) S, ψ(θ, φ) := ( cos θ cos φ, sin φ, sin θ cos φ). Kuva.. Koko pallo S peitettynä kahden pallokoordinaattiesityksen avulla. Kolmas tärkeä pallon parametrisointitapa on käyttää stereografista projektiota. Määrätään kuvaus ϕ: R S geometrisesti seuraavalla tavalla. Olkoon p := (0, 0, ) = pohjoisnapa. Olkoot u = (u, u ) R ja α: R R 3, α u (t) := t (u, u, 0)+ ( t) p, t.s. α u on pisteitä (u, u, 0) ja p yhdistävä janapolku. On helppo todeta, että α u (t) osuu pallonkuoreen S, jos ja vain jos t = 0 tai t = /(u + u + ) =: t u. Asetetaan ϕ(u, u ) := α u (t u ) (pohjoisnapa p vastaa arvoa t = 0). Yksinkertaisella laskulla saadaan ϕ(u, u ) = (u, u, u + u ). u + u + On helppo todeta, että ϕ on sileä, injektiivinen tilkku, jolle ϕ(r ) = S \ {p}. Harjoitustehtäväksi jätetään määrätä karttakuvaukselle ϕ : S \{p} R lauseke. Tätä karttakuvausta ϕ kutsutaan stereografiseksi projektioksi (pohjoisnavalta).
3 3 Kuva.3. Pallo S ja stereografinen projektio (projisiointitasona etelänavalle piirretty tangenttitaso kuvan paremman luettavuuden takia). Kuvan punainen jana on α u (t), 0 t t u. Vihreät käyrät ovat jana tasossa ja sen kuvajoukko parametriesityksessä ϕ. Kuten edellä, nytkään yksi parametriesitys ei riitä; etelänavan ympäristö voidaan käsitellä vastaavanlaisella stereografisella projektiolla etelänavalta (korvaa edellä ollut piste p pisteellä (0, 0, ))... Pinnan eri karakterisoinnit. Monisteessa [, esim. 4.3.c] funktion f : U R p, U R k, graafiksi kutsutaan vain muotoa {(u, f(u)) u G} olevaa joukkoa. Edellä pallopinnan S kohdalla tarkkaan ottaen vain funktiot f z,± kelpaisivat antamaan joukoille S V z,± parametriesitykset (x, y) (x, y, f z,± (x, y)) graafeina. Seuraavassa funktion kuvaaja pitää tulkita väljemmin. Sanotaan, että joukko G R n on k muuttujan funktion kuvaaja, jos on olemassa indeksit i < i < < i k n ja kuvaus ϕ: U R n siten, että U R k, ϕ(u) = G, ja ϕ ij (u) = u ij, j k. Kun {j,..., j p } := {,..., n}\{i,..., i k } (jolloin p = n k), niin (ϕ j,..., ϕ jp ): U R p on kuvaajan G määrittelevä funktio. Lukijan tehtäväksi jätetään selvittää edellisen pallopintaesimerkin joukkojen S V y,± ja S V x,± esittäminen tässä esitetyn mukaisina funktion kuvaajina. Vaikka monisteen [] (tai kirjan [, 3]) pinnan määritelmässä etusija annetaan parametriehdolle, voitaisiin yhtä hyvin vaatia, että pinta on lokaalisti esitettävissä funktion kuvaajana (tässä esitetyssä yleisemmässä muodossa) tai sileänä tasaarvopintana (lokaalisti). Lause.3. Epätyhjälle joukolle S R n seuraavat ehdot ovat keskenään yhtäpitäviä: (P) (Määritelmän [, 4.] parametriehto) S on sileä pinta, t.s. jokaiselle x S on olemassa avoin ympäristö W x R n, avoin joukko U x R k ja C -kuvaus ϕ x : U x R n siten, että (a) ϕ x on homeomorfismi kuvauksena U x S W x ; ja (b) Jacobin matriisin mat Dϕ x (u) aste on k kaikille u U x.
