Investointimahdollisuudet ja investointien ajoittaminen

Koko: px
Aloita esitys sivulta:

Download "Investointimahdollisuudet ja investointien ajoittaminen"

Transkriptio

1 Investointimahdollisuudet ja investointien ajoittaminen Optimaalisen investointistrategian ominaispiirteitä eli parametrien vaikutus ratkaisuun Optimointiopin seminaari - Syksy 000 /

2 Optimointiopin seminaari - Syksy 000 / Kertausta edellisestä Optiohinnoittelun avulla saatu optimaalinen investointistrategia: * * * ) ( ) ( ) ( ) ( σ + σ δ + σ δ = β β β = = = β β r r r I V V V I V AV V F

3 Käytetyt parametrit Alustavina parametreina käytetään: investointikustannus: I= riskitön korko: r=0.04 projektin arvon vuotuinen volatiliteetti: σ=0. osinkotuotto: δ=0.04 Saadaan investointimahdollisuuden arvo: F( V ) = V, V V 4 * = Optimointiopin seminaari - Syksy 000 / 3

4 Volatiliteetin vaikutus ratkaisuun,5 F(V), , ,5,5,5 3 V F(V), kun σ=0, σ=0. ja σ=0.3 Optimointiopin seminaari - Syksy 000 / 4

5 Volatiliteetin vaikutus ratkaisuun V* ja F(V) siis kasvavat, kun σ kasvaa suurempi epävarmuus siis kasvattaa option arvoa, mutta vähentää investointeja investointi on herkkä volatiliteetin muutoksille, riippumatta investoijan riskiominaisuuksista tai riskin korrelaatiosta markkinoiden kanssa Optimointiopin seminaari - Syksy 000 / 5

6 Investointirajan muutos σ suhteen V* , 0,4 0,6 0,8 σ V*(σ), kun δ=0.04 ja δ=0.08 Optimointiopin seminaari - Syksy 000 / 6

7 Osingon vaikutus ratkaisuun, 0, F(V) 0,6 0,4 0, 0 0 0,5,5 V F(V), kun δ=0.04, δ=0.08 ja δ= Optimointiopin seminaari - Syksy 000 / 7

8 Osingon vaikutus ratkaisuun V* ja F(V) pienenevät, kun δkasvaa osingon kasvaessa (kokonaistuotto µ kiinteä): µ=δ+α V:n odotettu kasvu α pienenee α pienenee option arvo ja investointiraja laskevat esim. investointikohteena asunto δon vuokratuotto ja α asunnon arvonnousu δja σ eivät välttämättä ole riippumattomia riippuvuus: δ=µ-α=r+φσρ xm - α Optimointiopin seminaari - Syksy 000 / 8

9 Investointirajan muutos δsuhteen V* ,05 0, 0,5 0, δ V*(δ), kun σ=0. ja σ=0.4 Optimointiopin seminaari - Syksy 000 / 9

10 Riskittömän koron vaikutus V* ja F(V) kasvavat, kun r kasvaa koron kasvaessa (osinko δkiinteä): investointikustannuksen PV Ie -rt pienenee projektin arvon PV Ve -δt pysyy ennallaan option arvo nousee investointiraja nousee r:n kasvu siis vähentää investointeja: normaalissa mallissa pääoman kustannus nousee optiomallissa vaihtoehtoiskustannus nousee Optimointiopin seminaari - Syksy 000 / 0

11 Investointirajan muutos r suhteen 4,5 4 3, V*,5,5 0, ,0 0,04 0,06 0,08 0, 0, 0,4 r V*(r), kun δ=0.04 ja δ=0.08 Optimointiopin seminaari - Syksy 000 /

12 r/σ Tasa-arvokäyriä β q = β δ/σ Tasa-arvokäyriä eri q* arvoilla: r δ = q * σ σ q * q * Optimointiopin seminaari - Syksy 000 /

13 Huomautuksia Ominaisuudet pätevät myös finanssioptioihin osto-option arvo ja optimaalinen lunastusstrategia Parametrien riippuvuudet toisistaan herkkyystarkastelu ei niin suoraviivaista Parametrit ei välttämättä vakioita F(V):n dif.yhtälö ei enää niin yksinkertainen α(v,t) osittaisdif.yhtälö α(v) hankalasti ratkaistava dif.yhtälö Optimointiopin seminaari - Syksy 000 / 3

