Projektiportfolion valinta
|
|
- Ari-Pekka Salo
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Projektiportfolion valinta Mat Optimointiopin seminaari kevät 2011 Kotitehtävän 1 ratkaisu
2 Kotitehtävä Kirkwood, G. W., Strategic Decision Making: Multiobjective Decision Analysis with Spreadsheets, Duxbury Press, Wadsworth Publishing Company, pp Tehtävien 8.3 ja 8.4 perusteella. Ohjelmistoyrityksellä on 9100 tuntia käytettävissä seuraavana vuonna uusien projektien toteuttamiseen. Valinta tehdään 14 projektista, joihin kuluvat ajat ja joista saatavat hyödyt tunnetaan.
3 Projekti Hyöty Aika 1 0, , , , , , , , , , , , , , Mitkä projekteista valitaan hyötykustannusanalyysin perusteella? Oletetaan projektit riippumattomiksi niistä saatavien hyötyjen ja niihin käytettävien aikojen suhteen!
4 Projekti Hyöty Aika Hyöty/ Kustannus 1 0, ,00 2 0, ,67 3 0, ,50 4 0, ,00 5 0, ,00 6 0, ,00 7 0, ,80 8 0, ,67 9 0, , , , , , , , , , , ,89 Lasketaan hyöty jaettuna ajalla (eli kustannuksella) sekä skaalataan :lla 0, b i c i = 18,00
5 Projekti Hyöty Aika Hyöty/Aika Kum. Hyöty Kum.aika 10 0, ,429 0, , ,500 0, , ,000 0, , ,667 0, , ,000 0, , ,000 1, , ,000 1, , ,889 2, , ,667 2, , ,815 3, , ,800 3, , ,667 3, , ,500 4, , ,143 4, esim. 0,51 + 0,08 Järjestetään projektit hyöty/kustannus -suhteen mukaan suurimmasta pienimpään ja lasketaan kumulatiivinen hyöty ja aika
6 Projekti Hyöty Aika Hyöty/Aika Kum. Hyöty Kum.aika Valitaanko projekti? 10 0, ,429 0, Kyllä 3 0, ,500 0, Kyllä 1 0, ,000 0, Kyllä 2 0, ,667 0, Kyllä 6 0, ,000 0, Kyllä 4 0, ,000 1, Kyllä 5 0, ,000 1, Kyllä 14 0, ,889 2, Ei 13 0, ,667 2, Ei 9 0, ,815 3, Ei 7 0, ,800 3, Ei 8 0, ,667 3, Ei 11 0, ,500 4, Ei 12 0, ,143 4, Ei Valitaan projekteja, kunnes budjettirajoite on täynnä! Kätevä tehdä esim. if-komennolla: =JOS(L12>9100;"ei";"kyllä")
7 Ratkaisu Valittiin siis projektit 1, 2, 3, 4, 5, 6 ja 10. Kokonaishyödyksi saatiin 1,42 ja budjetista käytetiin 4800 tuntia. Vertailun vuoksi: Käyttämällä matemaattista optimointia (seuraava kalvo) valittaisiin projektit 2, 3, 4, 5, 6, 10 ja 14, jolloin koko budjettirajoite saadaan käytettyä ja kokonaishyöty on 2,1.
8 Binäärinen päätösmuuttuja, joka kertoo valitaanko projekti vai ei. Projekti Päätösmuuttuja Hyöty Aika 1 0 0, , , , , , , , , , , , , , summa 2, solu Maksimoitava x i b i 14 i=1 Ylemmän näistä on oltava pienempi tai yhtäsuuri kuin alempi eli budjettirajoite. 14 i=1 x i c i 9100
9 Kotitehtävä Nyt yrityksen johto kuitenkin huomaa, että kaikki koodaajat eivät osaa kaikkia kieliä. Tehtävä on ratkaistava uudestaan tapauksessa, kun kolmelle ohjelmointikielelle on jokaiselle oma budjettirajoitteensa.
