4.3.7 Epäoleellinen integraali
|
|
- Heidi Ahonen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Esimerkki (Lineaarinen muuttujien vaihto) Olkoot A R m sellainen kompakti joukko, että A on nollajoukko. Olkoon M R m m säännöllinen matriisi (eli det(m) 0) ja f : R m R jatkuva funktio. Tehdään integraalissa f(mx)dx A muuttujanvaihto y = Mx. Tätä varten asetetaan kuvaus x = M 1 y =: G(y), missä y M(A), joka on oletusten nojalla kompakti (sillä jatkuva funktio kuvaa kompaktin joukon kompaktiksi). Selvästi G : M(A) A on C 1 -bijektio ja kuvauksen G Jacobin matriisi missä tahansa pisteessä on M 1. Täten A f(mx)dx = M(A) f(mg(y)) det(m 1 ) dy = 1 det(m) M(A) f(y)dy.
2 4.3.7 Epäoleellinen integraali Tähän asti olemme integroineet funktioita vain rajoitettujen joukkojen yli. Määritellään (rajoittamattoma) funktion integraali yli rajoittamattoman joukon samaan tapaan kuin yksiulotteisessa tapauksessa käyttämällä raja-arvoja. Määritelmä Olkoon A R m. Olkoot f : A R sellainen funktio ja K N A, N N vapaasti valittu perhe sellaisia kompakteja joukkoja, että 1. K N on nollajoukko jokaisella N N, 2. K N K N+1 jokaisella N N ja N=1 K N = A, 3. K N f(x)dx on olemassa kaikilla N N. Jos raja-arvo lim f(x)dx N K N on olemassa ja sen arvo ei riipu joukkojen K N valinnasta, niin funktio f on epäoleellisesti integroituva yli joukon A ja funktion f (epäoleellinen) integraali yli joukon A on f(x)dx = lim f(x)dx. (4.3.16) A N K N Jos raja-arvoa (4.3.16) ei ole tai sen arvo riippuu joukkojen K j valinnasta, niin f ei ole epäoleellisesti integroituva yli joukon A.
3 Seuraava lause helpottaa epäoleellisen integroituvuuden tutkimista. Lause (i) Olkoon A ja f kuten määritelmässä Jos f 0 ja raja-arvo (4.3.16) on olemassa yhdellä kompaktien joukkojen perheellä {K N : N N}, niin silloin funktio f on epäoleellisesti integroituva yli joukon A. 2. (ii) Olkoon f, g : A R sellaisia funktioita, että f g ja molemmat funktiot ovat integroituvia samojen A:n kompaktien osajoukkojen yli. Jos g on epäoleellisesti integroituva yli joukon A, niin myös f on epäoleellisesti integroituva yli joukon A. Todistus. Sivuutetaan (katso esim. Zorich, Vladimir A.: Mathematical Analysis II. Springer (2004), s ). Huomautus Epäoleellisen integraalin raja-arvo kirjoitetaan esiin limes-merkintää käyttäen yleensä vain tarvittaessa. Esimerkiksi rajoittamattomien joukkojen yli integroitaessa, kuten yksiulotteisessa integraalissa / e t dt = e t 0 tehdään rajankäyni sijoituksen yhteydessä, eikä limestä ole välttämätöntä kirjoittaa. Seuraavissa esimereissä rajankäynti tehdään asian oppimisen edistämiseksi. 0