14 Esimerkki investointipäätöksestä 3,5 3,5 F(V),V-I,5 0,5 0-0, F(V) ja V-I, kun α=0.04, σ=0., δ=0.04 ja dt=kk Optimointiopin seminaari - Syksy 000 / 4

15 Kotitehtävä Osoita, että riskittömän koron r kasvaessa kriittinen investointiraja V* pienenee, kun: parametrit α ja σ ovat kiinnitettyjä parametri δon vapaa Optimointiopin seminaari - Syksy 000 / 5

Investointimahdollisuudet ja investoinnin ajoittaminen

Investointimahdollisuudet ja investoinnin ajoittaminen Investointimahdollisuudet ja investoinnin ajoittaminen Ajoituksen ratkaisu dynaamisella optimoinnilla Optimointiopin seminaari - Syksy 000 / Esitelmän sisältö Investoinnin ajoitusongelman esittely Ongelman

Lisätiedot

Projektin keskeyttäminen, uudelleen käynnistäminen ja hylkääminen

Projektin keskeyttäminen, uudelleen käynnistäminen ja hylkääminen Projektin keskeyttäminen, uudelleen käynnistäminen ja hylkääminen Optimointiopin seminaari - Syksy 000 / 1 Mallin laajennus Toiminta voidaan väliaikaisesti keskeyttää ja käynnistää uudelleen Keskeyttämisestä

Lisätiedot

Investointimahdollisuudet ja niiden ajoitus

Investointimahdollisuudet ja niiden ajoitus Investointimahdollisuudet ja niiden ajoitus Ratkaisu optiohinnoitteluteorian avulla Esitelmä - Eeva Nyberg Optimointiopin seminaari - Syksy 000 / Tähän asti opittua NP:n rajoitteet vaikka NP negatiivinen

Lisätiedot

Projektin arvon aleneminen

Projektin arvon aleneminen Projektin arvon aleneminen sivut 99-07 Optimointiopin seminaari - Syksy 000 / Arvon aleneminen Jatketaan projektin arvon tutkimista. Nyt huomioidaan arvon aleneminen. Syitä esimerkiksi: kaluston vanheneminen

Lisätiedot

OPTIMAALINEN INVESTOINTIPÄÄTÖS

OPTIMAALINEN INVESTOINTIPÄÄTÖS OPTIMAALINEN INESTOINTIPÄÄTÖS Keskiarvoon palautuvalle prosessille ja Poissonin hyppyprosessille Optimointiopin seminaari - Syksy 000 / 1 I. KESKIAROON PALAUTUA PROSESSI Investoinnin kohde-etuuden arvo

Lisätiedot

Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla

Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla Optimointiopin seminaari - Syksy 2000 / 1 Esitelmän sisältö Investointien peruuttamattomuuden vaikutus investointipäätökseen Investointimahdollisuuksien

Lisätiedot

Lisää satunnaisuutta ja mahdollisuus keskeyttää projekti

Lisää satunnaisuutta ja mahdollisuus keskeyttää projekti isää satunnaisuutta ja mahdollisuus keskeyttää projekti Esitelmä 7 - Mika lmoniemi Optimointiopin seminaari - Syksy isää satunnaisuutta Tähän mennessä on käytetty vain yhtä satunnaismuuttujaa tuotteen

Lisätiedot

Projektin arvon määritys

Projektin arvon määritys Projektin arvon määritys Luku 6, s. 175-186 Optimointiopin seminaari - Syksy 2000 / 1 Tehtävä Johdetaan menetelmä projektiin oikeuttavan option määrittämiseksi kohde-etuuden hinnan P perusteella projektin

Lisätiedot

Johdannaisanalyysi. Contingent Claims Analysis Juha Leino S ysteemianalyysin. Laboratorio

Johdannaisanalyysi. Contingent Claims Analysis Juha Leino S ysteemianalyysin. Laboratorio Johdannaisanalyysi Contingent Claims Analysis Juha Leino 11.10.2000 Optimointiopin seminaari - Syksy 2000 / 1 Oletukset Yritys tuottaa tuotetta, jonka hinta on x x noudattaa geometrista Brownin liikettä