4 (K) (Kuvaajaehto) Jokaiselle x S on olemassa avoin ympäristö W x R n, avoin joukko U x R k ja C -kuvaus f x : U x R n k siten, että S W x on funktion f x kuvaaja. (T) (Sileä tasa-arvopintaehto; vrt. [, 4.6]) Jokaiselle x S on olemassa avoin ympäristö W x R n ja C -kuvaus F x : U x R n k siten, että (a) S W x = F x { } (0); ja (b) Jacobin matriisin mat DF x (z) aste on n k kaikille z W x. Todistus. (K) = (P): Vrt. monisteeseen [, esimerkki 4.3.c]. (T) = (K): Sileä tasa-arvopinta -lauseen [, lause 4.6]) todistus antaa itse asiassa hieman enemmän kuin mitä monisteessa väitetään (nimittäin (T) = (P)). Kun funktion kuvaaja tulkitaan väljemmin, niin lauseen todistuksen mukaan sileä tasaarvopinta on lokaalisti funktion kuvaaja. (P) = (T): Oletetaan, että ϕ x : U x S W x on kuten ehdossa (P). Olkoon u 0 U x siten, että ϕ x (u 0 ) = x. Yhdistämällä kuvaukseen ϕ x siirto u u + u 0, voidaan olettaa, että u 0 = 0 = 0 k (= R k :n origo). Koska Jacobin matriisin mat Dϕ x (0) aste on k, on jonkin k k-alimatriisin determinantti nollasta eroava. Oletetaan yksinkertaisuuden vuoksi, että kyseinen alimatriisi on [ j ϕ i (0)] k i,j=. Asetetaan H : U x R n k R n, H(u, v) := ϕ x (u)+(0 k, v). Tällöin det(dh(u, v)) = det( j ϕ i (u)) k i,j=, joten erityisesti det(dh(0 k, 0 n k )) 0. Käänteiskuvauslauseen [, lause 3.] nojalla on olemassa avoimet joukot W U x R n k ja W R n siten, että (0 k, 0 n k ) W, x = H(0 k, 0 n k ) W ja H W : W W on diffeomorfismi. Tarvittaessa joukkoja pienennetään niin, että W W x ja että W on muotoa V V. Olkoon h := (H W ) : W W = V V. Jaetaan h komponentteihin h = (h, h ), missä h : W V R k ja h : W V R n k. Olkoon F := h. Jos nyt z W ja F (z) = 0, pisteelle (u, v) := h(z) on (u, v) V V ja H(u, v) = z. Tällöin v = h (H(u, v)) = h (z) = F (z), joten v = 0. Toisaalta, jos v = 0 ja u V, on H(u, 0) = ϕ x (u) S W. Siis F { } (0) = S W. Ehdosta h (H(u, v)) = v kaikille u V ja v V saadaan ketjusäännön avulla Dh (H(u, v)) DH(u, v) = identtinen: R n k R n k Tästä seuraa, että Dh (H(u, v)): R n R n k on injektio kaikille (u, v) V V, t.s. matriisin mat DF (z) aste on n k kaikille z W. 4 On tärkeätä huomata, että edellisen lauseen yhtäpitävyys koskee vain lokaalia karakterisointia ( jokaiselle pinnan pisteellä on ympäristö... ). Esimerkiksi, jos F : G R (G R 3 avoin) on C -funktio, jolle S := F { } (0) ja F (z) 0 kaikille z S, niin S on sileä pinta, jolla lisäksi on kaikkialla määritelty ja kaikkialla nollasta eroava normaalivektori F (z). Voidaan ajatella, että vektori F (z) määrittelee pinnalle S ulkopuolen ja vastaavasti F (z) määrittelee sisäpuolen. Sileällä tasa-arvopinnalla on siis kaksi puolta. Sama pätee myös sileään alkeispintaan. Yleisemmälle sileälle pinnalle S R 3 tilanne on mutkikkaampi. Jokaista lokaalia parametriesitystä ϕ x : U x S W x vastaavalla pinnan osalla S W x on kaksi puolta, mutta ongelmia voi syntyä kahden eri parametriesityksen välille: parametriesitysten