4 Esimerkki Laske [1, ) [1, ) x 2 exp( x 1 x 2 )dx 1 dx 2. Ratkaisu: Kyseessä on ei-negatiivinen funktio. Valitaan helpoin mahdollinen jono kasvavia kompakteja joukkoja: [1, N] [1, N], jolloin riittää tarkastella raja-arvoa N ( N ) Fubini lim exp( x 1 x 2 )dx 1 dx 2 = lim x 2 exp( x 1 x 2 )dx 1 dx 2 N N [1,N] [1,N] = lim N 1 N 1 = lim N = exp( 1) 1 exp( Nx 2 ) + exp( x 2 )dx 2 exp( N 2 ) N exp( N) exp( N) N + exp( 1)
5 Esimerkki Tutki, onko funktio f(x) = x 2, x R2, epäoleellisesti integroituva yli joukon R 2. Ratkaisu: Integrandi on ei-negatiivinen, joten riittää tarkastella yhtä kasvavien kompaktien joukkojen perhettä. Valitaan kompakteiksi joukoiksi suljetut origokeskiset pallot B(0, N), missä N N. Lasketaan 1 lim N 1 + x 2dx käyttämällä napakoordinaatteja eli 1 lim N 1 + x 2dx = lim N B(0,N) Fubini = lim N B(0,N) [0,N] [0,2π] N 0 r 1 + r 2dr r 1 + r 2 cos 2 (θ) + r 2 sin 2 (θ) drdθ 2π Täten funktio ei ole epäoleellisesti integroituva yli joukon R 2. 0 dθ = lim N 2π log(1 + N 2 ) = +
6 Kuva 4.8: Kochin lumihiutale Määritelmä Olkoon A R m. Jos (epäoleelinen) intgraali A 1dx on olemassa, niin lukua A 1dx nimitetään joukon A (hyper)tilavuudeksi (pinta-alaksi, kun m = 2). Esimerkki Olkoon A Kochin lumihiutaleen rajaama joukko Lasketaan Kochin lumihiutaleen sisään sulkema pinta-ala epäoleellisen Riemannin integraalin avulla. Valitaan kompakteiksi kasvaviksi joukoiksi iteraatiokäyrän rajaama joukko. Jokaisessa iteraatiossa tämän joukon pinta-ala kasvaa 3 4 N 1 kolmion pinta-alalla, joista kunkin ala on A 0 9 N. Tällöin kokonaisala on A = lim N A 0 + N k=1 3 4 N 1A 0 9 = lim A N N 1 N 3 A 0 k=0 ( ) N 4 = A 0
7
8 Huomautus On syytä huomata, että Kochin lumihiutale ei ole paloittain C 1 -käyrä. Näytetään tämä vastaoletuksen kautta: Oletetaan, että kyseessä on C 1 -käyrä. Arvioidaan Kochin lumihiutaleen kehän pituutta tarkastelemalla N:nen iteraation monitahokkaan kärkipisteiden etäisyyksiä. Koska kyseiset pisteet ovat myös Kochin lumihiutaleen pisteitä, niin selvästi koko Kochin lumihiutaleen pituus on suurempi kuin näiden pisteiden etäisyyksien summa. Toisin sanoen N:nen iteraation monitahokkaan kehän pituus antaa alarajan Kochin hiutaleen kehän pituudelle. Iteratiossa suora taivutetaan tasasivuiseksi kolmioksi, jolloin suoran pituus kasvaa tekijällä 4 3. Täten N + 1 :n iteraation jälkeen kehän pituus on kasvanut tekijällä ( 4 N 3) alkutilanteeseen nähden. Kun N kasvaa rajatta, nähdään että kehän pituuden alaraja kasvaa rajatta. Täten Kochin lumihiutale ei ole C 1 -polun kuvajoukko.