Lisätiedot

Päätöspuut pitkän aikavälin investointilaskelmissa

Päätöspuut pitkän aikavälin investointilaskelmissa Päätöspuut pitkän aikavälin investointilaskelmissa Optimointiopin seminaari, Jaakko Ollila. Parannusehdotus 4. Esimerkki : hystereesis investointipäätöksissä 1 -$ 0 Tavallinen päätöspuu Aika Laskut antavat

Lisätiedot

Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia

Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia { z(t k+1 ) = z(t k ) + ɛ(t k ) t t k+1 = t k + t, k = 0,..., N, missä ɛ(t i ), ɛ(t j ), i j ovat toisistaan riippumattomia siten, että

Lisätiedot

Esteet, hyppyprosessit ja dynaaminen ohjelmointi

Esteet, hyppyprosessit ja dynaaminen ohjelmointi Esteet, hyppyprosessit ja dynaaminen ohjelmointi Juha Martikainen 4.10.2000 Oppikirjan sivut 83-87 ja 93-98 Optimointiopin seminaari - Syksy 2000 / 1 Esteet (määritelmät) Muistellaan menneitä: Ajelehtiva

Lisätiedot

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

Harha mallin arvioinnissa

Harha mallin arvioinnissa Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö

Lisätiedot

Investointistrategioista kilpailluilla markkinoilla

Investointistrategioista kilpailluilla markkinoilla Investointistrategioista kilpailluilla markkinoilla Tuomas Pyykkönen 29.11.2000 (esitys kirjasta: Investment under Uncertainty; Dixit, Pindyck (1994); ss. 247-260) Optimointiopin seminaari - Syksy 2000

Lisätiedot

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352.

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352. Yleistä: Laskarit tiistaisin klo 14-16 luokassa U352. Kysyttävää laskareista yms. jussi.kangaspunta@tkk. tai huone U230. Aluksi hieman teoriaa: Kassavirran x = (x 0, x 1,..., x n ) nykyarvo P x (r), kun

Lisätiedot

25.9.2008 klo 9-15. 1. Selvitä vakuutustekniseen vastuuvelkaan liittyvät riskit ja niiltä suojautuminen.

25.9.2008 klo 9-15. 1. Selvitä vakuutustekniseen vastuuvelkaan liittyvät riskit ja niiltä suojautuminen. SHV-tutkinto Vakavaraisuus 25.9.28 klo 9-15 1(5) 1. Selvitä vakuutustekniseen vastuuvelkaan liittyvät riskit ja niiltä suojautuminen. (1p) 2. Henkivakuutusyhtiö Huolekas harjoittaa vapaaehtoista henkivakuutustoimintaa

Lisätiedot

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä

Lisätiedot

Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa

Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Talousmatematiikan perusteet: Luento 17 Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Motivointi Kahdella edellisellä luennolla olemme oppineet integrointisääntöjä

Lisätiedot

ln S(k) = ln S(0) + w(i) E[ln S(k)] = ln S(0) + vk V ar[ln S(k)] = kσ 2

ln S(k) = ln S(0) + w(i) E[ln S(k)] = ln S(0) + vk V ar[ln S(k)] = kσ 2 Moniperiodisten investointitehtäviä tarkasteltaessa sijoituskohteiden hintojen kehitystä mallinnetaan diskeetteinä (binomihilat) tai jatkuvina (Itô-prosessit) prosesseina. Sijoituskohteen hinta hetkellä

Lisätiedot

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko

Lisätiedot

OPTIOT Vipua ja suojausta - mutta mitä se maksaa? Remburssi Investment Group 23.5.2000

OPTIOT Vipua ja suojausta - mutta mitä se maksaa? Remburssi Investment Group 23.5.2000 OPTIOT Vipua ja suojausta - mutta mitä se maksaa? Remburssi Investment Group 23.5.2000 MARKKINAKATSAUS AGENDA Lyhyt johdanto optioihin Näkemysesimerkki 1: kuinka tehdä voittoa kurssien laskiessa Näkemysesimerkki