5 ϕ x ja ψ x : U x S W x määräämät normaalivektorit voivat olla vastakkaiset osassa leikkausjoukkoa ϕ x (U x ) ψ x (U x ), osassa samansuuntaiset. Seuraavan esimerkin Möbiuksen nauha valottaa tilannetta. Esimerkki.4. Möbiuksen nauha on sileä pinta ϕ((, ) R), missä ϕ: (, ) R R 3, ( ϕ(t, θ) := (cos θ, sin θ, 0) + t cos θ cos θ, cos θ sin θ, sin θ ) (( = + t cos θ ) ( cos θ, + t cos θ ) sin θ, t sin θ ). 5 Kuva.4. Möbiuksen nauha voidaan leikata kahteen osaan, joista kummallakin on jatkuva yksikkönormaalivektorikenttä. Osien leikkausjoukossa normaalit kuitenkin törmäävät vastakkaissuuntaisina. Lausetta.3 voidaan täydentää osoittamalla, että kukin kolmesta ehdosta on yhtäpitävä seuraavan määritelmän ehdon (M) kanssa (todistus menee samaa rataa kuin edellisten yhtäpitävyyksien osoittaminen; katso pikku-spivakista [4, luku 5]): Määritelmä.5. Osajoukko S R n on k-ulotteinen reunaton (ali-)monisto, jos se toteuttaa seuraavan alimonistoehdon (M) jokaiselle x S on olemassa avoin, pisteen x sisältävä joukko W x R n, avoin joukko V x R n ja C -diffeomorfismi ψ x : W x V x siten, että ψ x (W x S) = V x (R k {0 n k }) = {y V x y k+ = = y n = 0}. Kirjallisuutta [] James R. Munkres: Analysis on manifolds, Advanced Book Classics, Westview Press, 99. [] Veikko T. Purmonen: Differentiaalilaskentaa, Jyväskylän yliopisto, Matematiikan ja tilastotieteen laitos, Luentomoniste 54, 007. [3] Theodore Shifrin: Multivariable mathematics. Linear algebra, multivariable calculus, and manifolds, John Wiley & Sons, 005. [4] Michael Spivak: Calculus on manifolds. A modern approach to classical theorems of advanced calculus, Addison-Wesley, 965; korjattu painos, 968.
LUKU 4. Pinnat. (u 1, u 2 ) ja E ϕ 2 (u 1, u 2 ) := ϕ u 2
LUKU 4 Pinnat 4.. Määritelmiä ja esimerkkejä Määritelmä 4.. Epätyhjä osajoukko M R 3 on sileä (kaksiulotteinen) pinta, jos jokaiselle pisteelle p M on olemassa ympäristö V p R 3, avoin joukko U p R 2 ja
Pinnan tangenttivektorit
LUKU 5 Pinnan tangenttivektorit Tästä lähtien oletetaan, että annetut polut, pinnat, funktiot ja vektorikentät ovat C. Vastaavasti, konstruoiduista poluista, pinnoista, funktioista ja vektorikentistä pitää
Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan
Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 18 Harjoitus 6 Ratkaisuehdotukset Tehtävä 1. Osoita, että sileille Jordan-poluille on voimassa : I R n ja : J R n (I) = (J) jos ja vain
Monistot LUKU 4. (P ): on olemassa avoin, pisteen x sisältävä joukko U R n, avoin joukko W
LUKU 4 Monistot Muistettakoon, että avointen joukkojen U, V R n välinen diffeomorfismi h: U V on C 1 -kuvaus, jolle myös käänteiskuvaus h 1 on C 1. Jatkossa oletetaan, että tarkasteltavat kuvaukset ovat
Olkoot f : S R 3 pinnan S jatkuva vektorikenttä ja V U kompakti Jordanjoukko. Tällöin vektorikentän f pintaintegraali yli joukon T := ϕ(v ) S on
1. Differentiaalimuodon integraalista II 1.1. ektorikentän pintaintegraali. (Ks. [2, 2.1] ja [2, 2.2.2] Olkoot S R 3 sileä alkeispinta ja ϕ: U S sen parametriesitys. Pinnan suunnistukseksi valitaan seuraavassa
LUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto
LUKU 7 Perusmuodot 7 Ensimmäinen perusmuoto Määritelmä 7 Olkoon ϕ: U R 3 tilkku Määritellään funktiot E, F, G: U R asettamalla (7) E := ϕ ϕ, F := ϕ, G := ϕ u u u u Funktiot E, F G ovat tilkun ϕ ensimmäisen
4.3.7 Epäoleellinen integraali
Esimerkki 4.3.16. (Lineaarinen muuttujien vaihto) Olkoot A R m sellainen kompakti joukko, että A on nollajoukko. Olkoon M R m m säännöllinen matriisi (eli det(m) 0) ja f : R m R jatkuva funktio. Tehdään