9 4.4 Vektoriarvoisen funktion integraali Seuraavasta määritelmästä on hyötyä esim. todennäköislaskennassa (odotusarvojen laskeminen) sekä vektoriarvoisia osittaisdifferentiaaliyhtälöitä ratkottaessa. Määritelmä Olkoon A R m ja f : A R n. Funktio f on (epäoleelisesti) integroituva yli joukon A, jos sen jokainen koordinaattifunktio on (epäoleellisesti ) integroituva yli joukon A. Tällöin vektoria ( ) f(x)dx = f 1 (x)dx,..., f n (x)dx nimitetään funktion f integraaliksi yli joukon A. A A A Esimerkki Olkoon f(x 1, x 2 ) = (x 1 x 2, x 2 2) kaikilla x 1, x 2 R. Silloin ( ) f(x 1, x 2 )dx 1 dx 2 = x 1 x 2 dx 1 dx 2, x 2 2dx 1 dx 2 = [0,2] [0,1] [0,2] [0,1] [0,2] [0,1] ( 1, 2 ). 3
10 4.4.1 Pintaintegraali Tarkastellaan tässä luvussa rajoitettuja C 1 -sileitä pintoja avaruudessa R 2 tai R 3. Palautetaan mieleen, että joukko S R m on C 1 -sileä pinta, jos löytyy sellainen C 1 -funktio F, että S = F 1 ({0}) ja F (x) 0 jokaisella x S. Implisiittifunktiolauseen nojalla löytyy sellaiset avoimet joukot U i R m, että S U i voidaan esittää (mahdollisen koordinaattien uudelleenjärjestämisen jälkeen) C 1 -funktion φ i : V i R m 1 R kuvaajana. Kun Săon kompakti, äärellinen määrä joukkoja U i riittää peittämään koko joukon S. Määritellään ensin, mitä tarkoitetaan yksinkertaisen C 1 -sileän pinnan pinta-alalla. Määritelmä Olkoon S R 3 rajoitettu joukko, V R 2 sellainen rajoitettu avoin joukko, jonka reuna V on nollajoukko, ψ : V R 3 sellainen injektiivinen C 1 -funktio, että (y) (y) 0 kaikilla y V ja S = ψ(v ). Tällöin joukkoa S nimitetään yksinkertaiseksi pinnaksi ja funktiota ψ sen parametriesitykseksi. Yksinkertaisen pinnan pinta-ala on dy. V Huomautus Motivaatio pinta-alan määritelmään on samankaltainen kuin muuttujanvaihdossa. Oletetaan, että R ij V on suorakulmio, jonka mitat ovat hyvin pieniä. Linearisoidaan kuvaus G : y ψ(y) korvaamalla kuvaus sen 1. asteen Taylorin polynomilla G(y + h) G(y) + J G,y h, missä y R ij.
11 Kuvauksen G : y ψ(y) Jacobin matriisi on 3 2-matriisi 1 y 1 (y) 1 (y) J G,y = 1 (y) 2 (y) 3 (y) 3 (y) Lasketaan joukon G(R ij ) G(y)+J G,y (R ij ) pinta-ala. Tällöin päädytään tarkastelemaan suunnikasta J G,y (R ij ), jonka virittävät vektorit a (y) ja b (y) R 3, missä a ja b on suorakulmion R ij sivujen pituudet. Sen pinta-ala on (y) (y) R ij. Täten päädytään Riemannin summiin. Lause Olkoon S R 3. Jos U R 2 on sellainen rajoitettu avoin joukko, että U on nollajoukko ja g : U R on sellainen C 1 -funktio, että niin joukon S pinta-ala on S = {(y, g(y)) : y U}, U 1 + g(y) 2 dy. Todistus. Funktio ψ(y) = (y, g(y)), y U, on määritelmän mukainen, sillä (y) ( (y) = 1, 0, g ) ( (y) 0, 1, g ) ( (y) = g (y), g ) (y), 1.
12 Määritelmä Joukko S R 3 on paloittain yksinkertainen pinta, jos löytyy sellaiset yksinkertaiset käyrät C 1,..., C K R 3, että S\ K k=1 C k on yksinkertaisten pistevieraiden pintojen yhdiste. Paloittain yksinkertaisen pinnan pinta-ala on sen muodostavieen pistevieraiden yksinkertaisten pintojen pinta-alojen summa Esimerkki Olkoon c > 0. Laske puolipallon pinta-ala. S = {(x 1, x 2, x 3 ) R 3 : x x x 2 3 = c 2, x 3 0} Ratkaisu: Joukko S on paloittain yksinkertainen pinta sillä pallokoordinaatit x 1 = c cos(φ) sin(θ) x 2 = c sin(φ) sin(θ) x 3 = c cos(θ) määrittelevät kuvauksen ψ(φ, θ) = c(cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)) missä θ (0, π/2) ja φ (0, 2π). Tällöin kuvaus ψ on injektiivinen C 1 -kuvaus ja S\ψ((0, 2π) (0, π/2)) on C 1 -käyrien yhdiste.