Lisätiedot

, tuottoprosentti r = X 1 X 0

, tuottoprosentti r = X 1 X 0 Ostat osakkeen hintaan ja myyt sen vuoden myöhemmin hintaan X 1. Kokonaistuotto on tällöin R = X 1, tuottoprosentti r = X 1 ja pätee R = 1 + r. Lyhyeksimyymisellä tarkoitetaan, että voit myydä osakkeen

Lisätiedot

JA n. Investointi kannattaa, jos annuiteetti < investoinnin synnyttämät vuotuiset nettotuotot (S t )

JA n. Investointi kannattaa, jos annuiteetti < investoinnin synnyttämät vuotuiset nettotuotot (S t ) Annuiteettimenetelmä Investoinnin hankintahinnan ja jäännösarvon erotus jaetaan pitoaikaa vastaaville vuosille yhtä suuriksi pääomakustannuksiksi eli annuiteeteiksi, jotka sisältävät poistot ja käytettävän

Lisätiedot

Päiväkohtaista vipua Bull & Bear -sertifikaateilla

Päiväkohtaista vipua Bull & Bear -sertifikaateilla Päiväkohtaista vipua Bull & Bear -sertifikaateilla Matias Juslin Equity Derivatives Public Distribution 21. marraskuuta 2013 Bull & Bear -sertifikaatit: Johdanto Pörssissä treidattu sertifikaatti, jolla

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Johdatus regressioanalyysiin Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen vaihtelun avulla.

Lisätiedot

Referenssipiste- ja referenssisuuntamenetelmät

Referenssipiste- ja referenssisuuntamenetelmät Referenssipiste- ja referenssisuuntamenetelmät Optimointiopin seminaari - Kevät 2000 / 1 Esitelmän sisältö Menetelmien ideat Menetelmien soveltaminen Menetelmien ominaisuuksia Optimointiopin seminaari

Lisätiedot

Projektiportfolion valinta

Projektiportfolion valinta Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Portfolion valinta Käytettävissä on rajallinen määrä resursseja, joten ne on allokoitava mahdollisimman hyvin eri projekteille

Lisätiedot

Moniulotteiset satunnaismuuttujat ja jakaumat

Moniulotteiset satunnaismuuttujat ja jakaumat Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat KE (2014) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat >> Kaksiulotteiset

Lisätiedot

Mat-2.3114 Investointiteoria - Kotitehtävät

Mat-2.3114 Investointiteoria - Kotitehtävät Mat-2.3114 Investointiteoria - Kotitehtävät Kotitehtäviä on yhteensä kahdeksan ja ne ratkeavat tavallisilla taulukkolaskentaohjelmistoilla. Jokaisesta kotitehtävistä saa maksimissaan 5 pistettä: 4p/oikea

Lisätiedot

Riski ja velkaantuminen

Riski ja velkaantuminen Riski ja velkaantuminen TU-C1030 Laskelmat liiketoiminnan päätösten tukena Luento 28.1.2016 I vaiheen luentokokonaisuus INVESTOINNIN KANNATTAVUUS YRITYKSEN KANNATTAVUUS 1. Vapaa rahavirta (FCF) 2. Rahavirtojen

Lisätiedot

Lyhyen aikavälin hintakilpailu 2/2

Lyhyen aikavälin hintakilpailu 2/2 Lyhyen aikavälin hintakilpailu 2/2 Ilkka Männistö Esitelmä 10 - Ilkka Männistö Optimointiopin seminaari - Kevät 2003 / 1 Kilpailun aste Markkinahinta ei kerro mitään kilpailun asteesta jos kustannusrakennetta

Lisätiedot

Ito-prosessit. Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma. S ysteemianalyysin. Laboratorio

Ito-prosessit. Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma. S ysteemianalyysin. Laboratorio Ito-prosessit Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma Optimointiopin seminaari - Syksy 2000 / 1 Ito-prosessit Brownin liikkeen yleistys (Ito prosessi) x(t) : dx