Stokesin lause LUKU 5
LUU 5 Stokesin lause 5.1. Integrointi monistolla Olkoot W R k alue, W kompakti Jordan-joukko ja ω jatkuva k-muoto alueessa W, ω f dx 1 dx k. Asetetaan ω : f, t.s. f dx 1 dx k : f(x dx f(x 1,, x k dx 1
Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon
Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä 4.1.3. Olkoot : [a, b] R m paloittain C 1 -polku välin [a, b] jaon P = {a = t 1 < < t k = b} ja joukko D R m sellainen, että ([a, b])
3.4 Käänteiskuvauslause ja implisiittifunktiolause
3.4 Käänteiskuvauslause ja implisiittifunktiolause Tässä luvussa käsitellään kahta keskeistä vektorianalyysin lausetta. Esitellään aluksi kyseiset lauseet ja tutustutaan niiden käyttötapoihin. Lause 3.4.1
Vektorianalyysi II (MAT21020), syksy 2018
Vektorianalyysi II (MAT21020), syksy 2018 Ylimääräisiä harjoitustehtäviä 1. Osoita, että normin neliö f : R n R, f(x) = x 2 on differentioituva pisteessä a R n ja, että sen derivaatalle on voimassa 2.
Täydellisyysaksiooman kertaus
Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja
LUKU 10. Yhdensuuntaissiirto
LUKU hdensuuntaissiirto Olkoot (M, N) suunnistettu pinta, p M ja v p R 3 p annettu vektori pisteessä p (vektorin v p ei tarvitse olla pinnan M tangenttivektori). Tällöin vektori (v p N(p)) N(p) on vektorin
peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.
Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto
2.6 Funktioiden kuvaajat ja tasa-arvojoukot
2.6 Funktioiden kuvaajat ja tasa-arvojoukot Olkoon I R väli. Yhden muuttujan funktion g : I R kuvaaja eli graafi on avaruuden R 2 osajoukko {(x, y) R 2 : x I, y = g(x)}. 1 0 1 2 3 1 0.5 0 0.5 1 Kuva 2.1:
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla
LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k
LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1
Vektorianalyysi II MAT21020
Vektorianalyysi II MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ke: :5-:, to: :5-4: Helsingin yliopisto 4. huhtikuuta 8 Sisältö RHS:n luennoista 3 5 Kertausta vektorifunktioista 4 6 Vektorifunktioiden
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla
Differentiaalimuodot
LUKU 2 Differentiaalimuodot Olkoot A R n ja p A. Vektori pisteessä p on pari (p; v), missä v R n. Pisteeseen p kiinnitetyn vektorin v p := (p; v) ensimmäinen komponentti p on vektorin v p paikkaosa ja
Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x
Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa
MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila
LUKU 6. Weingartenin kuvaus
LUKU 6 Weingartenin kuvaus 6.1. Vektorikentän derivaatta Seuraavassa määritellään pinnalla määritellyn reaaliarvoisen funktion ja vektorikentän derivaatta. Nämä tulevat olemaan hyvinmääriteltyjä, kunhan
Determinantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi
Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja
Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2018 Harjoitus 2 Ratkaisuehdotukset Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa määritelty kuvaus B(0, 1) := x R 2 : x
Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.
MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät
Vastaa kaikkiin kysymyksiin (kokeessa ei saa käyttää laskinta)
Helsingin yliopisto, Matematiikan ja tilastotieteen osasto Vektorianalyysi II (MAT22, syksy 28 Kurssitentti, Ma 7228 (RATKAISUEHDOTUKSET Tentaattori: Ville Tengvall (villetengvall@helsinkifi Vastaa kaikkiin
Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013
Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /
sitä vastaava Cliffordin algebran kannan alkio. Merkitään I = e 1 e 2 e n
Määritelmä 1.1 Algebran A keskus C on joukko C (A) = {a A ax = xa x A}. Lause 1. Olkoon Cl n Cliffordin algebra, jonka generoi joukko {e 1,..., e n }. Jos n on parillinen, niin C (Cl n ) = {λ λ R}. Jos
Suorista ja tasoista LaMa 1 syksyllä 2009
Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden
f(tx + (1 t)y) tf(x) + (1 t)f(y) jokaisella x, y A ja t [0, 1].
Tässä luvussa näytetään divergenssilause konveksin joukon tapauksessa. Määritelmä 4.5.1. 1. Joukko R m on konveksi, jos kaikilla x, y pisteet tx + (1 t)y jokaisella t [0, 1]. 2. Olkoon R m konveksi. Funktio
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.
Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen
Tähän kirjoitelmaan on poimittu joitakin kurssiin Integraalilaskenta 2 liittyviä, kurssin luentomonistetta [2] täydentäviä asioita.
Tähän kirjoitelmaan on poimittu joitakin kurssiin ntegraalilaskenta 2 liittyviä, kurssin luentomonistetta [2] täydentäviä asioita. 1. Differentiaalimuodon integraalista 1.1. Differentiaalien laskusääntöjä.
Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan
Kuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
8. Avoimen kuvauksen lause
116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen
Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
MAT21020 Vektorianalyysi II (5op) Syksy 2018
MAT21020 Vektorianalyysi II (5op) Syksy 2018 Ville Tengvall Matematiikan ja tilastotieteen osasto Helsingin yliopisto MAT21020 Vektorianalyysi II Syksy 2018 1 Kurssin perustiedot: Opettajat: Ville Tengvall
MATEMATIIKAN JA TILASTOTIETEEN LAITOS
f ( n JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 8 ratkaisut Topologiset vektoriavaruudet 2010 8.1. Olkoon P n = {f : K K p on enintään asteen n 1 polynomi} varustettuna
(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt
F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause
91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
r > y x z x = z y + y x z y + y x = r y x + y x = r
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.
Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen
Johdatus diskreettiin matematiikkaan (syksy 009) Harjoitus 3, ratkaisuja Janne Korhonen 1. Väite: Funktio f : [, ) [1, ), missä on bijektio. f(x) = x + 4x + 5, Todistus: Luentomateriaalissa todistettujen
Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti
14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on
Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /
M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43
Cantorin joukon suoristuvuus tasossa
Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja
(1.1) Ae j = a k,j e k.
Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim
Vektorit, suorat ja tasot
, suorat ja tasot 1 / 22 Koulussa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä (x 1, x 2 ). Jos vektorin
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
Matematiikan peruskurssi 2
Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi
Kompleksianalyysi, viikko 4
Kompleksianalyysi, viikko 4 Jukka Kemppainen Mathematics Division Reaalimuuttujan kompleksiarvoisen funktion integraali Aloitetaan reaalimuuttujan kompleksiarvoisen funktion integraalin määrittelyllä,
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?