13 Lasketaan puolipallon pinta-ala äsken opitulla tavalla: Tarvittava ristitulo on ja (θ, φ) = c( sin(φ) sin(θ), cos(φ) sin(θ), 0) φ (θ, φ) = c(cos(φ) cos(θ), sin(φ) cos(θ), sin(θ)) θ (θ, φ) φ θ (θ, φ) = ( c2 cos(φ) sin 2 (θ), sin(φ) sin 2 (θ), sin(θ) cos(θ)) ) (θ, φ) (θ, φ) φ θ cos = c2 2 (φ) sin 4 (θ) + sin 2 (φ) sin 4 (θ) + sin 2 (θ) cos 2 (θ) }{{} 1 sin 2 (θ) = c 2 sin(θ). Voimme laskea pinta-alan 2π (θ, φ) (θ, φ) φ θ dθdφ = (0,2π) (0,π/2) 0 dφ π/2 0 c 2 sin(θ)dθ = 2πc 2.
14 Skalaarifunktion pintaintegraali Skalaariarvoisen funktion pinta-integraali määritellään suoraviivaisesti. Määritelmä Olkoon S yksinkertainen pinta, jonka parametriesitys on ψ : V R 3. Jatkuvan funktion f : S R integraali yli pinnan S on f(x)dσ(x) = f(ψ(y)) (y) (y) dy (Muita merkitätapoja: S fda, S fda). S V Määritelmä Olkoon S paloittain yksinkertainen pinta, joka on pistevieraiden yksinkertaisten pintojen S 1,..., S K yhdiste. Kun pinnan S k parametriesitys on ψ (k) : V k R 3, niin jatkuvan funktion f : S R integraali yli pinnan S on S f(x)dσ(x) = K f(ψ (k) (y)) (k) (y) (k) (y) V k dy k=1 Huomautus Paloittain yksinkertaisen pinnan S pinta-ala on 1dσ(x) S
15 4.5 Integraalilaskennan klassisia tuloksia Gaussin divergenssilause Lemma Olkoon S R 3 yksinkertainen pinta, jonka parametriesitys on ψ : V R 3. Tällöin vektori y n(x) = 1 (y) (y) (y) (y on pinnan S normaalivektori. Todistus. Olkoon a = (a 1, a 2 ) V. Oletusten mukaan (y) (y) 0 kaikilla y S. Tällöin vektorit (a) ja (a) ovat lineaarisesti riippumattomia, jolloin ainakin jokin determinanteista i (a) i (a) j (a) j 0, (4.5.17) (a) missä i, j = 1, 2, 3. Oletetaan, että i = 1, j = 3 toteuttaa ehdon (4.5.17). Käänteiskuvauslauseen nojalla kuvaus on tällöin lokaalisti kääntyvä. ψ : (y 1, y 2 ) (ψ 1 (y 1, y 2 ), ψ 3 (y 1, y 2 ))
16 Toisin sanoen löytyy sellainen kuvaus g : (x 1, x 3 ) g(x 1, x 3 ), että (y 1, y 2 ) = g(ψ(y 1, y 1 )) = (x 1, x 3 ) kun pisteet (y 1, y 2 ) ovat riittävän lähellä pistettä a. Tällöin pinta S voidaan esittää pisteen ψ(a) pienessä ympäristössä funktion f(x 1, x 2, x 3 ) = ψ 2 (g(x 1, x 3 )) x 2 tasa-arvojoukkona. Derivoinnin ketjusäännön nojalla ( 2 f(x 1, x 2, x 3 ) = (g(x 1, x 3 )) g 1 (x 1, x 3 ) + 2 (g(x 1, x 3 )) g 2 (x 1, x 3 ), 1, x 1 x 1 2 (g(x 1, x 3 )) g 1 (g(x 1, x 3 )) + 2 (g(x 1, x 3 )) g ) 2 (x 1, x 3 ) x 3 x 3 Funktion g osittaisderivaatat saadaan Jacobin matriisista [ ] J g,x = J 1 ψ,g(x) = 1 3 (g(x 1, x 3 )) 1 (g(x 1, x 3 )) ( )(g(x 1, x 3 )) 3 (g(x 1, x 3 )) 1 (g(x 1, x 3 ))
peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.
Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,
Lisätiedotf(tx + (1 t)y) tf(x) + (1 t)f(y) jokaisella x, y A ja t [0, 1].
Tässä luvussa näytetään divergenssilause konveksin joukon tapauksessa. Määritelmä 4.5.1. 1. Joukko R m on konveksi, jos kaikilla x, y pisteet tx + (1 t)y jokaisella t [0, 1]. 2. Olkoon R m konveksi. Funktio
LisätiedotPolkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon
Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä 4.1.3. Olkoot : [a, b] R m paloittain C 1 -polku välin [a, b] jaon P = {a = t 1 < < t k = b} ja joukko D R m sellainen, että ([a, b])
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa
MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila
Lisätiedot4.3 Moniulotteinen Riemannin integraali
4.3 Moniulotteinen Riemannin integraali Tässä luvussa opitaan miten integroidaan usean muuttujan reaaliarvoista tai vektoriarvoista funktiota, millaisten joukkojen yli jatkuvaa funktiota voi integroida,
LisätiedotLUKU 4. Pinnat. (u 1, u 2 ) ja E ϕ 2 (u 1, u 2 ) := ϕ u 2
LUKU 4 Pinnat 4.. Määritelmiä ja esimerkkejä Määritelmä 4.. Epätyhjä osajoukko M R 3 on sileä (kaksiulotteinen) pinta, jos jokaiselle pisteelle p M on olemassa ympäristö V p R 3, avoin joukko U p R 2 ja
Lisätiedot3.4 Käänteiskuvauslause ja implisiittifunktiolause
3.4 Käänteiskuvauslause ja implisiittifunktiolause Tässä luvussa käsitellään kahta keskeistä vektorianalyysin lausetta. Esitellään aluksi kyseiset lauseet ja tutustutaan niiden käyttötapoihin. Lause 3.4.1
LisätiedotOletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan
LisätiedotSelvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x
Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden
LisätiedotF dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause
91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan
LisätiedotOletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 18 Harjoitus 6 Ratkaisuehdotukset Tehtävä 1. Osoita, että sileille Jordan-poluille on voimassa : I R n ja : J R n (I) = (J) jos ja vain
LisätiedotDifferentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /
M-A5 ifferentiaali- ja integraalilaskenta, I/17 ifferentiaali- ja integraalilaskenta Mallit laskuharjoitusviikkoon 5 / 9. 1.1. Alkuviikon tehtävät Tehtävä 1: Määritä (ilman Gaussin lausetta) vektorikentän
LisätiedotEsimerkki 1.1. Kahdeksikkopolku α: u (sin u, sin 2u) on helppo todeta injektioksi
. Pinnoista.. Pinnan määritelmästä. Monisteen [] määritelmän 4.. mukainen pinta S on sama olio, jollaista abstraktimmassa differentiaaligeometriassa kutsutaan avaruuden R n alimonistoksi (tarkemmin upotetuksi
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.
MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät
LisätiedotDifferentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /
MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella
LisätiedotMS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit
MS-A22 i erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit Antti Rasila Aalto-yliopisto Syksy 25 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 25 / 8 Tasointegraali Olkoon R
Lisätiedot2.6 Funktioiden kuvaajat ja tasa-arvojoukot
2.6 Funktioiden kuvaajat ja tasa-arvojoukot Olkoon I R väli. Yhden muuttujan funktion g : I R kuvaaja eli graafi on avaruuden R 2 osajoukko {(x, y) R 2 : x I, y = g(x)}. 1 0 1 2 3 1 0.5 0 0.5 1 Kuva 2.1:
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015
LisätiedotJYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali
JYVÄSKYLÄN YLIOPISTO MTEMTIIKN J TILSTOTIETEEN LITOS Integraalilaskenta Harjoitus 4 5.4.4. Olkoon := {(x, y) R x π, sin x y sin x}. Laske käyräintegraali + (y dx + x dy) a) suoraan; ja b) Greenin lauseen
LisätiedotMäärätty integraali. Markus Helén. Mäntän lukio
Määrätty integraali Markus Helén Pinta-ala Monikulmio on tasokuvio, jota rajoittaa suljettu, itseään leikkaamaton murtoviiva. Monikulmio voidaan aina jakaa kolmioiksi. Alueen pinta-ala on näiden kolmioiden
LisätiedotMatematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)
Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)
LisätiedotTäydellisyysaksiooman kertaus
Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja
LisätiedotDifferentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /
M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit
MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy
LisätiedotMS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47
MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?
LisätiedotLUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto
LUKU 7 Perusmuodot 7 Ensimmäinen perusmuoto Määritelmä 7 Olkoon ϕ: U R 3 tilkku Määritellään funktiot E, F, G: U R asettamalla (7) E := ϕ ϕ, F := ϕ, G := ϕ u u u u Funktiot E, F G ovat tilkun ϕ ensimmäisen
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
LisätiedotVastaa kaikkiin kysymyksiin (kokeessa ei saa käyttää laskinta)
Helsingin yliopisto, Matematiikan ja tilastotieteen osasto Vektorianalyysi II (MAT22, syksy 28 Kurssitentti, Ma 7228 (RATKAISUEHDOTUKSET Tentaattori: Ville Tengvall (villetengvall@helsinkifi Vastaa kaikkiin
LisätiedotVektorianalyysi II (MAT21020), syksy 2018
Vektorianalyysi II (MAT21020), syksy 2018 Ylimääräisiä harjoitustehtäviä 1. Osoita, että normin neliö f : R n R, f(x) = x 2 on differentioituva pisteessä a R n ja, että sen derivaatalle on voimassa 2.
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio
LisätiedotTällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI.
39 VEKTORIANALYYI Luento 6 5. Pinnat ja pintaintegraalit Pintojen parametriesitys. Aikaisemmin käsittelimme käyrän esittämistä parametrimuodossa. iihen riitti yksi reaalinen parametri (t), joka sai aroja
LisätiedotVektorianalyysi II MAT21020
Vektorianalyysi II MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ke: :5-:, to: :5-4: Helsingin yliopisto 4. huhtikuuta 8 Sisältö RHS:n luennoista 3 5 Kertausta vektorifunktioista 4 6 Vektorifunktioiden
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 6 varuusintegraali iemmin laskimme yksiulotteisia integraaleja b a f (x)dx, jossa integrointialue on x-akselin väli [a, b]. Lisäksi laskimme kaksiulotteisia integraaleja
LisätiedotDifferentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 217 Alkuviikon harjoituksissa ratkaistaan kolme tehtävää assistentin avustuksella (läsnäololaskarit).