10 Aika Projekti Hyöty Excel Access C 1 0, , , , , , , , , , , , , , Rajoite Mitkä projektit nyt valitaan toteutettaviksi käyttäen hyödyksi kokonaislukuoptimointia? Oletetaan projektit riippumattomiksi niistä saatavien hyötyjen ja niihin käytettävien aikojen suhteen!
11 Projekti i Päätösmuuttuja x i Hyöty (b i ) Excel c 1i Aika Access c 2i 1 0 0, C c 3i 2 0 0, , , , , , , , , , , , , Yhteensä Rajoite Max s.e i=1 b i x i c ji x i C j, j = 1,2,3 i=1 x i binäärisiä i Esim. j = 3: 250x x x x x x x x x
12
13
14 Projekti i Päätösmuuttuja x i Hyöty (b i ) Excel c 1i Aika Access c 2i 1 1 0, C c 3i 2 0 0, , , , , , , , , , , , , Yhteensä 2, Rajoite Valitaan siis projektit 1, 3, 5, 6, 7, 10, 11, 12 ja 13
Projektiportfolion valinta
Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Portfolion valinta Käytettävissä on rajallinen määrä resursseja, joten ne on allokoitava mahdollisimman hyvin eri projekteille
LisätiedotRobust portfolio modeling (RPM) epätäydellisellä hintainformaatiolla ja projektiriippuvuuksilla
Robust portfolio modeling (RPM) epätäydellisellä hintainformaatiolla ja projektiriippuvuuksilla Mat-2.4142 Optimointiopin seminaari kevät 2011 Lähde: Liesiö, J., Mild, P., Salo, A., 2008. Robust portfolio
LisätiedotEräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus
Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus Mat-2.4142 Optimointiopin seminaari 2.3.2011 Lähteet: Clemen, R. T., & Smith, J. E. (2009). On the Choice of Baselines
LisätiedotKokonaislukuoptimointimallinnus projektiportfolion valinnasa
Kokonaislukuoptimointimallinnus projektiportfolion valinnasa Mat-2.4142 Optimointiopin seminaari kevät 2011 Lähteet: Brown & Dell & Newman: Optimizing Military Capital Planning Pachamanova: Introducing
LisätiedotSovellus: Portfoliopäätösanalyysi lentoliikenteen parantamisen tukena
Sovellus: Portfoliopäätösanalyysi lentoliikenteen parantamisen tukena Mat-2.4142 Optimointiopin seminaari kevät 2011 Sisällys 1. Ongelma: Lentoliikenteen parannus 2. Ongelma: Projektien valinta 3. Esimerkki
LisätiedotHow to Support Decision Analysis with Software Case Förbifart Stockholm
How to Support Decision Analysis with Software Case Förbifart Stockholm (Valmiin työn esittely) 13.9.2010 Ohjaaja: Prof. Mats Danielson Valvoja: Prof. Ahti Salo Tausta -Tukholman ohikulkutien suunnittelu
LisätiedotData Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä
Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä Mat-2.4142 Optimointiopin seminaari kevät 2011 Esityksen rakenne I osa Tehokkuudesta yleisesti DEA-mallin perusajatus CCR-painotus II osa
LisätiedotSovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa
Sovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa Mat-2.4142 Optimointiopin seminaari kevät 2011 Kleinmuntz ja Kleinmuntz1999 TEHTÄVÄ Sairaalan strategisen investointibudjetin
LisätiedotAdditiivinen arvofunktio projektiportfolion valinnassa
Esitelmä 5 Antti Toppila sivu 1/19 Optimointiopin seminaari Kevät 2011 Additiivinen arvofunktio projektiportfolion valinnassa Antti Toppila 2.2.2011 Esitelmä 5 Antti Toppila sivu 2/19 Optimointiopin seminaari
LisätiedotHarjoitus 4: Matlab - Optimization Toolbox
Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen
LisätiedotTalousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotHarjoitus 7: vastausvihjeet
Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.