Lisätiedot

SATO OYJ Osavuosikatsaus 1-3/2013

SATO OYJ Osavuosikatsaus 1-3/2013 1 SATO OYJ Osavuosikatsaus 1-3/2013 Erkka Valkila Toimintaympäristö 2 pienien vuokra-asuntojen kysyntä ylittää tarjonnan, varsinkin pääkaupunkiseudulla uusien vuokra-asuntojen rakentaminen ollut pitkään

Lisätiedot

Pohdiskeleva ajattelu ja tasapainotarkennukset

Pohdiskeleva ajattelu ja tasapainotarkennukset Pohdiskeleva ajattelu ja tasapainotarkennukset Sanna Hanhikoski 24.3.2010 Sisältö Pohdiskeleva ajattelu Nashin tasapainotarkennukset Täydellinen tasapaino Täydellinen bayesiläinen tasapaino Vaiheittainen

Lisätiedot

laskuperustekorkoisia ja ns. riskihenkivakuutuksia), yksilöllisiä eläkevakuutuksia, kapitalisaatiosopimuksia sekä sairauskuluvakuutuksia.

laskuperustekorkoisia ja ns. riskihenkivakuutuksia), yksilöllisiä eläkevakuutuksia, kapitalisaatiosopimuksia sekä sairauskuluvakuutuksia. SHV - TUTKINTO Vakavaraisuus 30.9.2010 klo 9-15 1(5) 1. Henkivakuutusosakeyhtiö Tuoni myöntää yksilöllisiä henkivakuutuksia (sijoitussidonnaisia, laskuperustekorkoisia ja ns. riskihenkivakuutuksia), yksilöllisiä

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

Uusien keksintöjen kannustimet

Uusien keksintöjen kannustimet Uusien keksintöjen kannustimet Ville Koskenvuo 9.4.2003 Optimointiopin seminaari Kevät 2003 / 1 Päivän agenda 1. luento: Uusien keksintöjen kannustimet ja patenttikisat (Koskenvuo) 2. luento: Uusien keksintöjen

Lisätiedot

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)

Lisätiedot

Koron käyttö ja merkitys metsän

Koron käyttö ja merkitys metsän Koron käyttö ja merkitys metsän käyvän arvon laskennassa Taksaattoriklubin kevätseminaari 9.4.2019 Henrik Nieminen Talous- ja rahoitusjohtaja Liikevaihto 113 milj. Tase 1,6 mrd 2 METSÄN KÄYVÄN ARVON MÄÄRITTÄMINEN

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset

Lisätiedot

Yhtiön talous ja tariffiasetannan perusteet. Jan Montell, Talous- ja rahoitusjohtaja Neuvottelukunta 21. lokakuuta 2015

Yhtiön talous ja tariffiasetannan perusteet. Jan Montell, Talous- ja rahoitusjohtaja Neuvottelukunta 21. lokakuuta 2015 Yhtiön talous ja tariffiasetannan perusteet Jan Montell, Talous- ja rahoitusjohtaja Neuvottelukunta 21. lokakuuta 2015 Fingrid välittää. Varmasti. Asiakkaat jayhteiskunta Turvaamme yhteiskunnalle varman

Lisätiedot

Seniorien palvelutalo Untuva

Seniorien palvelutalo Untuva Huoneistokortit 1h + avok + alk 39,5 m 2 Asunto 1 1h + avok + alk 40,5 m 2 Asunnot 2 ja 5 2 5 1h + avok + alk 40,5 m 2 Asunnot 3 ja 4 3 4 2h + avok + s 55,5 m 2 Asunto 6 2h + avok + s 60,5 m 2 Asunto 7

Lisätiedot

12. Korkojohdannaiset

12. Korkojohdannaiset 2. Korkojohdannaiset. Lähtökohtia Korkojohdannaiset ovat arvopapereita, joiden tuotto riippuu korkojen kehityksestä. korot liittyvät lähes kaikkiin liiketoimiin korkojohdannaiset ovat tärkeitä. korkojohdannaisilla

Lisätiedot

b 1. b m ) + ( 2b Ax) + (b b)

b 1. b m ) + ( 2b Ax) + (b b) TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}