LisätiedotGaussin lause eli divergenssilause 1
80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin
LisätiedotVektorilaskenta, tentti
Vektorilaskenta, tentti 27102017 Tentin kesto n 3 tuntia Vastaa NELJÄÄN tehtävään Jos vastaat kaikkiin, niin neljä PARASTA otetaan huomioon Kuvat vievät tilaa, joten muista kurkistaa paperin toiselle puolelle
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit
MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy 215 1 / 24 Skalaarikenttä Olkoon R
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18
Lisätiedotx n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x
Osittaisintegrointia käyttäen osoita integraalille I n x n e x dx oikeaksi reduktiokaava I n x n e x + ni n ja laske sen avulla mitä on I 4 kun x. x n e x dx n( e x ) nx n ( e x ) x n e x + ni n x 4 e
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
Lisätiedot(ks. kuva) ja sen jälkeen x:n ja y:n suhteen yli xy-tasossa olevan alueen projektion G:
7 VEKTORIANALYYSI Luento 11 7. Tilavuusintegraalit A 14.5 Funktion f( xyz,, ) tilavuusintegraali yli kolmiulotteisen alueen V on raja-arvo summasta V f( xyz,, ) V kun tilavuusalkiot V =. Tarkastellaan
Lisätiedot13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle
13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien
Lisätiedotpuolitasossa R 2 x e x2 /(4t). 4πt
8. Lämmönjohtumisyhtälö II 8.1. Lämpöydin. Tarkastellaan lämmönjohtumisyhtälöä reaaliakselilla, t.s. pyritään ratkaisemaan alkuarvotehtävä u (8.1) t u 2 u puolitasossa R 2 x 2 + R (, ), u(x, ) f(x) kaikille
LisätiedotKOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 11. Integrointi erillisen erikoispisteen ympäri Olkoot f analyyttinen punkteeratussa kiekossa D(z 0.r\{z 0 }. Funktiolla f on erikoispiste z 0.
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
LisätiedotDifferentiaalimuodot
LUKU 2 Differentiaalimuodot Olkoot A R n ja p A. Vektori pisteessä p on pari (p; v), missä v R n. Pisteeseen p kiinnitetyn vektorin v p := (p; v) ensimmäinen komponentti p on vektorin v p paikkaosa ja
LisätiedotAntti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos
LisätiedotLUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k
LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1
LisätiedotMääritelmä 17. Olkoon Ω joukko ja Σ sen jokin σ-algebra. Kuvaus P : Σ [0, 1] on todennäköisyysmitta (eng. probability measure), jos
0.02 0.04 0.06 0.08 f 0 5 0 5 0 Temperature Kuva 5.2: Tntf:n f kuvaaja: Lämpötilat välillä [5, 0] näyttävät epätodennäköisiltä. Lämpötila -2 näyttäisi todennäköisimmältä, mutta jakauma on leveä. Tämä heijastaa
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla
Lisätiedoty x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1
1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 5 Tasointegraalin laskeminen iemmin tutkimme ylä- ja alasummien antamia arvioita tasointegraalille f (x, ydxdy. Tässä siis funktio f (x, y integroidaan muuttujien x
Lisätiedot11. Poissonin yhtälö Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä
. Poissonin yhtälö.. Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä u = f kutsutaan Poissonin yhtälöksi ja siihen liittyvvää reuna-arvotehtävää { u = f :ssa, ja
LisätiedotKompleksianalyysi, viikko 6
Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että
LisätiedotVektorilaskenta. Luennot / 66. Vektorilaskenta Lineaarikuvauksen vaikutus mittaan Sijoitus integraaliin.
Luennot 03.10. - 05.10.2018 1 / 66 Mitta Yleistä Laatikko Venytys Venytys, 2 Rivin lisääminen toiseen Rivien vaihto 2 / 66 Mitta Mitta Yleistä Laatikko Venytys Venytys, 2 Rivin lisääminen toiseen Rivien
LisätiedotOrtogonaaliprojektio äärellisulotteiselle aliavaruudelle
Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka
LisätiedotFunktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.
Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
LisätiedotDifferentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 216 Tuntitehtävä 1: Laske sylinterikoordinaatteja käyttämällä sen kappaleen tilavuus,
LisätiedotSinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.
Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn
LisätiedotDeterminantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
LisätiedotMatriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
LisätiedotMonistot LUKU 4. (P ): on olemassa avoin, pisteen x sisältävä joukko U R n, avoin joukko W
LUKU 4 Monistot Muistettakoon, että avointen joukkojen U, V R n välinen diffeomorfismi h: U V on C 1 -kuvaus, jolle myös käänteiskuvaus h 1 on C 1. Jatkossa oletetaan, että tarkasteltavat kuvaukset ovat
LisätiedotOsittaisdifferentiaaliyhtälöt
Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,
LisätiedotPinnan tangenttivektorit
LUKU 5 Pinnan tangenttivektorit Tästä lähtien oletetaan, että annetut polut, pinnat, funktiot ja vektorikentät ovat C. Vastaavasti, konstruoiduista poluista, pinnoista, funktioista ja vektorikentistä pitää
Lisätiedot, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä
Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1
LisätiedotMatriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37
Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37 Tehtävä 1: Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske
Lisätiedot6 MATRIISIN DIAGONALISOINTI
6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedot, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen
Lisätiedot( ds ) A (2) ψ ξ dv + ψ 2 ξ dv = ψ 2 ξ ξ 2 ψ ) V
Kenttäteorian matemaattisia apuneuvoja 4..7. Gaussin ja Stokesin lauseet V S ds A = dl A = V S A dv, =, tai ) ds ) A ). Greenin kaavat I : II : 3. Diracin deltafunktio 4. Vektorilaskentaa V V ψ ξ dv +
Lisätiedot8. Avoimen kuvauksen lause
116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen
LisätiedotKuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x
Lisätiedotf x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.
13. Erityyppisten integraalien väliset yhteydet 13.1. Gaussin lause 364. Laske A f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y
LisätiedotDI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30
DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo
Lisätiedot7. Tasaisen rajoituksen periaate
18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin
LisätiedotKuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
LisätiedotSijoitus integraaliin
1 / 32 Muunnetaan funktion f integraali yli joukon U integraaliksi yli joukon V tekemällä sijoitus x = g(y), missä g : V U on bijektio (ainakin), kun se rajoitetaan funktioksi g : V U. Uudeksi integroitavaksi
LisätiedotFUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto
FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.
LisätiedotPienimmän neliösumman menetelmä
Pienimmän neliösumman menetelmä Keijo Ruotsalainen Division of Mathematics Funktion sovitus Datapisteet (x 1,...,x n ) Annettu data y i = f(x i )+η i, missä f(x) on tuntematon funktio ja η i mittaukseen
LisätiedotKompleksianalyysi, viikko 4
Kompleksianalyysi, viikko 4 Jukka Kemppainen Mathematics Division Reaalimuuttujan kompleksiarvoisen funktion integraali Aloitetaan reaalimuuttujan kompleksiarvoisen funktion integraalin määrittelyllä,
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
LisätiedotLUKU 10. Yhdensuuntaissiirto
LUKU hdensuuntaissiirto Olkoot (M, N) suunnistettu pinta, p M ja v p R 3 p annettu vektori pisteessä p (vektorin v p ei tarvitse olla pinnan M tangenttivektori). Tällöin vektori (v p N(p)) N(p) on vektorin
Lisätiedot= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120
Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen
Lisätiedota) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.
Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin
LisätiedotTehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla.
Tehtävä.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. x = (a + b cos(θ)) cos(ψ) y = (a + b cos(θ)) sin(ψ) = b sin(θ), a > b, θ π, ψ π Figure. Toruksen hajoituskuva Oletetaan,
LisätiedotMATEMATIIKAN JA TILASTOTIETEEN LAITOS
f ( n JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 8 ratkaisut Topologiset vektoriavaruudet 2010 8.1. Olkoon P n = {f : K K p on enintään asteen n 1 polynomi} varustettuna
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 /
Lisätiedote int) dt = 1 ( 2π 1 ) (0 ein0 ein2π
Matematiikan ja tilastotieteen laitos Funktionaalianalyysin peruskurssi Kevät 9) Harjoitus 7 Ratkaisuja Jussi Martin). E Hilbert avaruus L [, π]) ja gt) := t, t [, π]. Määrää funktion g Fourier kertoimet
LisätiedotMS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset
MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,
LisätiedotNeliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja
7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien
LisätiedotKonvergenssilauseita
LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n
Lisätiedot