LisätiedotDiskreettiaikainen dynaaminen optimointi
Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u
LisätiedotMat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko
LisätiedotMalliratkaisut Demot
Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x
LisätiedotPystysuuntainen ohjaus
Pystysuuntainen ohjaus Satu Vapaakallio satu.vapaakallio@hut.fi 19.2.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisällys Luku 4.1 Pystysuuntainen perusviitekehys Peruskäsitteitä Yleisimmät pystysuuntaiset
LisätiedotMat Optimointiopin seminaari kevät Monitavoiteoptimointi. Tavoitteet
Mat-2.142 Optimointiopin seminaari kevät 2000 Monitavoiteoptimointi Optimointiopin seminaari - Kevät 2000 / 1 Tavoitteet Monitavoitteisten optimointitehtävien ratkaisukäsitteet ja soveltamismahdollisuudet
LisätiedotHaitallinen valikoituminen: yleinen malli ja sen ratkaisu
Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä
LisätiedotLuento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa
LisätiedotParetoratkaisujen visualisointi. Optimointiopin seminaari / Kevät 2000 Esitelmä 11 Petteri Kekäläinen 45305L
Paretoratkaisujen visualisointi Optimointiopin seminaari / Kevät 2000 Esitelmä 11 Petteri Kekäläinen 45305L 1. Johdanto Monitavoiteoptimointitehtävät ovat usein laajuutensa takia vaikeasti hahmotettavia
Lisätiedotmin x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4
LisätiedotMat Investointiteoria Laskuharjoitus 4/2008, Ratkaisut
Projektien valintapäätöksiä voidaan pyrkiä tekemään esimerkiksi hyöty-kustannus-suhteen (so. tuottojen nykyarvo per kustannusten nykyarvo) tai nettonykyarvon (so. tuottojen nykyarvo - kustannusten nykyarvo)
LisätiedotJohdannaisanalyysi. Contingent Claims Analysis Juha Leino S ysteemianalyysin. Laboratorio
Johdannaisanalyysi Contingent Claims Analysis Juha Leino 11.10.2000 Optimointiopin seminaari - Syksy 2000 / 1 Oletukset Yritys tuottaa tuotetta, jonka hinta on x x noudattaa geometrista Brownin liikettä
LisätiedotTIEA382 Lineaarinen ja diskreetti optimointi
TIEA382 Lineaarinen ja diskreetti optimointi Jussi Hakanen Tietotekniikan laitos jussi.hakanen@jyu.fi AgC 426.3 Yleiset tiedot Tietotekniikan kandidaattiopintojen valinnainen kurssi http://users.jyu.fi/~jhaka/ldo/
LisätiedotHarjoitus 8: Excel - Optimointi
Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen
LisätiedotHarjoitus 2 ( )
Harjoitus 2 (27.3.214) Tehtävä 1 7 4 8 1 1 3 1 2 3 3 2 4 1 1 6 9 1 Kuva 1: Tehtävän 1 graafi. Aikaisimmat aloitushetket selvitetään kaavoilla v[] = v[p] d[p] l. max i p 1 {v[i] + a i (i, p) E} = v[l] +
LisätiedotTalousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotPreference Programming viitekehys tehokkuusanalyysissä
Preference Programming viitekehys tehokkuusanalyysissä Mat-2.4142 Optimointiopin seminaari kevät 2011 Salo, A., Punkka, A., 2011. Ranking Intervals and Dominance Relations for Ratio-Based Efficiency Analysis,
LisätiedotKuluttajan teoriaa tähän asti. Luento 6. Hyötyfunktion ja indifferenssikäyrien yhteys. Kuluttajan hyöty. Laajennuksia. Kuluttajan ylijäämä
Kuluttajan teoriaa tähän asti Valintojen tekemistä niukkuuden vallitessa - Tavoitteen optimointia rajoitteella Luento 6 Kuluttajan ylijäämä 8.2.2010 Budjettirajoite (, ) hyödykeavaruudessa - Kulutus =
LisätiedotInvestointimahdollisuudet ja investointien ajoittaminen
Investointimahdollisuudet ja investointien ajoittaminen Optimaalisen investointistrategian ominaispiirteitä eli parametrien vaikutus ratkaisuun Optimointiopin seminaari - Syksy 000 / Optimointiopin seminaari
LisätiedotUusien keksintöjen kannustimet
Uusien keksintöjen kannustimet Ville Koskenvuo 9.4.2003 Optimointiopin seminaari Kevät 2003 / 1 Päivän agenda 1. luento: Uusien keksintöjen kannustimet ja patenttikisat (Koskenvuo) 2. luento: Uusien keksintöjen
LisätiedotBayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly
Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä
LisätiedotDemo 1: Branch & Bound
MS-C05 Optimoinnin perusteet Malliratkaisut 7 Ehtamo Demo : Branch & Bound Ratkaise lineaarinen kokonaislukuoptimointitehtävä käyttämällä Branch & Boundalgoritmia. max x + x s.e. x + 4x 9 5x + x 9 x Z
LisätiedotHaitallinen valikoituminen: Kahden tyypin malli
Haitallinen valikoituminen: Kahden tyypin malli Mat-2.4142 Optimointiopin seminaari Mikko Hyvärinen 29.1.2008 Haitallinen valikoituminen kahden tyypin malli Haitallinen valikoituminen tarkoittaa että päämies
LisätiedotLineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Juho Andelmin 21.1.213 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston
LisätiedotLisää satunnaisuutta ja mahdollisuus keskeyttää projekti
isää satunnaisuutta ja mahdollisuus keskeyttää projekti Esitelmä 7 - Mika lmoniemi Optimointiopin seminaari - Syksy isää satunnaisuutta Tähän mennessä on käytetty vain yhtä satunnaismuuttujaa tuotteen
LisätiedotOperatioanalyysi 2011, Harjoitus 3, viikko 39
Operatioanalyysi 2011, Harjoitus 3, viikko 39 H3t1, Exercise 3.1. H3t2, Exercise 3.2. H3t3, Exercise 3.3. H3t4, Exercise 3.4. H3t5 (Exercise 3.1.) 1 3.1. Find the (a) standard form, (b) slack form of the
LisätiedotUusien keksintöjen hyödyntäminen
Uusien keksintöjen hyödyntäminen Otso Ojanen 9.4.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Käyttöönoton viiveet Ulkoisvaikutukset ja standardointi Teknologiaodotusten koordinointimalli Lisensiointi
LisätiedotHarjoitus 2 ( )
Harjoitus 2 (24.3.2015) Tehtävä 1 Figure 1: Tehtävän 1 graafi. Aikaisimmat aloitushetket selvitetään kaavoilla v[0] = 0 v[p] max 0 i p 1 {v[i]+a i (i,p) E} = v[l]+a l d[p] l. Muodostetaan taulukko, jossa
LisätiedotKasvuyrityksen tuotekehitysportfolion optimointi (valmiin työn esittely)
Kasvuyrityksen tuotekehitysportfolion optimointi (valmiin työn esittely) Santtu Saijets 16.6.2014 Ohjaaja: Juuso Liesiö Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
LisätiedotLuento 7: Kokonaislukuoptimointi
Luento 7: Kokonaislukuoptimointi Lineaarisessa optimointitehtävässä (LP) kaikki muuttujat ovat jatkuvia. Kokonaislukuoptimoinnin (ILP = Integer LP) tehtävässä kaikilla muuttujilla on kokonaislukurajoitus
LisätiedotINTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E. Mat Optimointiopin seminaari Referaatti
12.11.1999 INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E Mat-2.142 Optimointiopin seminaari Referaatti Syksy 1999 1. JOHDANTO Thomas M. Stratin artikkeli Decision Analysis Using Belief Functions käsittelee
LisätiedotInvestointimahdollisuudet ja niiden ajoitus
Investointimahdollisuudet ja niiden ajoitus Ratkaisu optiohinnoitteluteorian avulla Esitelmä - Eeva Nyberg Optimointiopin seminaari - Syksy 000 / Tähän asti opittua NP:n rajoitteet vaikka NP negatiivinen
LisätiedotPreference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi
Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi Mat-2.4142 Optimointiopin seminaari 9.2.2011 Lähteet: Salo, A. & Hämäläinen, R. P., 2010.
LisätiedotKustannustehokkaat riskienhallintatoimenpiteet kuljetusverkostossa (Valmiin työn esittely)
Kustannustehokkaat riskienhallintatoimenpiteet kuljetusverkostossa (Valmiin työn esittely) Joonas Lanne 23.2.2015 Ohjaaja: Eeva Vilkkumaa Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston
LisätiedotYhteistyötä sisältämätön peliteoria jatkuu
Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen
LisätiedotSignalointi: autonromujen markkinat
Signalointi: autonromujen markkinat Mat-.414 Optimointiopin seminaari Klaus Mattila 1.0.008 1 Esityksen rakenne Johdanto Autonromujen markkinat: Akerlofin malli Kustannuksellinen signalointi: Spencen malli
LisätiedotMalliratkaisut Demot
Malliratkaisut Demot 5 2.2.28 Tehtävä a) Tehtävä voidaan sieventää muotoon max 5x + 9x 2 + x 3 s. t. 2x + x 2 + x 3 x 3 x 2 3 x 3 3 x, x 2, x 3 Tämä on tehtävän kanoninen muoto, n = 3 ja m =. b) Otetaan
LisätiedotMainonta ja laatu tuotteiden erilaistamisessa
Mainonta ja laatu tuotteiden erilaistamisessa Samuel Aulanko Optimointiopin seminaari Kevät 2003 / 1 Sisältö Johdanto Mainonta Tiedollinen ja ohjaileva mainonta Monopolistinen kilpailu Oligopolinen kilpailu
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Evoluutiopohjainen monitavoiteoptimointi MCDM ja EMO Monitavoiteoptimointi kuuluu
LisätiedotValikoima, laatu ja mainonta
Valikoima, laatu ja mainonta Sami Niemelä 5.2.2003 Sisältö Tuoteavaruus Käsite ja erottelutapoja Valikoiman muodostaminen Laatu ja laajuus Laatu Tyypit ja ongelmia Mainonta Käytetyt symbolit määrä s laatu
LisätiedotRatkaisuehdotukset LH 8 / vko 47
Ratkaisuehdotukset LH 8 / vko 47 Tehtävä 1: Olkoot A R n n matriisi, jonka singulaariarvohajotelma on A [ ] [ ] Σ U 1 U r 0 [V1 ] T 2 V 0 0 2 Jossa Σ r on kääntyvä matriisi, [ U 1 U 2 ] ja [ V1 V 2 ] ovat
LisätiedotProjektin arvon määritys
Projektin arvon määritys Luku 6, s. 175-186 Optimointiopin seminaari - Syksy 2000 / 1 Tehtävä Johdetaan menetelmä projektiin oikeuttavan option määrittämiseksi kohde-etuuden hinnan P perusteella projektin
LisätiedotEsteet, hyppyprosessit ja dynaaminen ohjelmointi
Esteet, hyppyprosessit ja dynaaminen ohjelmointi Juha Martikainen 4.10.2000 Oppikirjan sivut 83-87 ja 93-98 Optimointiopin seminaari - Syksy 2000 / 1 Esteet (määritelmät) Muistellaan menneitä: Ajelehtiva
LisätiedotMS-C2105 Optimoinnin perusteet Malliratkaisut 4
MS-C2105 Optimoinnin perusteet Malliratkaisut 4 Ehtamo Duaalin muodostamisen muistisäännöt Duaalin muodostamisessa voidaan käyttää muistisääntötaulukkoa, jota voidaan lukea vasemmalta oikealle tai oikealta
LisätiedotKurssin esittely (syksy 2016)
Kurssin esittely (syksy 2016) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Opettajat Tuntiopettaja Anna Anttalainen (BIO), aktiivinen kiltatoiminnassa
LisätiedotICT:n johtamisella tuloksia
Tuottava IT ICT:n johtamisella tuloksia Data: Tietohallintojen johtaminen Suomessa 2012 Tietääkö liiketoimintajohto mitä IT tekee? Ei osaa sanoa tietääkö Ei tiedä Osittain Tietää 0 % 10 % 20 % 30 % 40
LisätiedotTentin materiaali. Sivia: luvut 1,2, , ,5. MacKay: luku 30. Gelman, 1995: Inference and monitoring convergence
Tentin materiaali Sivia: luvut 1,2,3.1-3.3,4.1-4.2,5 MacKay: luku 30 Gelman, 1995: Inference and monitoring convergence Gelman & Meng, 1995: Model checking and model improvement Kalvot Harjoitustyöt Tentin
LisätiedotJos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan
17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten
LisätiedotAlgoritmit 2. Luento 2 Ke Timo Männikkö
Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento
LisätiedotProspektiteoreettinen näkökulma
Miten paljon saneerausohjelmien onnistumiseen vaikuttaa yrittäjän kannustimet? Prospektiteoreettinen näkökulma Tapio Laakso 29.1.2010 Onnistumisen hyöty yrittäjälle vs. keskeytymisriski (Selvittäjän rooli?
LisätiedotLuento 7: Kokonaislukuoptimointi
Luento 7: Kokonaislukuoptimointi Lineaarisessa optimointitehtävässä (LP) kaikki muuttujat ovat jatkuvia. Kokonaislukuoptimoinnin (ILP = Integer LP) tehtävässä kaikilla muuttujilla on kokonaislukurajoitus
LisätiedotSimplex-algoritmi. T Informaatiotekniikan seminaari , Susanna Moisala
Simplex-algoritmi T-6.5 Informaatiotekniikan seminaari..8, Susanna Moisala Sisältö Simplex-algoritmi Lähtökohdat Miten ongelmasta muodostetaan ns. Simplextaulukko Miten haetaan käypä aloitusratkaisu Mitä
LisätiedotAlgoritmit 2. Luento 2 To Timo Männikkö
Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento
LisätiedotDemo 1: Simplex-menetelmä
MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x
LisätiedotDynaaminen ohjelmointi ja vaikutuskaaviot
Dynaaminen ohjelmointi ja vaikutuskaaviot. Taustaa 2. Vaikutuskaaviot ja superarvosolmut 3. Vaikutuskaavion ratkaiseminen 4. Vaikutuskaavio ja dynaaminen ohjelmointi: 5. Yhteenveto Esitelmän sisältö Optimointiopin
LisätiedotMalliratkaisut Demot
Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x
LisätiedotKokonaislukuoptimointi
Kokonaislukuoptimointi Optimointitehtävät, joissa muuttujat tai osa niistä voivat saada vain kokonaislukuarvoja Puhdas kokonaislukuoptimointitehtävä: Kaikki muuttujat kokonaislukuja Sekoitettu kokonaislukuoptimointitehtävä:
LisätiedotLineaarinen optimointitehtävä
Lineaarinen optimointitehtävä Minimointitehtävä yhtälörajoittein: min kun n j=1 n j=1 c j x j a ij x j = b i x j 0 j = 1,..., n i = 1,..., m Merkitään: z = alkuperäisen objektifunktion arvo käsiteltävänä
Lisätiedotχ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut
Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,
LisätiedotMillaisia ovat finanssipolitiikan kertoimet
Millaisia ovat finanssipolitiikan kertoimet Antti Ripatti Helsingin yliopisto, HECER, Suomen Pankki 20.3.2013 Antti Ripatti (HECER) fipon kerroin 20.3.2013 1 / 1 Johdanto Taustaa Finanssipolitiikkaa ei
LisätiedotYhteydettömän kieliopin jäsennysongelma
Yhteydettömän kieliopin jäsennysongelma Yhteydettömän kieliopin jäsennysongelmalla tarkoitetaan laskentaongelmaa Annettu: yhteydetön kielioppi G, merkkijono w Kysymys: päteekö w L(G). Ongelma voidaan periaatteessa
Lisätiedot4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä
JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä
LisätiedotYt-lakikysely Suomen Yrittäjät
Yt-lakikysely 2007 Suomen Yrittäjät 28.12.2007 1 YT-lain keskeiset velvoitteet 20 29 työntekijää työllistäville yrityksille Tiedottamisvelvollisuus vähintään 2 kertaa vuodessa yrityksen taloudellisesta
LisätiedotMalliratkaisut Demo 1
Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,
LisätiedotTKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto
Indeksin luonti ja hävitys TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto Komentoa ei ole standardoitu ja niinpä sen muoto vaihtelee järjestelmäkohtaisesti Indeksi voidaan
LisätiedotMalliratkaisut Demo 4
Malliratkaisut Demo 4 1. tehtävä a) f(x) = 2x + 21. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että imoinnin suhteen. Funktio on konveksi ja konkaavi. b) f(x) = x (pienin kokonaisluku
LisätiedotInvestointimahdollisuudet ja investoinnin ajoittaminen
Investointimahdollisuudet ja investoinnin ajoittaminen Ajoituksen ratkaisu dynaamisella optimoinnilla Optimointiopin seminaari - Syksy 000 / Esitelmän sisältö Investoinnin ajoitusongelman esittely Ongelman
LisätiedotRatkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy
Kotitehtävät 7. Aihepiirinä Investointi Ratkaisuehdotuksia 1. Investoinnin hankintameno on 9000 euroa ja siitä saadaan seuraavina vuosina vuosittain 1200 euron tulot. Määritä a) koroton takaisinmaksuaika
LisätiedotParetoratkaisujen visualisointi
Paretoratkaisujen visualisointi Optimointiopin seminaari - Kevät 2000 / 1 Esityksen sisältö Vaihtoehtoisten kohdevektorien visualisointi Arvopolut Palkkikaaviot Tähtikoordinaatit Hämähäkinverkkokaavio
LisätiedotKaksi sovellusta robustien päätössuositusten tuottamisesta
Esitelmä 12 Antti Toppila sivu 1/19 Optimointiopin seminaari Kevät 2011 Kaksi sovellusta robustien päätössuositusten tuottamisesta Antti Toppila 2.3.2011 Esitelmä 12 Antti Toppila sivu 2/19 Optimointiopin
LisätiedotConcurrency - Rinnakkaisuus. Group: 9 Joni Laine Juho Vähätalo
Concurrency - Rinnakkaisuus Group: 9 Joni Laine Juho Vähätalo Sisällysluettelo 1. Johdanto... 3 2. C++ thread... 4 3. Python multiprocessing... 6 4. Java ExecutorService... 8 5. Yhteenveto... 9 6. Lähteet...
LisätiedotOptimaaliset riskinalentamisportfoliot vikapuuanalyysissä (valmiin työn esittely)
Optimaaliset riskinalentamisportfoliot vikapuuanalyysissä (valmiin työn esittely) Markus Losoi 30.9.2013 Ohjaaja: DI Antti Toppila Valvoja: prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston
LisätiedotEAKR: DigiLeap Hallittu digiloikka:
EAKR: DigiLeap Hallittu digiloikka: Digitalisaatiokyselyn yhteenveto (18) Teknologian tutkimuskeskus VTT: Jukka Kääriäinen, Maarit Tihinen Oulun Yliopisto: Marko Juntunen, Sari Perätalo..18 DigiLeap -hanke
LisätiedotMonopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
Monopoli Tommi Välimäki 29.1.2003 Peruskäsitteitä: kysyntä ja tarjonta Hyödykkeen arvo kuluttajalle on maksimihinta, jonka hän olisi siitä valmis maksamaan Arvon raja-arvo vähenee määrän funktiona, D=MV
LisätiedotOhjelmointi 1 / 2009 syksy Tentti / 18.12
Tentti / 18.12 Vastaa yhteensä neljään tehtävään (huomaa että tehtävissä voi olla useita alakohtia), joista yksi on tehtävä 5. Voit siis valita kolme tehtävistä 1 4 ja tehtävä 5 on pakollinen. Vastaa JOKAISEN
LisätiedotMESTA työkalu suunnitelmavaihtoehtojen monikriteeriseen vertailuun ja parhaan vaihtoehdon etsintään
MESTA työkalu suunnitelmavaihtoehtojen monikriteeriseen vertailuun ja parhaan vaihtoehdon etsintään Metsäsuunnittelu verkossa ja verkostoissa seminaari, Tikkurila 23.4.2008 MMM Teppo Hujala Metla Joensuu
Lisätiedot8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)
8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista toimistaan
LisätiedotLuku 8. Aluekyselyt. 8.1 Summataulukko
Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa
LisätiedotKansalaisopiston talousohjauksen kehittäminen. Vertikal Oy Simo Pokki SYKSY 2015
Kansalaisopiston talousohjauksen kehittäminen Vertikal Oy Simo Pokki SYKSY 2015 Lähtökohtia Kansalaisopistolla on tuotteita eli erilaisia kursseja ääretön määrä Kansalaisopiston talouden logiikka on kuntasektorille
LisätiedotProsessien kehittäminen. Prosessien parantaminen. Eri mallien vertailua. Useita eri malleja. Mitä kehitetään?
Prosessien kehittäminen Prosessien parantaminen Sami Kollanus TJTA330 Ohjelmistotuotanto 21.2.2007 Mitä kehitetään? CMMI, SPICE yms. Miten kehittämishanke saadaan toteutettua? Organisaation kehittämisen
LisätiedotOhjelmoinnin peruskurssien laaja oppimäärä
Ohjelmoinnin peruskurssien laaja oppimäärä Keskeneräinen luento 3: Listat (mm. SICP 22.2.3) Riku Saikkonen 31. 10. 2011 Sisältö 1 Linkitetyt listat 2 Linkitetyt listat (SICP 2.1.1, 2.2.1) funktionaalinen
LisätiedotAlgoritmit 1. Luento 12 Ti Timo Männikkö
Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit
LisätiedotKulutus. Kulutus. Antti Ripatti. Helsingin yliopisto, HECER, Suomen Pankki Antti Ripatti (HECER) Kulutus
Kulutus Antti Ripatti Helsingin yliopisto, HECER, Suomen Pankki 13.11.2013 Antti Ripatti (HECER) Kulutus 13.11.2013 1 / 11 Indifferenssikäyrät ja kuluttajan teoria Tarkastellaan edustavaa kotitaloutta.
LisätiedotLP-mallit, L8. Herkkyysanalyysi. Varjohinta. Tietokoneohjelmia. Aiheet. Yleistä, LP-malleista. Esimerkki, Giapetto.
LP-mallit, L8 Yleistä 1 LP-mallit on yksi Operaatioanalyysin (Operations Research) perustyökaluista. Perusongelma: Miten pitää suorittaa operaatio mahdollisimman hyvin, kun käytettävissä on rajalliset
LisätiedotHintakilpailu lyhyellä aikavälillä
Hintakilpailu lyhyellä aikavälillä Virpi Turkulainen 5.3.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Johdanto Bertrandin ristiriita ja sen lähestyminen Bertrandin ristiriita Lähestymistavat:
Lisätiedot(EUR) Osasto TEK Osasto TKR Osasto PMT Osasto TMP Osasto TKK Osasto THY Osasto STS
Laskentakohteet - Yhteenveto - rinnakkain, 13.8.2009 8000 8000 7000 7000 6000 6000 5000 5000 4000 4000 3000 3000 2000 2000 1000 1000 Osasto TEK (10) Osasto TKR (12) Osasto PMT (14) Osasto TMP (17) Osasto
LisätiedotHYÖTYTEORIAN SOVELLUS LUONNONARVOKAUPAN JA TARJOUSKILPAILUN HANKKEIDEN ARVIOINTIIN
HYÖTYTEORIAN SOVELLUS LUONNONARVOKAUPAN JA TARJOUSKILPAILUN HANKKEIDEN ARVIOINTIIN MMT Jouni Pykäläinen & MMT Mikko Kurttila, TAUSTA (KRITEERITYÖRYHMÄN PAPERI) yleisenä tavoitteena tärkeiksi arvioitujen
LisätiedotMS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48
MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?
Lisätiedot1. Lineaarinen optimointi
0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on
Lisätiedot