Lisätiedot

Projektiportfolion valinta

Projektiportfolion valinta Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Kotitehtävän 1 ratkaisu Kotitehtävä Kirkwood, G. W., 1997. Strategic Decision Making: Multiobjective Decision Analysis with Spreadsheets,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 15. marraskuuta 2007 Antti Rasila () TodB 15. marraskuuta 2007 1 / 19 1 Tilastollisia testejä (jatkoa) Yhden otoksen χ 2 -testi varianssille Kahden riippumattoman

Lisätiedot

Regressioanalyysi. Kuusinen/Heliövaara 1

Regressioanalyysi. Kuusinen/Heliövaara 1 Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

3. Teoriaharjoitukset

3. Teoriaharjoitukset 3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x

Lisätiedot

Yhteistyötä sisältämätön peliteoria jatkuu

Yhteistyötä sisältämätön peliteoria jatkuu Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet

Lisätiedot

Diskreettiaikainen dynaaminen optimointi

Diskreettiaikainen dynaaminen optimointi Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 8 Optioiden hinnoittelusta

Rahoitusriskit ja johdannaiset Matti Estola. luento 8 Optioiden hinnoittelusta Rahoitusriskit ja johdannaiset Matti Estola luento 8 Optioiden hinnoittelusta 1. Optioiden erilaiset kohde-etuudet 1.1. Osakeoptiot Yksi optio antaa yleensä oikeuden ostaa/myydä 1 kpl kohdeetuutena olevia

Lisätiedot

Johdatus regressioanalyysiin. Heliövaara 1

Johdatus regressioanalyysiin. Heliövaara 1 Johdatus regressioanalyysiin Heliövaara 1 Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen

Lisätiedot

SATO Oyj. OSAVUOSIKATSAUS 1.1.-31.3.2011 Erkka Valkila. Osavuosikatsaus 1-3/2011 29.4.2011 1

SATO Oyj. OSAVUOSIKATSAUS 1.1.-31.3.2011 Erkka Valkila. Osavuosikatsaus 1-3/2011 29.4.2011 1 SATO Oyj OSAVUOSIKATSAUS 1.1.-31.3.2011 Erkka Valkila Osavuosikatsaus 1-3/2011 29.4.2011 1 Sisältö 1. Toimintaympäristö 2. Strategia 3. SATO 1-3/2011 4. Näkymät vuodelle 2011 Osavuosikatsaus 1-3/2011 29.4.2011

Lisätiedot

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC.

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC. Kotitehtäviä 6. Aihepiiri Rahoitusmuodot Ratkaisuehdotuksia 1. Pankki lainaa 100000 bullet-luoton. Laina-aika on 4kk ja luoton (vuotuinen) korkokanta 8% Luoton korot maksetaan kuukausittain ja laskutapa

Lisätiedot

r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P

r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P Markkinaportfolio on koostuu kaikista markkinoilla olevista riskipitoisista sijoituskohteista siten, että sijoituskohteiden osuudet (so. painot) markkinaportfoliossa vastaavat kohteiden markkina-arvojen

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lineaarinen ohjelmointi..7 Luento 7 Duaalisimple ja herkkyysanalyysi (kirja 4.5, 5., 5.5-5.6) Lineaarinen ohjelmointi - Syksy 7 / Duaalisimple Herkkyysanalyysi Luentorunko Parametrinen ohjelmointi

Lisätiedot

Asuntosijoittamisen alueelliset tuotot

Asuntosijoittamisen alueelliset tuotot Asuntosijoittamisen alueelliset tuotot 2018-2022 20.6.2018 Lähestymistapa Laskelmat on tehty vuosittain vuodesta 2013 lähtien. Vuokratuotto lasketaan vanhoille kerrostaloasunnoille. Asuntosijoittamisen

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen

Lisätiedot

SATO OYJ Osavuosikatsaus 1-9/2012

SATO OYJ Osavuosikatsaus 1-9/2012 1 SATO OYJ Osavuosikatsaus 1-9/212 Erkka Valkila Toimintaympäristö 2 kasvukeskuksissa pienten vuokra-asuntojen kysyntä ylittää tarjonnan, etenkin pääkaupunkiseudulla kaupungistuminen, perhekoon pienentyminen,

Lisätiedot

Luentorunko 4: Intertemporaaliset valinnat

Luentorunko 4: Intertemporaaliset valinnat Niku, Aalto-yliopisto ja Etla Makrotaloustiede 31C00200, Talvi 2018 Johdanto Tarkastellaan tarkemmin säästämiseen ja investoimiseen liittyviä intertemporaalisia valintoja ja rajoitteita. Reaalikorko. Yksityisen

Lisätiedot

Mat-2.11 4 Investointiteoria. Tentti 6.9.2005. Mitd

Mat-2.11 4 Investointiteoria. Tentti 6.9.2005. Mitd .* Mat-2.11 4 Investointiteoria Tentti 6.9.2005 Ki{oita jokaiseen koepapcriin selveisti: o Mat-2.114 Investointiteoria o opintoki{'an numero sekii sukunimi ja viralliset etunimet tekstaten o koulutusohjelma

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Uusien keksintöjen hyödyntäminen

Uusien keksintöjen hyödyntäminen Uusien keksintöjen hyödyntäminen Otso Ojanen 9.4.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Käyttöönoton viiveet Ulkoisvaikutukset ja standardointi Teknologiaodotusten koordinointimalli Lisensiointi

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi

Lisätiedot

Optioiden hinnoittelu binomihilassa

Optioiden hinnoittelu binomihilassa Mat-2.3114 Investointiteoria Optioien hinnoittel binomihilassa 26.3.2015 Yksiperioiset optiot 1/3 Olkoon S kohe-eten arvo perioin alssa siten, että perioin päättyessä sen arvo on S toennäköisyyellä p tai

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen

Lisätiedot

Aamuseminaari 9.4.2008

Aamuseminaari 9.4.2008 Aamuseminaari 9.4.2008 Rahastouutuuksia alkuvuonna Nordea Absoluuttisen Tuoton Salkku Rahastojen rahasto, joka yhdistää Nordean absoluuttisen tuoton strategioita Positiivista tuottoa ja hajautusta salkkuun

Lisätiedot

Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi

Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi Mat-2.4142 Optimointiopin seminaari 9.2.2011 Lähteet: Salo, A. & Hämäläinen, R. P., 2010.

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin

Lisätiedot

On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin.

On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin. Rahoitusmuodot HUOM. Tässä esitetään vain teoriaa ja joitakin esimerkkejä. Enemmän esimerkkejä ja laskuja löytyy ratkaistuina EXCEL-tiedostosta "Rahoitusmuodot - laskut ja esimerkit", joka on MOODLESSA

Lisätiedot

Kaksisuuntainen varianssianalyysi. Heliövaara 1

Kaksisuuntainen varianssianalyysi. Heliövaara 1 Kaksisuuntainen varianssianalyysi Heliövaara 1 Kaksi- tai useampisuuntainen varianssianalyysi Kaksi- tai useampisuuntaisessa varianssianalyysissa perusjoukko on jaettu ryhmiin kahden tai useamman tekijän

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (005) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)

Lisätiedot

l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on

l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 018 Harjoitus B Ratkaisuehdotuksia Tehtäväsarja I 1 (Monisteen tehtävä 14) Olkoon f Y (y; θ) tilastollinen malli, jonka

Lisätiedot

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1 Kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 1 Motivointi Luennot 6 ja 7: yksisuuntaisella varianssianalyysilla testataan ryhmäkohtaisten odotusarvojen yhtäsuuruutta, kun perusjoukko on jaettu

Lisätiedot

Asuntosijoittamisen alueelliset tuotot vuosina 2015-2019

Asuntosijoittamisen alueelliset tuotot vuosina 2015-2019 Asuntosijoittamisen alueelliset tuotot vuosina 2015-2019 Julkaisuvapaa Tekijä: ekonomisti Veera Holappa Lähestymistapa Tutkimus on tehty vuosittain vuodesta 2013 lähtien. Vuokratuotto lasketaan vanhoille

Lisätiedot

u = 2 u (9.1) x + 2 u

u = 2 u (9.1) x + 2 u 9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,

Lisätiedot

Johdatus regressioanalyysiin

Johdatus regressioanalyysiin Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Johdatus regressioanalyysiin TKK (c) Ilkka Mellin (2007) 1 Johdatus regressioanalyysiin >> Regressioanalyysin lähtökohdat ja tavoitteet

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 10 Binomipuut ja optioiden hinnoittelu

Rahoitusriskit ja johdannaiset Matti Estola. luento 10 Binomipuut ja optioiden hinnoittelu Rahoitsriskit ja johdannaiset Matti Estola lento 1 Binomipt ja optioiden hinnoittel 1. Optiohintojen mallintaminen Esimerkki. Oletetaan, että osakkeen spot -krssi on $ ja spot -krssilla 3 kk:n kltta on

Lisätiedot

3d) Yes, they could: net exports are negative when imports exceed exports. Answer: 2182.

3d) Yes, they could: net exports are negative when imports exceed exports. Answer: 2182. . Se talous, jonka kerroin on suurempi, reagoi voimakkaammin eksogeenisiin kysynnän muutoksiin. Investointien, julkisen kysynnän tai nettoviennin muutokset aiheuttavat sitä suuremman muutoksen tasapainotulossa,

Lisätiedot

Hintakilpailu lyhyellä aikavälillä

Hintakilpailu lyhyellä aikavälillä Hintakilpailu lyhyellä aikavälillä Virpi Turkulainen 5.3.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Johdanto Bertrandin ristiriita ja sen lähestyminen Bertrandin ristiriita Lähestymistavat:

Lisätiedot

PIENSIJOITTAJAN PERUSKURSSI HENRI HUOVINEN

PIENSIJOITTAJAN PERUSKURSSI HENRI HUOVINEN PIENSIJOITTAJAN PERUSKURSSI HENRI HUOVINEN Kiinteistöt edustavat kolmannesta mailman sijoituspääomasta ja niillä on osansa (noin 5%) myös instituutiosijoittajien sijoitussalkuissa. Kiinteistösijoitusten

Lisätiedot

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Sisältö Regressioanalyysissä tavoitteena on tutkia yhden tai useamman selittävän muuttujan vaikutusta selitettävään muuttujaan. Sen avulla

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin

Lisätiedot

BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta

BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta Tuulipuiston investointi ja rahoitus Tuulipuistoinvestoinnin tavoitteet ja perusteet Pitoajalta lasketun kassavirran pitää antaa sijoittajalle

Lisätiedot

Rahoitusinnovaatiot kuntien teknisellä sektorilla

Rahoitusinnovaatiot kuntien teknisellä sektorilla Rahoitusinnovaatiot kuntien teknisellä sektorilla Oma ja vieras pääoma infrastruktuuri-investoinneissa 12.5.2010 Tampereen yliopisto Jari Kankaanpää 6/4/2010 Jari Kankaanpää 1 Mitä tiedetään investoinnin

Lisätiedot

Suojaa ja tuottoa laskevilla markkinoilla. Johannes Ankelo Arvopaperi Aamuseminaari

Suojaa ja tuottoa laskevilla markkinoilla. Johannes Ankelo Arvopaperi Aamuseminaari Suojaa ja tuottoa laskevilla markkinoilla Commerzbank AG Saksan toiseksi suurin pankki Euroopan johtavia strukturoitujen tuotteiden liikkeellelaskijoita Yli 50 erilaista tuotetyyppiä listattuna Saksan

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

Dynaaminen allokaatio ja riskibudjetointi sijoitusstrategioissa

Dynaaminen allokaatio ja riskibudjetointi sijoitusstrategioissa Aalto yliopisto Mat 2.4177 Operaatiotutkimuksen projektityöseminaari Dynaaminen allokaatio ja riskibudjetointi sijoitusstrategioissa Väliraportti 5.4.2013 Vesa Husgafvel (projektipäällikkö) Tomi Jussila

Lisätiedot

!!!Investors House Oyj!!!!Toimitusjohtaja Petri Roininen!

!!!Investors House Oyj!!!!Toimitusjohtaja Petri Roininen! Osavuosikatsaus 1-3/2016 Investors House Oyj Toimitusjohtaja Petri Roininen Toimintaympäristöstä Suomen talous ja asuntojen hinnat polkivat paikallaan Matala korkotaso poikkeuksellinen + rahan kohtuullinen

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot Harri Hakula Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2018 1 Perustuu Antti Rasilan luentomonisteeseen

Lisätiedot