Estimaattori, Estimointi, Mediaani, Moodi, Odotusarvo, Parametri, Posteriorijakauma, Tunnusluku
|
|
- Matilda Hovinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tilastollie päättely 6.1. Johdato Bayesi kaava, Bayeslaie lähestymistapa, Eakkotieto, Estimoiti, Frekvetistie lähestymistapa, Frekvessitulkita, Klassie lähestymistapa, Luottamustaso, Luottamusväli, Merkitsevyystaso, Otos, Otostieto, Parametri, Posteriorijakauma, Priorijakauma, Prioritieto, Testaus, Todeäköisyys, Todeäköisyysjakauma, Uskomus, Väliestimoiti 6.2. Bayesi kaava Bayesi kaava, Diskreetti jakauma, Ehdollie jakauma, Ehdollie todeäköisyys, Jatkuva jakauma, Kokoaistodeäköisyyde kaava, Ositus, Pistetodeäköisyysfuktio, Posterioritodeäköisyys, Prioritodeäköisyys, Tiheysfuktio 6.3. Priorijakaumat ja posteriorijakaumat Bayesi kaava, Bayes-uskottavuus, Diskreetti jakauma, Ehdollie jakauma, Epäiformatiivie priorijakauma, Epäoleellie priorijakauma, Jatkuva jakauma, Kojugaattiperhe, Kojugaattipriorijakauma, Otos, Otostieto, Parametri, Posteriorijakauma, Priorijakauma, Prioritieto, Uskottavuusfuktio 6.4. Bayes-estimoiti Estimaattori, Estimoiti, Mediaai, Moodi, Odotusarvo, Parametri, Posteriorijakauma, Tuusluku 6.5. Bayes-testit Hylkäysalue, Nollahypoteesi, Parametri, Posteriorijakauma, Testaus, Testi, Testisuure, Vaihtoehtoie hypoteesi 6.6. Bayes-luottamusvälit Bayeslaie optimaalisuus, Luottamustaso, Luottamusväli, Parametri, Peittotodeäköisyys, Posteriorijakauma, Uskottavuusjoukko, Uskottavuustodeäköisyys, Ilkka Melli (2010) 1/13
2 @ Ilkka Melli (2010) 2/13
3 6.1. Johdato Klassisessa eli frekvetistisessä lähestymistavassa tilastollisee päättelyy oletetaa, että havaiot oudattavat jakaumaa, joka ideksoiva parametri o kiiteä, ei-satuaie vakio. Klassisessa lähestymistavassa ajatellaa, että otos sisältää kaike parametria koskeva iformaatio ja site kaikki parametria koskevat johtopäätökset voidaa perustaa otoksee ja se jakaumaa. Klassisessa lähestymistavassa estimoitii ja testauksee ojataa voimakkaasti todeäköisyyde frekvessitulkitaa siitä imitys frekvetistie lähestymistapa: (i) (ii) Väliestimoiissa luottamusväli luottamustasolle 1 aetaa seuraava tulkita: Jos otataa toistetaa, ii luottamusväli peittää parametri kiiteä, mutta tutemattoma arvo (1 ) %:ssa otoksia. Testauksessa testi merkitsevyystasolle aetaa seuraava tulkita: Jos otataa toistetaa tilateessa, ollahypoteesi H 0 koko aja pätee, ii se joudutaa virheellisesti hylkäämää %:ssa otoksia. Bayeslaisessa lähestymistavassa tilastollisee päättelyy ajatellaa, että parametri o satuaismuuttuja, joka arvoje vaihtelua voidaa kuvata todeäköisyysjakaumalla, jota kutsutaa priorijakaumaksi. Priorijakauma o subjektiivie jakauma, joka kuvastaa tutkimukse tekijä uskomuksia tai eakkokäsityksiä parametri käyttäytymisestä. Huomaa, että tutkimukse tekijä pitää pystyä formuloimaa eakkokäsityksesä priorijakauma muotoo ilma otostietoje apua (siis jo ee havaitoje keräämistä). Otokse poimimise jälkee parametri priorijakauma päivitetää s. posteriorijakaumaksi käyttämällä Bayesi kaavaa. Bayesi kaava yhdistää parametria koskeva prioritiedo ja otostiedo toisiisa. Bayeslaisessa lähestymistavassa kaikki parametria koskevat johtopäätökset perustetaa se posteriorijakaumaa. Matemaattisissa tieteissä ei yleesä ole koulukutia. Tilastotiede o kuiteki jakautuut frekvetisteihi ja bayeslaisii. Frekvetistisestä äkökulmasta prioritiedo liittämie malleihi tuo mukaa epätoivottava subjektiivise elemeti tutkimuksee. Lisäksi frekvetistit ovat huomauttaeet, että vaikka prioritietoa parametrista olisiki käytettävissä, se formuloiti priorijakauma muotoo saattaa olla hyvi vaikeata. Bayeslaiset tilastotieteilijät ovat teheet tähä se vastahuomautukse, että tutkijalla o joka tapauksessa joitaki eakkokäsityksiä tutkimustilateesta ja o parempi pyrkiä formuloimaa eakkokäsitykset priorijakauma muotoo kui yrittää piilottaa e mato alle. Jos tutkijalla ei ole kuollista prioritietoa tutkimustilateesta, hä voi pyrkiä formuloimaa epätietoisuutesa s. epäiformatiivise priorijakauma muotoo; ks. kappaletta 6.3. alla). Lisäksi bayeslaiset tilastotieteilijät ovat kiiittäeet huomiota siihe, että todeäköisyyde frekvessitulkia käyttöö estimoiissa ja testauksessa liittyy vaikeasti tulkittavaa puhetta siitä, mitä tapahtuu, jos otataa toistetaa, ku todellisuudessa käytettävissä o vai yksi aioa otos se otos, joka o Ilkka Melli (2010) 3/13
4 6.2. Bayesi kaava Ositus Jouko S osajoukot B 1, B 2,, B muodostavat jouko S ositukse, jos seuraavat ehdot pätevät: (i) B, i 1, 2,, i (ii) B B, i j i (iii) S B1 B2 B j Kokoaistodeäköisyyde kaava Olkoo A epätyhjä otosavaruude S osajoukko: A S, A Oletetaa, että joukot B 1, B 2,, B muodostavat otosavaruude S ositukse. Tällöi pätee kokoaistodeäköisyyde kaava Pr( A) Pr( Bi ) Pr( A Bi ) i1 Bayesi kaava Olkoo A epätyhjä otosavaruude S osajoukko: Oletetaa, että joukot A S, A B 1, B 2,, B muodostavat otosavaruude S ositukse. Tällöi pätee Bayesi kaava Pr( Bi ) Pr( A Bi ) Pr( Bi A), i 1, 2,, Pr( B ) Pr( A B ) i1 i i Bayesi kaava kertoo mite prioritodeäköisyydet Pr(B i ) (lat. prior = edeltävä) voidaa tapahtuma A havaitsemise jälkee päivittää posterioritodeäköisyyksiksi Pr(B i A) (lat. posterior = jälkee tuleva). Bayesi kaava diskreeteille todeäköisyysjakaumille Olkoo f Y (x,y) diskreettie satuaismuuttujie ja Y yhteisjakauma pistetodeäköisyysfuktio. Olkoo lisäksi f Y (y) satuaismuuttuja Y reuajakauma pistetodeäköisyysfuktio ja f Y (x y) satuaismuuttuja x ehdollise jakauma (ehdolla y) Ilkka Melli (2010) 4/13
5 Tällöi f ( x, y) f ( x y) f ( y) Y Y Y ja satuaismuuttuja y ehdollise jakauma (ehdolla x) pistetodeäköisyysfuktio f(y x) saadaa kaavasta f Y ( y x) f ( x y) f ( y) Y f ( x) f ( x) f ( x y) f ( y) Y Y y Y satuaismuuttuja reuajakauma pistetodeäköisyysfuktio. Summa lasketaa yli kaikkie satuaismuuttuja Y mahdolliste arvoje. Bayesi kaava jatkuville todeäköisyysjakaumille Olkoo f Y (x,y) jatkuvie satuaismuuttujie ja Y yhteisjakauma tiheysfuktio. Olkoo lisäksi f Y (y) satuaismuuttuja Y reuajakauma tiheysfuktio ja f Y (x y) satuaismuuttuja x ehdollise jakauma (ehdolla y) tiheysfuktio. Tällöi f ( x, y) f ( x y) f ( y) Y Y Y ja satuaismuuttuja y ehdollise jakauma (ehdolla x) tiheysfuktio f(y x) saadaa kaavasta f Y ( y x) f ( x y) f ( y) Y f ( x) f ( x) f Y ( x y) fy ( y) dy satuaismuuttuja reuajakauma tiheysfuktio. Huomautus: Y Bayesi kaava todeäköisyysjakaumille voidaa ilmeisellä tavalla formuloida myös sekamuodoille, joissa toie satuaismuuttujista ja Y o diskreetti ja toie o jatkuva Priorijakaumat ja posteriorijakaumat Otosiformaatio Olkoo 1, 2,, satuaisotos satuaismuuttuja jakaumasta, joka pistetodeäköisyys- tai tiheysfuktio f(x;) riippuu parametrista. Tällöi havaiot 1, 2,, ovat riippumattomia, idettisesti jakautueita satuaismuuttujia, joilla o sama pistetodeäköisyys- tai tiheysfuktio Ilkka Melli (2010) 5/13
6 ,,, 1 2 f ( x; ), i 1, 2,, i Koska parametria pidetää Bayeslaisessa lähestymistavassa satuaismuuttujaa, havaitoje jakauma f(x;) tulkitaa satuaismuuttuja ehdolliseksi jakaumaksi ehdolla. Kirjoitamme siksi jatkossa f ( x ) Koska havaiot 1, 2,, muodostavat satuaisotokse jakaumasta f(x ), ii otokse (,,, ) 1 2 yhteisjakauma pistetodeäköisyys- tai tiheysfuktio voidaa esittää muodossa f ( x ) f ( x, x,, x ) f ( x ) f ( x ) f ( x ) f ( x ), i 1,2,, i o yksittäisee havaitoo i, i = 1, 2,, liittyvä pistetodeäköisyys- tai tiheysfuktio ja x (,,, ) x1 x2 x Otokse uskottavuusfuktio L( x) f ( x ) o otokse yhteisjakauma pistetodeäköisyys- tai tiheysfuktio f arvo pisteessä x tulkittua parametri arvoje fuktioksi. Uskottavuusperiaattee mukaa uskottavuusfuktio L() sisältää kaike otosiformaatio parametrista. Priorijakauma Oletetaa yt, että parametri o satuaismuuttuja, joka pistetodeäköisyys- tai tiheysfuktio o (): ( ) Kutsumme todeäköisyysjakaumaa () parametri priorijakaumaksi ja se sisältää prioriiformaatio eli eakkotiedo parametrista. Posteriorijakauma Parametri posteriorijakauma ( x) x (,,, ) x1 x2 x saadaa otokse = ( 1, 2,, ) yhteisjakaumasta ja parametri priorijakaumasta Bayesi kaavalla. Parametri posteriorijakauma o parametri ehdollie jakauma ehdolla = x. Ehdo muodostaa siis poimittu otos eli e havaiot, jotka todella o Ilkka Melli (2010) 6/13
7 Diskreettie jakaumie tapauksessa posteriorijakauma saadaa kaavasta ( x) f ( x ) ( ) f ( x) f ( x ) ( ) f ( x ) ( ) f ( x ) f ( x ) ( ) f ( x, ) o otokse reuajakauma, s. Bayes-uskottavuus. Summa lasketaa yli kaikkie satuaismuuttuja mahdolliste arvoje. Huomaa, että f ( x ) ( ) E [ f ( x )] Jatkuvie jakaumie tapauksessa posteriorijakauma saadaa kaavasta ( x) f ( x ) ( ) f ( x) f ( x ) ( ) f ( x ) ( ) d f ( x ) f ( x ) ( ) d f ( x, ) d o otokse reuajakauma, s. Bayes-uskottavuus. Huomaa, että Huomautus: f ( x ) ( ) d E [ f ( x )] Posteriorijakauma kaava voidaa ilmeisellä tavalla formuloida myös sekamuodoille, joissa toie satuaismuuttujista ja o diskreetti ja toie o jatkuva. Bayeslaisessa lähestymistavassa kaikki parametria koskeva tilastollie päättely perustetaa se posteriorijakaumaa. Koska ( x) f ( x ) ( ) ii posteriorijakaumaa johdettaessa voidaa toimia site, että muodostetaa otokse yhteisjakauma f(x ) ja priorijakauma () tulo ja ormeerataa tulo todeäköisyysjakaumaksi. Itse asiassa posteriorijakaumaa muodostettaessa riittää käsitellä otokse yhteisjakauma ja priorijakauma ytimiä eli iitä jakaumie pistetodeäkköisyys- tai tiheysfuktioide osia, jotka jäävät jäljelle, ku fuktioide lausekkeista jätetää pois kaikki (kerraaiset) vakio-osat, so. e (kerraaiset) osat, jotka eivät riipu ko. fuktioide Ilkka Melli (2010) 7/13
8 O syytä huomata, että ei ole edes välttämätötä, että priorijakauma aito todeäköisyysjakauma. Silti posteriorijakaumaksi saadaa aito todeäköisyysjakauma. Tällä tarkoitetaa sitä, että ehdo ei tarvitse päteä, kuha ( ) d 1 ( ) 0 kaikille. Bayesi kaava ataa silti (sopiva ormeeraukse jälkee) posteriorijakaumaksi f ( x) aido todeäköisyysjakauma. Jos ( ) 0 ja ( )d fuktiota () o tapaa kutsua epäoleelliseksi priorijakaumaksi. Bayeslaisessa lähestymistavassa o tapaa käyttää tällaisia epäoleellisia priorijakaumia esimerkiksi silloi, ku halutaa kuvata sitä, että prioritieto parametri käyttäytymisestä o ii heikkoa, että kaikkia vaihtoehtoja voidaa pitää yhtä epämääräisiä; ks. kohtaa epäiformatiivisista priorijakaumista alla. Kojugaattiperheet Posteriorijakauma ei tarvitse olla mitää tuettua tyyppiä, jolloi se hallitsemie saattaa olla hyvi vaikeata. Jos posteriorijakauma o samaa tyyppiä kui priorijakauma, ii tällaista ogelmaa ei ole. Saomme, että tällaisessa tapauksessa priorijakauma kuuluu havaitoje jakauma kojugaattiperheesee. Olkoo F parametri ideksoima tiheys- tai pistetodeäköisyysfuktioide f(x ) perhe. Priorijakaumie perhe o perhee F kojugaattiperhe, jos parametri posteriorijakauma kuuluu jokaiselle f F ja jokaiselle priorijakaumalle perheesee. Alla olevaa taulukkoo o kerätty eräide keskeiste jakaumie parametrie kojugaattipriorijakaumat. Havaitoje jakauma Parametri Kojugaattipriorijakauma Beroulli-jakauma p = E() Beta-jakauma Biomijakauma p = E() Beta-jakauma Poisso-jakauma = E() Gamma-jakauma Ekspoettijakauma = 1/E() Gamma-jakauma Normaalijakauma ( 2 o tuettu) = E()/ Normaalijakauma Normaalijakauma ( o tuettu) 2 = E[( ) 2 ] Ivertoitu Ilkka Melli (2010) 8/13
9 Epäiformatiiviset priorijakaumat Jos parametri käyttäytymisestä ei ole käytettävissä sellaista eakkotietoa, joka mahdollistaa priorijakauma tarka formuloii, ii Bayeslaisessa lähestymistavassa pyritää kuvaamaa kaikkie vaihtoehtoje epämääräisyyttä epäiformatiivise priorijakauma avulla. Tämä voidaa tehdä määrittelemällä parametrille (tai jolleki se muuokselle) lokaalisti tasaie jakauma. Jos parametriavaruutea o reaalilukuje joukko, ii parametrille voidaa määritellä epäiformatiivie priorijakauma kaavalla jolloi k o vakio. ( )d d ( ) k Jos parametriavaruutea o positiiviste reaalilukuje joukko, ii parametri logaritmimuuokselle = log() voidaa määritellä epäiformatiivie priorijakauma kaavalla jolloi koska ( ) d d ( ) 1 d d Kummassaki tapauksessa priorijakauma o epäoleellie eli ( )d Molemmat priorijakaumat kuvaavat vaihtoehtoje epämääräisyyttä seuraavassa mielessä: (i) Tapauksessa suhde Pr (, a) Pr ( a, ) d Pr (, d) ( ) d,, d {, }, d o määrittelemätö eli muotoa / kaikille a. (ii) Tapauksessa suhde Pr (0, a) Pr ( a, Ilkka Melli (2010) 9/13
10 d Pr (, d) ( ) d,, d { }, d o määrittelemätö eli muotoa / kaikille a Bayes-estimoiti Puhdasveriset Bayeslaiset tilastotieteilijät eivät yritä estimoida todeäköisyysjakaumie parametreja samassa mielessä kui frekvetistit. Frekvetisti o tyytyväie, ku hä o kyeyt tuottamaa parametrille piste-estimaati. Se sijaa Bayeslaie tilastotieteilijä haluaa kostruoida parametrille kokoaise posteriorijakauma. Parametri Bayes-estimaattoria käytetää kuiteki yleisesti jotaki posteriorijakauma sijaitia kuvaavaa tuuslukua. Tällöi kyseesee tulevat posteriorijakauma odotusarvo, mediaai tai moodi. Varsiki posteriorijakauma moodi o suosittu valita Bayeslaisessa lähestymistavassa estimoitii, koska se asettuu todeäköisimpie parametri arvoje kohdalle Bayes-testit Olkoo otokse f ( x ) 1, 2,, yhteisjakauma tiheysfuktio, ( ) parametri priorijakauma ja ( x) parametri posteriorijakauma. Olkoo testaukse kohteea oleva ollahypoteesi H 0 muotoa H 0 : 0 0 o joki parametriavaruude osajoukko ja olkoo vaihtoehtoie hypoteesi H 1 muotoa H : o jouko 0 komplemetti. Määritellää todeäköisyydet ja Pr( x) Pr(H pätee x) 0 0 Pr( x) Pr(H pätee x) 0 1 Huomaa, että ämä todeäköisyydet eivät ole mielekkäitä frekvetistille, koska klassisessa lähestymistavassa parametri ei ole satuaismuuttuja vaa kiiteä luku ja lisäksi hypoteesit Ilkka Melli (2010) 10/13
11 väitteitä, jotka ovat tosia tai epätosia ja site iihi ei voida liittää ollasta ja ykkösestä poikkeavia todeäköisyyksiä. Bayeslaisessa lähestymistavassa testauksee voidaa toimia esimerkiksi seuraavalla tavalla: Hyväksytää ollahypoteesi H 0, jos ja hylätää ollahypoteesi H 0, jos Pr( x) Pr( x) 0 0 Pr( x) Pr( x) 0 0 Tämä merkitsee sitä, että testisuureea käytetää otokse fuktiota ( ) Pr( ) ja testi hylkäysalue o muotoa x Pr( x) jolloi testi hyväksymisalue o muotoa x Pr( x) Jos haluamme erityisesti suojautua ollahypoteesi H 0 virheellistä hylkäystä vastaa, voimme ottaa hylkäysalueeksi jouko x Pr( x) 0 o joki ykköstä lähellä oleva luku kute 0.95 tai Bayes-luottamusvälit Ku frekvetistisessä lähestymistavassa tilastotieteesee puhutaa parametri ja se luottamusväli suhteesta, olisi aia hyvä käyttää saotaa: Otoksesta kostruoitu luottamusväli peittää parametri arvo luottamustaso ilmaisemalla todeäköisyydellä. Näi tulisi korostetuksi sitä, että frekvetistille luottamisväli o satuaissuure, joka päätepisteet vaihtelevat satuaisesti otoksesta toisee ja parametri o kiiteä, ei-satuaie vakio. Näi ei kuitekaa aia saota, vaa saotaa, että Parametri arvo o otoksesta kostruoidu luottamusväli sisällä luottamustaso ilmaisemalla todeäköisyydellä. Tähä saotaa liittyy se epätäsmällisyys, että luottamusväli o satuaissuure, jolle o realisoituut poimitussa otoksessa yksi se mahdollisista arvoista ja koska parametri o kiiteä, eisatuaie vakio, se arvo o realisoituee väli sisällä joko todeäköisyydellä 0 tai todeäköisyydellä 1. Ku saomme, että realisoituut luottamusväli peittää parametri arvo luottamustasolla (1 ), ii tarkasti ottae ilmaisu tarkoittaa sitä, että (1 ) % kaikista mahdollisista havaitopisteistä johtaa luottamusvälii, joka peittää parametri ja % kaikista mahdollisista havaitopisteistä johtaa luottamusvälii, joka ei sitä Ilkka Melli (2010) 11/13
12 Koska erilaisia käsitteitä ei haluta sekoittaa toisiisa, Bayeslaisessa lähestymistavassa tilastotieteesee o tapaa puhua luottamusjoukkoje tai -välie sijasta uskottavuusjoukoista tai -väleistä. Olkoo ( x) parametri posteriorijakauma ehdolla = x (so. ku otostietoa o = x). Olkoo A joki parametriavaruude osajoukko: A Tällöi jouko A uskottavuustodeäköisyys o Pr( A x) ( x) d A ja A o uskottavuusjoukko parametrille. Jos posteriorijakauma ( x) o joki diskreeti jakauma pistetodeäköisyysfuktio, ii yo. kaava itegraali o korvattava summalla. Uskottavuusjoukkoje uskottavuustodeäköisyydet määrätää posteriorijakaumasta. Posteriorijakauma todeäköisyysmekaismi taas perustuu priorijakauma todeäköisyysmekaismii. Tutkija o kuvaut priorijakauma avulla parametria koskevie eakkokäsitystesä varmuutta. Tämä kuvaukse pitää tapahtua jo ee kui tutkija o saaut käyttöösä otostietoa. Uskottavuustodeäköisyydet kuvaavat tutkija parametria koskevie käsityste varmuutta se jälkee, ku hä o päivittäyt parametria koskevat eakkokäsityksesä otostiedolla. Ku bayeslaie tilastotieteilijä saoo, että parametri kuuluu 90 %: todeäköisyydellä kostruoituu uskottavuusjoukkoo, hä tarkoittaa seuraavaa: Se jälkee ku otostieto o yhdistetty prioritietoo, hä o 90 %:se varma siitä, että parametri kuuluu uskottavuusjoukkoo. Se sijaa luottamusjoukkoje peittotodeäkäisyydet kuvaavat otataa liittyvää epävarmuutta ja siihe liittyvä todeäköisyysmekaismi perustuu siihe, että ajatellaa, että otataa voidaa aiaki hypoteettisesti toistaa. Ku frekvetisti saoo, että luottamusjoukko peittää 90 %: todeäköisyydellä parametri arvo, hä tarkoittaa seuraavaa: Jos otataa toistetaa, ii 90 % kostruoiduista luottamusjoukoista peittää parametri todellise arvo. Bayeslaie optimaalisuus Klassisise lähestymistava luottamusjoukkoja kostruoitaessa haluttii iistä joukoista, joilla o sama peittotodeäköisyys, valita mahdollisimma piei. Sama ajatus voidaa liittää myös bayeslaisii uskottavuusjoukkoihi. Olkoo ( x) parametri posteriorijakauma ehdolla = x (so. ku otostietoa o = x). Haluamme siis löytää jouko C(x), joka toteuttaa seuraavat kaksi ehtoa: (i) C ( x) ( x) d 1 (ii) Jouko C(x) koko o korkeitaa yhtä suuri kui jouko C (x) koko kaikille joukoille C (x), jotka toteuttavat Ilkka Melli (2010) 12/13
13 C ( x) ( x) d 1 Jos uskottavuusjoukkoa o väli ja jouko kokoa mitataa väli pituudella, pätee seuraava lause (vrt. luvu 5. kappalee 5.3. kohdassa Peittotodeäköisyys ja luottamusjouko koko esitettyy lauseesee): Lause: Olkoo posteriorijakauma ( x) uimodaalie. Valitaa luku [0,1]. Tällöi lyhyi uskottavuusväli parametrille toteuttaa ehdo { ( x) k} { ( x) k} ( x) d 1 Lausee määrittelemää uskottavuusjoukkoa kutsutaa korkeimma posterioritiheyde Ilkka Melli (2010) 13/13
Estimaattori, Estimointi, Mediaani, Moodi, Odotusarvo, Parametri, Posteriorijakauma, Tunnusluku
Tilastollie päättely 6.1. Johdato Bayesi kaava, Bayeslaie lähestymistapa, Eakkotieto, Estimoiti, Frekvetistie lähestymistapa, Frekvessitulkita, Klassie lähestymistapa, Luottamustaso, Luottamusväli, Merkitsevyystaso,
Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (004) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo otosjakauma Otosvariassi otosjakauma
Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?
TKK (c) Ilkka Melli (4) Johdato Johdatus todeäköisyyslasketaa TKK (c) Ilkka Melli (4) : Mitä opimme? / Tutustumme tässä luvussa seuraavii ormaalijakaumasta (ks. lukua Jatkuvia jakaumia) johdettuihi jakaumii:
Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (005) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo ja otosvariassi otosjakaumat
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Melli Tilastolliset meetelmät Osa : Otokset, otosjakaumat ja estimoiti Otokset ja otosjakaumat TKK (c) Ilkka Melli (007) 1 Otokset ja otosjakaumat >> Satuaisotata ja satuaisotokset Otostuusluvut
Tilastolliset menetelmät: Tilastolliset testit
Tilastolliset meetelmät Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille. Testejä järjestysasteikollisille muuttujille.
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Melli Tilastolliset meetelmät Osa 2: Otokset, otosjakaumat ja estimoiti Estimoitimeetelmät TKK (c) Ilkka Melli (2007) Estimoitimeetelmät >> Todeäköisyysjakaumie parametrie estimoiti Suurimma uskottavuude
Johdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Estimoitimeetelmät TKK (c) Ilkka Melli (2005) 1 Estimoitimeetelmät Todeäköisyysjakaumie parametrie estimoiti Momettimeetelmä Normaalijakauma parametrie estimoiti Ekspoettijakauma
Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot
TKK (c Ilkka Melli (004 Johdatus tilastotieteesee TKK (c Ilkka Melli (004 : Mitä opimme? Tarkastelemme tässä luvussa seuraavia järjestysasteikolliste muuttujie testejä: ja merkkitesti parivertailuille
Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat:
Mat-.090 Sovellettu todeäköisyyslasku A Mat-.090 Sovellettu todeäköisyyslasku A / Ratkaisut Aiheet: Avaisaat: Otos- ja otosjakaumat Estimoiti Estimoitimeetelmät Väliestimoiti Aritmeettie keskiarvo, Beroulli-jakauma,
1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä
Mat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat:
Mat-.60 Sovellettu todeäköisyyslasketa B Mat-.60 Sovellettu todeäköisyyslasketa B / Ratkaisut Aiheet: Estimoiti Estimoitimeetelmät Väliestimoiti Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Beroulli-koe,
Tilastolliset luottamusvälit
Luku 8 Tilastolliset luottamusvälit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017 8.1 Piste-estimaatti ja väliestimaatti Edellisessä luvussa opittii määrittämää parametreille estimaatteja suurimma uskottavuude
Mat Tilastollisen analyysin perusteet, kevät 2007
Mitä tilastotiede o? Mat-.04 Tilastollise aalyysi perusteet, kevät 007. lueto: Johdato Tilastotiede kehittää ja soveltaa meetelmiä: reaalimaailma ilmiöistä johtopäätökset ilmiöitä kuvaavie tietoje perusteella
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016,
Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.
Mat-2.090 Sovellettu todeäköisyyslasku A Mat-2.090 Sovellettu todeäköisyyslasku A / Pistetehtävät 2, 4, 6, 8, 0 Aiheet: Avaisaat: Momettiemäfuktio Satuaismuuttujie muuokset ja iide jakaumat Kovergessikäsitteet
Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille: Esitiedot
TKK (c) Ilkka Melli (4) Testit suhdeasteikollisille muuttujille Johdatus tilastotieteesee Testit suhdeasteikollisille muuttujille Testit ormaalikauma parametreille Yhde otokse t-testi Kahde otokse t-testi
Tilastollinen päättömyys, kevät 2017 Harjoitus 5b
Tilastollie päättömyys, kevät 07 Harjoitus b Heikki Korpela 3. helmikuuta 07 Tehtävä. a Olkoot Y,..., Y Bθ. Johda uskottavuusosamäärä testisuuree ry, Waldi testisuuree wy ja Rao pistemäärätestisuuree uy
Tilastolliset menetelmät: Tilastolliset testit
Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille 0. Testejä järjestysasteikollisille muuttujille. Testejä laatueroasteikollisille
8. laskuharjoituskierros, vko 11, ratkaisut
Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse
1. Valitaan tilanteeseen sopiva stokastinen malli. 2. Sovitetaan malli havaittuun dataan (estimoidaan mallin parametrit).
Luku 7 Parametrie estimoiti Lasse Leskelä Aalto-yliopisto 2. lokakuuta 2017 7.1 Tilastollie päättely Tähä meessä o opittu eustamaa tapahtumie todeäköisyyksiä aetu stokastise malli pohjalta. Eusteide laskemiseksi
4. Todennäköisyyslaskennan kertausta
Sisältö Peruskäsitteet Diskreetit satuaismuuttujat Diskreetit jakaumat (lkm-jakaumat) Jatkuvat satuaismuuttujat Jatkuvat jakaumat (aikajakaumat) Muut satuaismuuttujat lueto04.ppt S-38.45 - Liikeeteoria
Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat
TKK (c) Ilkka Melli (4) Satuaismuuttujie muuokset ja iide jakaumat Satuaismuuttujie muuoste jakaumat Kaksiulotteiste satuaismuuttujie muuoste jakaumat Riippumattomie satuaismuuttujie summa jakauma Riippumattomie
Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää
Mat Sovellettu todennäköisyyslasku 9. harjoitukset/ratkaisut. Luottamusvälit
Mat-.09 Sovellettu todeäköisyyslasku Mat-.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Estimoiti Luottamusvälit Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Estimaattori, Estimoiti, Frekvessi,
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II
Otokset MS-A050 Todeäköisyyslaskea ja tilastotietee peruskurssi Lueot, osa II Kaksi hyödyllista jakaumaa 3 Estimoiti G. Gripeberg 4 Luottamusvälit Aalto-yliopisto. helmikuuta 05 5 Hypoteesie testaus 6
Tilastollinen päättely. 5. Väliestimointi Johdanto Luottamusvälien konstruointi Luottamusvälien vertailu
ilastollinen päättely 5.. Johdanto Estimointi, Joukkoestimointi, Kriittinen alue, uottamusjoukko, uottamustaso, uottamusväli, Otos, Parametri, Peittotodennäköisyys, Piste-estimointi, Väliestimaatti, Väliestimaattori,
Tilastollinen päättömyys, kevät 2017 Harjoitus 6A
Tilastollie päättömyys, kevät 07 Harjoitus 6A Heikki Korpela 8. helmikuuta 07 Tehtävä. Moistee teht. 5.. Olkoo Y,..., Y riippumato otos ekspoettiperhee jakaumasta, joka ptf/tf o muotoa fy i ; θ cθhye φθtyi
Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Konvergenssikäsitteet ja raja arvolauseet
Ilkka Melli Todeäköisyyslasketa Osa 2: Satuaismuuttujat ja todeäköisyysjakaumat Kovergessikäsitteet ja raja arvolauseet TKK (c) Ilkka Melli (2006) 1 Kovergessikäsitteet ja raja arvolauseet >> Kovergessikäsitteitä
Todennäköisyyslaskenta: Todennäköisyysjakaumia
Todeäköisyysjakaumia Todeäköisyyslasketa: Todeäköisyysjakaumia 6. Diskreettejä jakaumia 7. Jatkuvia jakaumia 8. Normaalijakaumasta johdettuja jakaumia 9. Moiulotteisia jakaumia Ilkka Melli 35 Todeäköisyysjakaumia
Yhden selittäjän lineaarinen regressiomalli
Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita
Tilastolliset menetelmät
Tilastolliset meetelmät tilastolliste meetelmie tarkoitus o: estimoida eliaika- (vikaatumisaika, korjausaika- jakaumie ja -mallie parametreja eliaikakokeide, laitteide käyttökokemustiedo yms. perusteella
Mat Sovellettu todennäköisyyslasku A
TKK / Ssteemiaalsi laboratorio Mat-2.9 Sovellettu todeäköisslasku A Nordlud Harjoitus 6 (vko 43/23) (Aihe: sekamalli, hteisjakaumia, Laiie luvut 6. 6.3, 8. 8.9). Tässä o edellise viiko laskareissa luvattu
Johdatus todennäköisyyslaskentaan Konvergenssikäsitteet ja raja-arvolauseet. TKK (c) Ilkka Mellin (2004) 1
Johdatus todeäköisyyslasketaa Kovergessikäsitteet ja raja-arvolauseet TKK (c) Ilkka Melli (2004) 1 Kovergessikäsitteet ja raja-arvolauseet Kovergessikäsitteitä Suurte lukuje lait Keskeie raja-arvolause
2-suuntainen vaihtoehtoinen hypoteesi
Mat-.6 Sovellettu todeäköisyyslasketa. harjoitukset Mat-.6 Sovellettu todeäköisyyslasketa B. harjoitukset / Ratkaisut Aiheet: Tilastolliset testit Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, F-jakauma,
LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3
LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi
6.1 Riippumattomat satunnaismuuttujat
Luku 6 Otatajakaumie teoria 6.1 Riippumattomat satuaismuuttujat Muistamme edellisistä luvuista, että satuaismuuttujat X 1 ja X 2 ovat riippumattomat (määritelmät 4.6 ja 5.5), jos f(x 1, x 2 ) f 1 (x 1
Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut
Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,
Väliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
Otantajakauman käyttö päättelyssä
Keskiarvo otatajakauma Toisistaa tietämättä kaksi tutkijaa tutkii samaa ilmiötä, jossa perusjoukko koostuu kuudesta tutkittavasta ja tarkoituksea o laskea keskiarvo A: Kokoaistutkimus B: Otatatutkimus
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai
Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin yliopisto Harjoitus 3, ratkaisuehdotuksia
Todeäköisyyslasketa I, kesä 207 Helsigi yliopisto/avoi yliopisto Harjoitus 3, ratkaisuehdotuksia. Aikaisemma viiko teemaa. Edessäsi o kaksi laatikkoa A ja B. Laatikossa A o 8 palloa, joista puolet valkoisia.
Tilastollinen todennäköisyys
Tilastollie todeäköisyys TOD.NÄK JA TILASTOT, MAA10 Klassisessa todeäköisyydessä oli ehdot: äärellisyys ja symmetrisyys. Tämä tilae o usei mahdoto ts. alkeistapauksia o usei ääretö määrä tai e eivät ole
Mat Sovellettu todennäköisyyslasku A. Diskreetit jakaumat Jatkuvat jakaumat. Avainsanat:
Mat-2.090 Sovellettu todeäköisyyslasku A / Ratkaisut Aiheet: Avaisaat: Diskeetit jakaumat Jatkuvat jakaumat Biomijakauma, Ekspoettijakauma, Jatkuva tasaie jakauma, Ketymäfuktio, Mediaai, Negatiivie biomijakauma,
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy 08 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var
= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1
35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,
Tilastollinen päättely II, kevät 2017 Harjoitus 3B
Tilastollie päättely II, kevät 7 Harjoitus 3B Heikki Korpela 3. maaliskuuta 7 Tehtävä. Jatkoa harjoitukse B tehtävii -3. Oletetaa, että x i c kaikilla i, ku c > o vakio. Näytä, että ˆβ, T ja T ovat tarketuvia.
Tilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan
RATKAISUT 8 17 8 a) Paraabelie y x ja y x + x + 1 leikkauspisteet saadaa määritettyä, ku esi ratkaistaa yhtälö x x + x + 1, eli x x, joka o yhtäpitävä yhtälö x x. Toise astee yhtälö ratkaisukaavalla saadaa
Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä
Otatajakauma kuvaa tarkasteltava parametri jakauma eri otoksista laskettua parametria o joki yleesä tuusluku, esim. keskiarvo, suhteellie osuus, riskisuhde, korrelaatiokerroi, regressiokerroi, je. parametria
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.
HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 2018 Harjoitus 6A Rataisuehdotusia Tehtäväsarja I 1. (Moistee tehtävä 5.4) Kauppias myy mäysiemeiä, joide itävyyde väitetää oleva
EX1 EX 2 EX =
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var X,
( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.
Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä
2-suuntainen vaihtoehtoinen hypoteesi
MS-A53 Todeäköisyyslaskea ja tilastotietee peruskurssi Esimerkkikokoelma 5 Aiheet: Tilastolliset testit Yhde otokse t-testi Testausasetelma yhde otokse t-testissä odotusarvolle Olkoo X i, i =,,, riippumato
Harjoitukset 1 : Tilastokertaus
31C99904, Capstoe: Ekoometria ja data-aalyysi TA : markku.siikae(a)aalto.fi & tuuli.vahapelto(a)aalto.fi Harjoitukset 1 : Tilastokertaus (Palautus 10.1.2017) Palautellaa mielii hiema tilasto-oppia ja todeäköisyyslasketaa.
((12345A, 5, 1, 5), (98759K, 1, 5, 2), (33312K, 4, 4, 3), (23453B, 4, 4, 3), (21453U, 3, 3, 3)),
Luku 6 Datajoukkoje jakaumat, tuusluvut ja kuvaajat Lasse Leskelä Aalto-yliopisto 28. marraskuuta 207 6. Datajoukko ja datakehikko Tässä moisteessa datajoukko tarkoittaa järjestettyä listaa keskeää samatyyppisiä
Testejä suhdeasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman
pq n s n Kyllä Ei N Jäsenyys 5,4% 94.6 % 1500 Adressi 21,6% 78.4 % 1495 Lahjoitus 23,7% 76.3 % 1495 Mielenosoitus 1,1% 98.9 % 1489
Perusjoukko ja otos Kvatitatiiviset meetelmät Sami Fredriksso Yleie valtio-oppioppi Havaitoyksikkö o empiirise mittaukse kohde Perusjoukko o kaikkie havaitoyksiköide muodostama kokoaisuus Otos o perusjoukkoa
Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.104 Tilastollise aalyysi perusteet, kevät 007 6. lueto: Johdatus regressioaalyysii S ysteemiaalyysi Tekillie korkeakoulu Kai Virtae 1 Regressioaalyysi idea Tavoitteea selittää selitettävä tekiä/muuttua
Testit laatueroasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten
Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset
Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.
Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.
Diskreettejä jakaumia. Diskreettejä jakaumia. Diskreettejä jakaumia Mitä opimme? 2/3. Diskreettejä jakaumia Mitä opimme? 1/3
TKK (c) Ilkka Melli (4) Diskeettejä jakaumia Johdatus todeäköisyyslasketaa Diskeettejä jakaumia Diskeetti tasaie jakauma Beoulli-jakauma Biomijakauma Geometie jakauma Negatiivie biomijakauma Hyegeometie
1. Tilastollinen malli??
1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden
Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015
Stokastiika perusteet Harjoitukset (Todeäköisyysavaruus, -mitta ja -fuktio) 2..205. Määritä potessijoukko 2,ku (a) {0, } (b) {(0, ]} ja ku (c) (0, ]. Ratkaisu: (a) 2 {;, {0}, {}, {0, }} (b) 2 {;, {(0,
Insinöörimatematiikka IA
Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sisältö. Kvantitatiivinen metodologia verkossa. Monitasomallintaminen. Monitasomallit. Regressiomalli dummy-muuttujilla.
Kvatitatiivie metodologia verkossa Moitasomallius Pekka Ratae Helsigi yliopisto isältö Moitasomallit Matemaattisia peruskäsitteitä Esimerkki kovariassista Otatavirhe Esimerkki elittävie muuttujie lisäämie
Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1
Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin
Luku 7. Parametrien estimointi. 7.1 Parametriset jakaumat. Lasse Leskelä Aalto-yliopisto 29. marraskuuta 2017
Luku 7 Parametrie estimoiti Lasse Leskelä Aalto-yliopisto 29. marraskuuta 2017 7.1 Parametriset jakaumat Tarkastellaa tutematota datalähdettä, joka tuottaa toisistaa stokastisesti riippumattomia ja tiheysfuktio
Parametrien oppiminen
38 Parametrie oppimie Tilastollise malli (Bayes-verkko rakee o kiiitetty, se umeeriste parametrie (ehdolliste todeäköisyyksie arvot pyritää määräämää Oletamme havaitoe oleva täydellisiä; s.o., okaise datapistee
Testit järjestysasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten
Mat-2.090 Sovellettu todennäköisyyslasku A
Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie
Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims
75 4 POTENSSISARJOJA 4.1 ÄÄRETTÖMÄT SARJAT Lukujoo { a k } summaa S a a a a a k 0 1 k k0 saotaa äärettömäksi sarjaksi. Summa o s. osasumma. S a a a a a k 0 1 k0 Äärettämä sarja (tai vai sarja) saotaa suppeeva
n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:
1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:
Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava TKK (c) Ilkka Mellin (2005) 1 Kokonaistodennäköisyys ja Bayesin kaava Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Kokonaistodennäköisyyden
Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat
Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Kokonaistodennäköisyyden ja Bayesin kaavat TKK (c) Ilkka Mellin (2007) 1 Kokonaistodennäköisyys ja Bayesin kaava >> Kokonaistodennäköisyys
Mat Sovellettu todennäköisyyslaskenta B 5. harjoitukset / Ratkaisut Aiheet: Jatkuvia jakaumia Avainsanat: Jatkuvia jakaumia
Mat-.60 Sovellettu todeäköisyyslasketa B / Ratkaisut Aiheet: Jatkuvia jakaumia Avaisaat: Biomijakauma, Ekspoettijakauma, Jatkuva tasaie jakauma, Kertymäfuktio, Keskeie raja-arvolause, Mediaai, Normaaliapproksimaatio,
Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Tilastolliset testit TKK (c) Ilkka Mellin (2005) 1 Tilastolliset testit Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet testauksessa
Analyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018
Aalyysi A Harjoitustehtäviä lukuu / kevät 208 Ellei toisi maiita, tehtävissä esiityvät muuttujat ja vakiot ovat mielivaltaisia reaalilukuja.. Aa joki ylä- ja alaraja joukoille { x R x 2 + x 6 ja B = {
S Laskennallinen systeemibiologia
S-4250 Laskeallie systeemibiologia Harjoitus Mittaustuloksea o saatu havaitoparia (x, y ),, (x, y ) Muuttuja y käyttäytymistä voidaa selittää muuttuja x avulla esimerkiksi yksikertaise lieaarise riippuvuude
1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 019 Harjoitus 5B Rataisuehdotusia Tehtäväsarja I 1. (Jatoa Harjoitus 5A tehtävää 4). Moistee esimeri 3.3.3. muaa momettimeetelmä
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Estimointi. Vilkkumaa / Kuusinen 1
Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman
Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.
6.10.2015/1 MTTTP1, luento 6.10.2015 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla
Tilastotieteen kertaus. Kuusinen/Heliövaara 1
Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa
Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1
Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 2
Todeäköisyyslaskea ja tilastotietee peruskurssi Esimerkkikokoelma 2 Aiheet: Satuaismuuttujat ja todeäköisyysjakaumat Kertymäfuktio, pistetodeäköisyysfuktio ja tiheysfuktio Jakaumie tuusluvut Tärkeimmät
tilastotieteen kertaus
tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla
Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot
TKK (c) Ilkka Mell (2004) Kokoastodeäkösyys ja Kokoastodeäkösyys ja : Johdato Kokoastodeäkösyyde ja Bayes kaavoje systeemteoreette tulkta Johdatus todeäkösyyslasketaa Kokoastodeäkösyys ja TKK (c) Ilkka
Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017
Luku 1 Bayesläiset estimaattorit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 217 1.1 Bayesläiset piste-estimaatit Tarkastellaan datalähdettä, joka tuottaa tiheysfunktion f(x θ) mukaan jakautuneita riippumattomia
Harjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu
5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017
Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
Todennäköisyyslaskenta I. Heikki Ruskeepää
Todeäköisyyslasketa I Heikki Ruskeepää 2012 Sisällys 2 1 Todeäköisyys 3 1.1 Klassie todeäköisyys 3 1.2 Kombiatoriikkaa 4 1.3 Aksiomaattie todeäköisyys 8 1.4 Ehdollie todeäköisyys 13 1.5 Riippumattomuus
χ 2 -yhteensopivuustesti
Mat-.60 Sovellettu todeäköisyyslasketa B. harjoitukset Mat-.60 Sovellettu todeäköisyyslasketa B. harjoitukset / Ratkaisut Aiheet: Yhteesopivuude, homogeeisuude ja riippumattomuude testaamie Tilastollie