Gaussin lause eli divergenssilause 1
80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin
Tasokäyrän kaarevuus LUKU 1
LUKU Tasokäyrän kaarevuus.. Käyrät Määritelmä.. Polku (eli parametrisoitu käyrä) on jatkuva kuvaus α: I R n, missä I R on väli. Polku α = (α,..., α n ) on (jatkuvasti) derivoituva, jos jokainen α j, j
MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot
MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot Harri Hakula Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2018 1 Perustuu Antti Rasilan luentomonisteeseen
1.1. Joukon Jordanin sisältö. Reaaliakselin kompaktin välin [t 0, t m ] jako on
1. Jordan-joukot Yksinkertaisuuden (ja havainnollisuuden vuoksi) seuraavassa tarkastellaan vain tason osajoukkoja, vaikka päättelyt voitaisiin helposti siirtää yleiseen n-ulotteiseen euklidiseen avaruuteen
on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään
5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}
Vektorilaskenta, tentti
Vektorilaskenta, tentti 27102017 Tentin kesto n 3 tuntia Vastaa NELJÄÄN tehtävään Jos vastaat kaikkiin, niin neljä PARASTA otetaan huomioon Kuvat vievät tilaa, joten muista kurkistaa paperin toiselle puolelle
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila
3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:
6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,
3.3 Funktion raja-arvo
3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.
0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä
Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /
MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 7. 2. 2009 alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan
MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai
MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.
DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS
DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko
=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin
FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)
Derivaatta: funktion approksimaatio lineaarikuvauksella.
Viikko 5 Tällä viikolla yleistetään R 2 :n ja R 3 :n vektorialgebran peruskäsitteet n-ulotteiseen avaruuteen R n, ja määritellään lineaarikuvaus. Tarkastellaan funktioita, joiden määrittelyjoukko on n-ulotteisen
ja jäännösluokkien joukkoa
3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi
Cantorin joukko LUKU 8
LUKU 8 Cantorin joukko 8.. Cantorin 3 -joukko Merkitään J = J 0, = [0, ]. Poistetaan välin J keskeltä avoin väli I,, jonka pituus on /3; siis I, = (, 2). Olkoot jäljelle jäävät suljetut välit J 3 3, ja
Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara
Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen
JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali
JYVÄSKYLÄN YLIOPISTO MTEMTIIKN J TILSTOTIETEEN LITOS Integraalilaskenta Harjoitus 4 5.4.4. Olkoon := {(x, y) R x π, sin x y sin x}. Laske käyräintegraali + (y dx + x dy) a) suoraan; ja b) Greenin lauseen
Avaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut
Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus, malliratkaisut 1.-5.9.009 1. Muodosta joukot A B, A B ja A\B sekä laske niiden alkioiden lukumäärät (mikäli kyseessä on äärellinen
Käyrien välinen dualiteetti (projektiivisessa) tasossa
Solmu 3/2008 1 Käyrien välinen dualiteetti (projektiivisessa) tasossa Georg Metsalo georg.metsalo@tkk.fi Tämä kirjoitus on yhteenveto kaksiosaisesta esitelmästä Maunulan yhteiskoulun matematiikkapäivänä
= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120
Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen
Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä
Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty
7.1. Käänteiskuvauslause
LUKU 7 Käänteiskuvauslause Parit (E, ), (F, ),... ovat Banachin avaruuksia, ellei toisin mainita. [4, Ch. XIV, Lemma. 1.1] 7.1. Käänteiskuvauslause Lause 7.1 (Banachin kiintopistelause). Olkoon (X, d)
Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).
Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdoituksia Rami Luisto Sivuja: 5
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 9 3.11.009 alkavalle viikolle Ratkaisuedoituksia Rami Luisto Sivuja: 5 Näissä arjoituksissa saa käyttää kaikkia koulusta tuttuja koulusta tuttujen
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
1. Määritä funktion f : [ 1, 3], f (x)= x 3 3x, suurin ja pienin arvo.
Matematiikan ja tilastotieteen laitos Differentiaalilaskenta, syksy 01 Lisätetävät Ratkaisut 1. Määritä funktion f : [ 1, 3], suurin ja pienin arvo. f (x)= x 3 3x, Ratkaisu. Funktio f on jatkuva suljetulla
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio