Helsinki University of Technology

Koko: px
Aloita esitys sivulta:

Download "Helsinki University of Technology"

Transkriptio

1 Hlsiki Uivrsit of Tcholog Lbortor of Tlcommuictios Tcholog iglikäsittl titoliiktssä I igl Procssig i Commuictios ( ov) ks Luto: Kvkorjimt II prof. Timo Lkso Vstotto torstisi klo Huo G10, puh ähköposti: timo.lkso@hut.fi Ylisttt kvkorjimt (LM 10.) Viimksi käsitltii ollpkottv (ZF) korjirtkisu oltt vlkistu sovitttu suodti (WMF) -sist. urvss trkstll lismpiä rtkisuj jotk ovt lähmpää kätäö totutust: Luovut kiitästä WMF-sistst. Kätäössä WMF o hkl totutt, kosk s vtii trk tido kvst. Muutt optimlisuuskritriä. II: hdottom ollpkotuks sijst sllit him IIä jott ZFkorjim pulmllistohivhvistust void pitää. opivätäö kritri o kskimääräi kokoisliövirh (M qur Error, ME) jok sisältää kohi j II htisvikutuks. 11/4/97 Tltkiik lbortorio ivu

2 ...Ylisttt kvkorjimt Trkstll rjtu komplksisuud korjimi. Edllä trkstltii vi lisiä siirtofuktioit rjoittmtt iid stluku. Kätäössä korjimt ovt lsä rjllis pituisi FIRsuotimi, kosk iid krtoimi dptiivi määrittämi o hlpoitätäö järjstlmissä. 11/4/97 Tltkiik lbortorio ivu 3 Järjstlmämlli (LM 10..1) Trkstll Kuv diskrttiikist mlli (ättts smbolitjuudll): k C(z) k joss smboliskvssi johiskvssi oltt komplksirvoisiksi stokstisiksi prosssiksi joill o survt thospktrit: = A G G = A G G j G, G ovt miimivihisiuslisi mooisi tkijöitä. 11/4/97 Tltkiik lbortorio ivu 4

3 ...Järjstlmämlli Kv (+ lähttim pulssimuokkuks) siirtofuktio oltt jttvksi survii tkijöihii: r Cz ( ) = CzC 0 micmxc missä C 0 o vkiokrroi, z r o viivtrmi, C mi o mooi, kusli j miimivihi, C mx o mooi, tikusli j mksimivihi, j C zro sisältää ksikkömprällä sijitsvt ollt. zro 11/4/97 Tltkiik lbortorio ivu 5 Kätäö kv omiisuuksi Kätäö kvll o tittjä fsiklisi rjoituksi mksimivihis tkijä C mx suht: C mx i voi sisältää poj, sillä muut impulssivst jtkuisi äärttömii oikll C mx voi sisältää olli, li C mx o i FIR-tppi. 11/4/97 Tltkiik lbortorio ivu 6

4 Esimrkki 10-1: Rdiokv siirtofuktio Mobiilirdiokvll kättää lsä FIR-tppistä moitikvmlli joss moitipolkuj viivt j komplksist mplitudit muuttuvt (häipvät) j muk. Oltt ttä -polkuis kv ttä moitipolkuj viivro o mt (T = ätväli). Kv impulssivstksi j siirtofuktioksi sd ck = c1δk + cδk m m Cz () = c1+ cz Kv ollt void rtkistvst c z m = c1 li jos c > c 1, kv o mksimivihi. 11/4/97 Tltkiik lbortorio ivu 7...Rdiokv siirtofuktio Kosk moitipolkuj mplitudit lsä häipvät riippumtt toisist, mksimivihi til o täsi mhdolli, vrsiki jos suor lähttimstä spuv kompotti (li-of-sight, LO) i äköst vuoksi ol. Korjim klt mksimivihi kv o oglm. Kosk idli ZF-korji o kv käätissiirtofuktio, s sisältää poj ksikkömprä ulkopuolll j o siis pästbiili. Kätäössä tällistorjit void vi pproksimoid stbiilill rtkisull. Tilt tk vilä hklmmksi s, ttä kv stt muuttu dstkisi miimivihis j mksimivihis välillä. Tällöi FIR-tppi (i-rkursiivi) korji o lsä io hllittviss olvätäö totutusrtkisu. 11/4/97 Tltkiik lbortorio ivu 8

5 Nliövirh Määritllää kskimääräi liövirh (M squr rror, ME) vstottim smbolistimti q k j lähtt smboli rvo liö odotusrvo: [ ] ε = E k, k = qk k ME sisältää lissti siis skä kohi ttä IIä. Tämä trkoitt ttä virhtodäköisttä i void määrittää trksti Q-fuktio vullut plkä kohi tpuksss. Approksimtio void kuitki sd määrittlmällä tuusluku γ = mi ε / 11/4/97 Tltkiik lbortorio ivu 9...Nliövirh (puoliks tul siitä ttä trvit rli- ti imgirios vrissi). Virht-stimtti sd, kut immi, kvst P = K Q( γ / ) Tämä virht-stimtti prustuu siih, ttä rsiduli-iiä mllitt dditiivis Gussi kohi (vikk s o dtriippuv päliri häiriö). Ku II tho vrrttu kohi o pii j s muodostuu us smboli kskiäisvikutuks summ, pproksimtio o hvä. 11/4/97 Tltkiik lbortorio ivu 10

6 Liri ME-korji (LM 10..) Trkstll Kuv 10-1 korjirktt: k C(z) K(z) C(z)K(z)-1 II k k k K(z) ois 11/4/97 Tltkiik lbortorio ivu 11 Liri ME-korji Virh k thospktri koostuu lissti rsiduli-iistä j korjim K(z) suodttmstohist: jω jω jω jω jω jω ( ) = ( ) C( ) K( ) 1 + ( ) K( ) = CK 1 + K j ME sd itgroimll thospktri li ε π / T T jω = ω = π ( ) d π / T A E MME-rtkisu johtmistrrt vilä ZF-rtkisu j s omiisuudt. 11/4/97 Tltkiik lbortorio ivu 1

7 LE-ZF-korji Nollpkottvorji o ksikrtissti kv käätissiirtofuktio: 1 1 K( z) = = Cz ( ) CC 0 micmxc zro ( ) Omiisuuksi: K(z) riippuu vi kvst, i dt ti kohi omiisuuksist ME riippuu vi kohist, kosk II o oll Miimivihi osuus kvst o hlppo korjt käätissuotimll 1/C mi mksimivihosuus j ollt johtvt idlisti pästbiilihi korjitrmihi 1/C mx j 1/C zro 11/4/97 Tltkiik lbortorio ivu 13 LE-ZF-korjim ME o...le-zf-korji ε LE ZF = ( ) C A joksv äärttömii mksimivihkv j ksikkömpräolli tpuksss. 11/4/97 Tltkiik lbortorio ivu 14

8 LE-ME-korji Ylis LE-korjim virhspktri o muoto = CK 1 + K ( ) ME: miimoivorji void joht tämä kv vull. Mrkitsmällä (ks. Kuv 10-11) = C + ( ) void (10.58) muokt muotoo K C * = + ( ) 11/4/97 Tltkiik lbortorio ivu 15...LE-ME-korji Kosk molmmt trmit ovt positiivisi, millä ths tjuudll optimli rtkisu o s jok oll simmäis trmi. Tämä o sit mös optimli MME (Miimum ME) -rtkisu, li LE-ME-korjimksi sd K( z) C * C * 1 = = = C + C+ /( C*) ( ) Tämä void tulkit imittäjä lisätrmillä modifioiduksi LE- ZF-korjimksi (K = 1/C). 11/4/97 Tltkiik lbortorio ivu 16

9 ...LE-ME-korji LE-ME: totutus o Kuv muki: k C(z) C * (1/z * A() z ) * * () z C() z C (/ 1 z ) + () z A N 11/4/97 Tltkiik lbortorio ivu 17...LE-ME-korji Tkijä C* vst diskrttiä sovitttu suodtit j s void rott sistksi. LE-ME: omiispiirtitä o: Esist jälki lohko / o i rli j igtiivi ksikkömprällä Jos / :llä o poj, os äistä o ksikkömprä ulkopuolll mikä tk trk totutuks mhdottomksi Ku kohispktri pi, LE-ME lähst LE-ZFrtkisu (kohi mrkits väh j II ksv) LE-ME-korjim ME o (vrt. (10.61)! ): ( ) ε LE ME = C + / A 11/4/97 Tltkiik lbortorio ivu 18

10 DFE-ZF-korji DFE-ZF-korji void joht mm. prdiktoritulki vull (Kuv 10-14): k E(z)-1 C(z) K(z)E(z) C(z)K(z)-1 II k E(z) k k k K(z) ois 11/4/97 Tltkiik lbortorio ivu 19...DFE-ZF-korji Prdiktorisuodi E(z) vlkis virh k thospktri E. Kosk prdiktorisuodi määritllää lisäksi miimivihisksi j mooisksi, s void sittää muodoss Ez ()= 1 G missä G sd hjotlmst = ε G G ( ) DFE Kosk LE-ZF: korji o K = 1/C, virh k thospktri o = = CC * AGG ( ) C C C C C 0 mi mx mi mx 11/4/97 Tltkiik lbortorio ivu 0

11 ...DFE-ZF-korji Vrtmll (10.71): j (10.73): sd G G = C C j prkursorikorji o siis E z mi 1 C = = G mx C G () mi mx Tästä sd prdiktiovirhsuotim siirtofuktio 1 CmiCmx KzEz ( ) ( ) = = = CG CC C G C CC mx G 0 mi mx 0 mx 11/4/97 Tltkiik lbortorio ivu 1...DFE-ZF-korji Hvitoj prkursorikorjimst: 1/G o miimivihi kohivlkisusuodi C mx* /C mx o llpss-suodi (mplitudivst = 1 kikill tjuuksill). Elimioi prkursori-iiä muuttmll vihtt, jolloi kohik mplitudi i ksv! Jos kv o miimivihi, C mx = 1. Jos lisäksi kohi o vlkoist li = G = 1, koko prkursori i trvit! Kv mksimivihkompotti voi oll vi FIRtppi, muut totutus i oistu! ME: = / C ε DFE G 11/4/97 Tltkiik lbortorio ivu

12 DFE-ME-korji DFE-ME-korji totutt mös Kuv rktll, mutt siirtofuktiot E(z) j K(z)E(z) määrittää ME-kritri mukissti. Thdää si hjotlm (10.65):ll: = C + = A G G ( ) A = C + ( 10. 8) G K(z): ME-rtkisu o smui LE-ME:ll li K= C * /, jolloi virhspktri o (10.66):st = = AGG AGG * AGG * * * = εdfe MEGG 11/4/97 Tltkiik lbortorio ivu 3...DFE-ME-korji Trmjä vrtmll sd rtkistu prdiktori 1 Ez ()= = G G GG j prkursori KzEz () () C AGG C G * = = G AGG GG AG C = AG G Lusk o hkl, mutt oksi tätä i trvitätäö korjimi suuittluss! 11/4/97 Tltkiik lbortorio ivu 4

13 FIR-korjimt (LM 10.4) Tähä sti i ol juuri mititt korjimi komplksisuutt. Kikki diskrtillä suotimill totutttvt siirtofuktiot ovt rtiolisi. Kätäö kvt ovt hrvoi trksti rtiolisi, mutt riittävä stluvu z-rtiolipolomill li äärllis stisll rkursiivisll (IIR-) suotimll iitä void pproksimoid. IIR-suotimi pottilis oglm o pästbiilisuus (vt ksikkömprä ulkopuolll). Edllä huomttii, ttä mksimivihis kv trkk kvlisoiti voi joht pästbiilii korjim. Tällöi o prst ttä pproksimtiivis FIR-rtkisuu. 11/4/97 Tltkiik lbortorio ivu 5...FIR-korjimt Lisäksi IIR-korjimi dptoiti tutmttom ti muuttuv kv o (iki kää tutuill tkiikoill) kätäössä pljo hklmpui FIRkorjimi. Tämä vuoksi kättää lsä i FIRkorjimi iid vtimstorkmmst stluvust huolimtt. Kätäö korjirtkisuiss ZF-kritri kättö o kslist, sillä äärllis stluvu FIR-suodi (ti IIRsuodi) i lsä pst poistm IIä koko. Pääsäätöissti kättääki MME-kritriä j s pohjlt johdt dptiivisi FIR-tppisiä korjirtkisujirj luvuss /4/97 Tltkiik lbortorio ivu 6

a) Määritä signaalin x[n] varianssi (keskimääräinen teho) σ x c) Määritä signaalikvantisointikohinasuhde SQNR, kun tiedetään, että

a) Määritä signaalin x[n] varianssi (keskimääräinen teho) σ x c) Määritä signaalikvantisointikohinasuhde SQNR, kun tiedetään, että TL, DSK-lgoritmit S rjoitus. Trkstll kosiisigli [] cosπt s. Määritä sigli [] vrissi kskimääräi to. b Määritä sigli [] jot c Määritä siglikvtisoitikoisud SQNR, ku tidtää, ttä.79. b SQNR log Kvss b o kvtisoij

Lisätiedot

y 1 = f 1 (t,y 1,,y n ) y 2 = f 2 (t,y 1,,y n ) (1) y n = f n (t,y 1,,y n ) DY-ryhmään liittyvä alkuarvotehtävä muodostuu ryhmästä (1) ja alkuehdoista

y 1 = f 1 (t,y 1,,y n ) y 2 = f 2 (t,y 1,,y n ) (1) y n = f n (t,y 1,,y n ) DY-ryhmään liittyvä alkuarvotehtävä muodostuu ryhmästä (1) ja alkuehdoista 9 5 DIFFERENTIAALIYHTÄLÖRYHMÄT 5. Esimmäis krtluvu diffrtilihtälörhmät Diffrtilihtälörhmiä trvit usiss sovlluksiss. Näistä usimmt void mllit simmäis krtluvu diffrtilihtälörhmi vull. Esimmäis krtluvu diffrtilihtälörhmä

Lisätiedot

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään. S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn

Lisätiedot

1.3 Toispuoleiset ja epäoleelliset raja-arvot

1.3 Toispuoleiset ja epäoleelliset raja-arvot . Toisuoleiset j eäoleelliset rj-rvot Rj-rvo lim f () A olemssolo edellyttää että muuttuj täytyy void lähestyä rvo kummst suust hyväsä. Jos > ii sot että lähestyy rvo oikelt ositiivisest suust. Jos ts

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

S , Fysiikka IV (Sf), 2 VK

S , Fysiikka IV (Sf), 2 VK S-11446, Fysiikk IV (Sf, VK 455 1 Slitä lyhysti mutt mhdollisimm täsmällissti: Kskimääräis ktä mlli j itsäist lktroi roksimtio b Mo frmioi ltofuktio hiukksvihtosymmtri j s totutumi dtrmittiltofuktioss

Lisätiedot

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2.

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2. Mtemtiikk III 0600 Kurssi / Differetili- j itegrlilske jtkokurssi Tee 7 tehtävää ) Määritä lim ( ) ) + b) Määritä vkio site, että luseke ( ) + + ( )( ) ( + + ) + + + + + lim + lim lim (p) o jtkuv myös

Lisätiedot

S Laskennallinen systeemibiologia

S Laskennallinen systeemibiologia S-4.50 Lsknnllinn systmiiologi 4. Hrjoitus. Viill tutkittvll ljill (,, c, j ) on määrätty täisyyt c 0 8 8 8 0 8 8 8 c 0 4 4 0 0 Määritä puurknn käyttän UPGMA-mntlmää. Näytä kunkin vihn osrkntt vstvin täisyyksinn.

Lisätiedot

Puolijohdekomponenttien perusteet A Ratkaisut 1, Kevät Tarvittava akseptoridouppaus p-tyypin kerrokseen saadaan kaavalla

Puolijohdekomponenttien perusteet A Ratkaisut 1, Kevät Tarvittava akseptoridouppaus p-tyypin kerrokseen saadaan kaavalla OY/PJKOMP R1 17 Puolijohkoonnttin rustt 5171A Rtkisut 1, Kvät 17 1. ( Trvittv kstoriouus tyyin krroksn sn kvll kbt ln Ł ni ni Ł kbt 1 ( 1 c,85 V 17» 1,8 1 c. 17 1 c Ł,59V Mtrilivkiot on otttu luntoonistn

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Rtkisuist Nämä Trigoometriset fuktiot j lukujoot kurssi kertustehtävie j -srjoje rtkisut perustuvt oppikirj tietoihi j meetelmii. Kustki tehtävästä o yleesä vi yksi rtkisu, mikä ei kuitek trkoit sitä,

Lisätiedot

****************************************************************** MÄÄRITELMÄ 4:

****************************************************************** MÄÄRITELMÄ 4: . Murtopotessi MÄÄRITELMÄ : O Olkoo prillie, positiivie kokoisluku. Ei egtiivise luvu :s juuri trkoitt sellist ei-egtiivist luku b, jok :s potessi o. Merkitää b. Kute eliöjuureki tpuksess, luku b täyttää

Lisätiedot

2.4. Juurifunktio ja -yhtälöt

2.4. Juurifunktio ja -yhtälöt .. Juurifuktio j -yhtälöt.. Juurifuktio j -yhtälöt Juurifuktio lähtökoht void pitää potessifuktiot: f (x) x, missä o luoollie luku;,,,, j yhdistety potessifuktio määrittelee puolest yhtälö f (x) [g(x)],,,,,...

Lisätiedot

Testit laatueroasteikollisille muuttujille. Testit laatueroasteikollisille muuttujille. Testit laatueroasteikollisille muuttujille: Esitiedot

Testit laatueroasteikollisille muuttujille. Testit laatueroasteikollisille muuttujille. Testit laatueroasteikollisille muuttujille: Esitiedot TKK (c) Ilkk Melli (24) Johdtus tilstotieteesee TKK (c) Ilkk Melli (24) 2 : Mitä opimme? Trkstelemme tässä luvuss seurvi ltuerosteikolliste muuttujie testejä: Testukse kohtee testeissä o Beroulli-jkum

Lisätiedot

Säännöllisestä lausekkeesta deterministiseksi tilakoneeksi: esimerkki

Säännöllisestä lausekkeesta deterministiseksi tilakoneeksi: esimerkki Säännöllisstä luskkst dtrministisksi tilkonksi: simrkki Hikki Turiinn Yksinkrtistn säännöllistn luskkidn muuttminn dtrministisiksi tilkoniksi onnistuu usin plkästään lusktt tutkimll. Jos luskkn rknn on

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29 Numeeriset menetelmät TIEA381 Luento 9 Kirsi Vljus Jyväskylän yliopisto Luento 9 () Numeeriset menetelmät 17.4.2013 1 / 29 Luennon 9 sisältö Numeerisest integroinnist Newtonin j Cotesin kvt Luento 9 ()

Lisätiedot

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset Differentili- j integrlilskent (CHEM) Lskuhrjoitus / vko 7, mllivstukset Johdntotehtävä x dx = ln.693, joten rvo ln voidn pproksimoid integroimll numeerisesti funktiot x välillä [,]. Jetn väli [,] khteen

Lisätiedot

2.2 Monotoniset jonot

2.2 Monotoniset jonot Mtemtiik tito 9, RATKAISUT Mootoiset joot ) Kosk,,,, ii 0 Lukujoo ( ) o siis lhlt rjoitettu Toislt 0 Lukujoo (

Lisätiedot

Jatkuvia jakaumia. Jatkuvia jakaumia. Jatkuvia jakaumia Mitä opimme? 2/3. Jatkuvia jakaumia Mitä opimme? 1/3. Jatkuvia jakaumia Mitä opimme?

Jatkuvia jakaumia. Jatkuvia jakaumia. Jatkuvia jakaumia Mitä opimme? 2/3. Jatkuvia jakaumia Mitä opimme? 1/3. Jatkuvia jakaumia Mitä opimme? TKK (c) Ilkk Melli (4) Jtkuvi jkumi Jtkuv tsie jkum Johdtus todeäköisyyslsket Jtkuvi jkumi TKK (c) Ilkk Melli (4) Jtkuvi jkumi Mitä opimme? /3 Tutustumme tässä luvuss seurvii jtkuvii todeäköisyysjkumii:

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS 0 MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 30 PISTEYTYSKOKOUS 0 ) Sijoitetn x 0 Rtkistn = 0/04,0000 b) Jos neliön sivu on s, niin lävistäjä on s Ehto: s 6 s + s = 6, s 6 3 4s 6,70, joten piiri ) Suorn yhtälö

Lisätiedot

LASKENTA laskentakaavat

LASKENTA laskentakaavat LASKENA lketkvt Kvkokoelm älle ivulle o koottu yleiiät j ueiite trvitut lketkvt. Näitä käytetää hihleveyde j keliväli lket. Liäki o koottu muutmi muuokvoj. Hhih mitoittmie käy helpoti Heomitoituohjelmll.

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 3.10.2016 Pekk Alestlo, Jrmo Mlinen

Lisätiedot

ja differenssi jokin d. Merkitään tämän jonon n:n ensimmäisen jäsenen summaa kirjaimella S

ja differenssi jokin d. Merkitään tämän jonon n:n ensimmäisen jäsenen summaa kirjaimella S 3.3. Aritmeettie summ 3.3. Aritmeettie summ Mikä olisi helpoi tp lske 0 esimmäistä luoollist luku yhtee? Olisiko r voim käyttö 0 + + + 3 + + 00 hyvä jtus? Tekiik vull se iki toimii. Fiksumpiki tp kuiteki

Lisätiedot

Menetelmiä formuloinnin parantamiseen

Menetelmiä formuloinnin parantamiseen Meetelmiä formuloii prtmisee Mikko Korpel Dimitris Bertsims & Robert Weismtel, 2005, Optimiztio over Itegers, ch 2.-2.5 S ysteemilyysi Lbortorio Tekillie korkekoulu Mikko Korpel Sovelletu mtemtiik tutkisemiri-

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 8: Integrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 5.1.216 Pekk Alestlo,

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 20, 2017

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

Kertausosa. Kertausosa. 3. Merkitään. Vastaus: 2. a) b) 600 g. 4. a)

Kertausosa. Kertausosa. 3. Merkitään. Vastaus: 2. a) b) 600 g. 4. a) Kertusos Kertusos ). ) : j 7 0 7 ) 0 :( ) c) :( ). Merkitää merirosvorht (kg) sukltrffelit (kg) ) 7, 0 hit: /kg hit: 7 /kg ) 00 g 0,kg 7 0,,0,,0, 0, (kg) :. ) Vstus: ) 7, 0 ( ) ) 00 g. ) 0 7 9 7 0 0 Kertusos

Lisätiedot

Koestusnormit: VDE 0660 osa 500/IEC Suoritettu koestus: Nimellinen virtapiikkien kestävyys I pk. Ip hetkellinen oikosulkuvirta [ka]

Koestusnormit: VDE 0660 osa 500/IEC Suoritettu koestus: Nimellinen virtapiikkien kestävyys I pk. Ip hetkellinen oikosulkuvirta [ka] Oikosulkukstoisuus DN EN 439-1/EC 439-1 mukn Tyyppikostus DN EN 439-1 Järjstlmän tyyppikostuksn yhtyssä suoritttiin survt Rittl-virtkiskojärjstlmin skä vstvin Rittl RiLin-komponnttin kostukst: Eristysominisuut

Lisätiedot

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

II.1. Suppeneminen., kun x > 0. Tavallinen lasku II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä

Lisätiedot

f [Hz] f [Hz]

f [Hz] f [Hz] TL536, DSK-lgoritmit (S4) rjoitu 3. Oheie kuv o eitett ikkumeetelmää j Reme-meetelmää kättäe tuje uodite mplitudivteet, ku vtimumäärittel o kummki tpuke ollut m (päätökitt [, 5 ] j [35, 4 ], etokit [,

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Rtkiuit Nämä Dirtili- j itgrlilk jtkokuri krtuthtävi j -rjoj rtkiut prutuvt oppikirj titoihi j mtlmii Kutki thtävätä o ylä vi yki rtkiu mikä i kuitk trkoit itä ttä rtkiu olii io ti d pr mhdolli Vlittu

Lisätiedot

Tee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi!

Tee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi! MAA8 Koe 4.4.016 Jussi Tyni Tee B-osion konseptiin etusivulle pisteytysruudukko! Muist kirjt nimesi j ryhmäsi. Väliviheet perustelevt vstuksesi! A-osio. Ilmn lskint. MAOLi s käyttää. Mksimissn 1h ik. Lske

Lisätiedot

Sinilause ja kosinilause

Sinilause ja kosinilause Siniluse j kosiniluse GEOMETRI M3 Mikäli kolmion korkeus j knt tiedetään, voidn pint-l lske. Esimerkki: Lske kolmion l, kun 38 kulmn viereiset sivut ovt 8, j 6,8. Nyt knt tiedetään, korkeutt ei! 38 8,

Lisätiedot

Säännöllisten operaattoreiden täydentäviä muistiinpanoja

Säännöllisten operaattoreiden täydentäviä muistiinpanoja Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä

Lisätiedot

Ristitulo ja skalaarikolmitulo

Ristitulo ja skalaarikolmitulo Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden

Lisätiedot

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1 5 Integrli 5.1 Määritelmä j ominisuudet Olkoon f : [, b] R jtkuv. Muodostetn välin [, b] jko = x 0 < x 1 < x 2 < < x n = b j siihen liittyvä yläsumm S = n M k (x k x k 1 ), M k = mx{f(x) x k 1 x x k },

Lisätiedot

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b 5 Integrlien lskemisest 51 Riemnnin summt [A2], [4, 61] Rjoitetun funktion f : [, b] R Riemnn-integroituvuudelle ytäpitäväksi on kurssill Anlyysi 2 osoitettu, että Riemnnin summill S P := f(ξ k ) ( ),

Lisätiedot

2 INTEGRAALILASKENTAA 2.1 MÄÄRÄTTY INTEGRAALI

2 INTEGRAALILASKENTAA 2.1 MÄÄRÄTTY INTEGRAALI 37 INTEGRAALILASKENTAA.1 MÄÄRÄTTY INTEGRAALI Trstell ploitti jtuv j rjoitettu (siis ei ääretötä) futiot f ( ) välillä [, ] (s. uv) Jet väli [, ] :ää h-levyisee os h j meritää h, missä 0,1,,..., Joo liittyvä

Lisätiedot

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek S-446, FYSIIKKA IV (Sf) Kevät 5, HSf Rtkisut HSf- Kvnttimekninen hrmoninen värähtelijä on perustillln (mss m) Värähtelyn mplitudi on A () ske p (Värähtelijä sijitsee välillä A ) (b) Vert p :tä vstv kineettistä

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

Huoltotiedote. Letkun vaihto. Mallit. Ilmoitus moottorin omistajalle. Veneliikkeen moottorivarasto. Huolto-osavarasto. Tarkastus

Huoltotiedote. Letkun vaihto. Mallit. Ilmoitus moottorin omistajalle. Veneliikkeen moottorivarasto. Huolto-osavarasto. Tarkastus Huoltotiedote N:o 98-16c Letkun vihto Mllit 1999 Mercury/Mriner 6 25 HP (2-thtiset) Srjnumerot 0G818363 0G829089 9.9/15, 25, 30/40, 50 (4-thtiset) Srjnumerot 0G820822 0G822265 135 200 HP (Ks. j EFI) Srjnumerot

Lisätiedot

Automaattinen puheentunnistus. Teemu Hirsimäki <teemu.hirsimaki@hut.fi> Informaatiotekniikan laboratorio 30.1.2007

Automaattinen puheentunnistus. Teemu Hirsimäki <teemu.hirsimaki@hut.fi> Informaatiotekniikan laboratorio 30.1.2007 Automttinn puntunnitu Tmu Hirimki Informtiotkniikn lbortorio 30.1.2007 1 Mit puntunnitu on? Puntunnitin on jrjtlm, jok pyrkii tulkitmn putt jollin tvll. Kyttökotit: kyttöliittymn oju,

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemilyysi lbortorio Mt-.090 Sovellettu todeäköisyyslsku Nordlud Hrjoitus 10 (vko 47/003) (ihe: Väliestimoiti, Liie luvut 10.6, 11.7, 1.1-13.5, 14.4-14.5) 1. Kemillise prosessi sto X o ormlijkutuut.

Lisätiedot

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö 22 LINSSIT JA LINSSIJÄRJSTLMÄT 22. Linssien kuvusyhtälö Trkstelln luksi vlon tittumist pllopinnll (krevuussäde R j krevuuskeskipiste C) kuvn mukisess geometriss. Tässä vlo siis tulee ineest ineeseen 2

Lisätiedot

Suorakaidekanavat. lindab suorakaidekanavat

Suorakaidekanavat. lindab suorakaidekanavat Suorkideknvt lind suorkideknvt lind suorkideknvt Sisällysluettelo Suorkideknvt Knv LKR... Liitosost Liitoslist LS... Liitoslist LS-... Kulmyhde LBR... Liitoslist LS... S-mutk LBXR... LBSR... Liitoslist

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

1.1. Laske taskulaskimella seuraavan lausekkeen arvo ja anna tulos kolmen numeron tarkkuudella: tan 60,0 = 2,950... 2,95

1.1. Laske taskulaskimella seuraavan lausekkeen arvo ja anna tulos kolmen numeron tarkkuudella: tan 60,0 = 2,950... 2,95 9..008 (9). Lskime käyttö.. Lske tskulskimell seurv lusekkee rvo j tulos kolme umero trkkuudell: 4 + 7 t 60,0 + Rtkisu: 4 + 7 =,950...,95 t 60,0 + Huom: Lskimiss o yleesä kolme eri kulmyksikköjärjestelmää:

Lisätiedot

Ratkaistaan digitaalista rajataajuutta vastaava analoginen taajuus: Suodin on stabiili, koska napa on z-tasossa yksikköympyrän sisäpuolella.

Ratkaistaan digitaalista rajataajuutta vastaava analoginen taajuus: Suodin on stabiili, koska napa on z-tasossa yksikköympyrän sisäpuolella. . Suuittele ilieriell -muuokell digitlie lipäätöuodi, jok rjtjuu o 5 kättäe lähtökoh eimmäie tee logie lipäätöuotime ormlioitu iirtofuktiot () /(). Nätetjuu f 5. Eitä uuittelemi uotime differeihtälö. Tutki

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2 Tietojenkäsittelyteori Kevät 2 Kierros,. 5. helmikuut Demonstrtiotehtävien rtkisut D: Sievennä seurvi säännöllisiä lusekkeit (so. konstruoi yksinkertisemmt lusekkeet smojen kielten kuvmiseen): ()

Lisätiedot

2. Laske tehtävän 1 mukaiselle 320 km pitkälle johdolle nimellisen p- sijaiskytkeän impedanssit ja admittanssit, sekä piirrä sijaiskytkennän kuva.

2. Laske tehtävän 1 mukaiselle 320 km pitkälle johdolle nimellisen p- sijaiskytkeän impedanssit ja admittanssit, sekä piirrä sijaiskytkennän kuva. ELECE849 k 6. Lk 6 Hz:n vrko olvn 5 :n ohdon ltoimpdni khdll tvll: kä olttmll ohto hävittmäki ttä ottmll hävit huomioon. Vrtil impdnin ro. Lk luonnollinn tho P kättämällä hävittmän ohdon ltoimpdni. Lk

Lisätiedot

ARK 01-01. Asiakirjaluettelo. Jyrki Ala-Mäkelä, per. Koy:n lukuun Pinotie 33470 YLÖJÄRVI ENECON OY. Laksontie 11 60420 SEINÄJOKI

ARK 01-01. Asiakirjaluettelo. Jyrki Ala-Mäkelä, per. Koy:n lukuun Pinotie 33470 YLÖJÄRVI ENECON OY. Laksontie 11 60420 SEINÄJOKI ENECON OY Lksoti SEINÄJOKI 9 timo.mtil@co.fi Uudisrkus, Jyrki Al-Mäklä, pr. Koy lukuu, Pioti, Ylöjärvi Piirustusluttlo.. Vstuuhkilö Timo Mtil, RI Asikirj Sisältö Mittkv Luttlot - Asikirjluttlo.. Pääpiirustukst

Lisätiedot

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A K Ä Y T T Ö S U U N N I T E L M A 2 0 1 7 Y H D Y S K U N T A L A U T A K U N T A Forssan kaupunki Talousarvio ja -suunnitelma 2017-2019 / T O I M I A L A P A L V E L U 50 YHDYSKUNTAPALVELUT 5 0 0 T E

Lisätiedot

2.1. Lukujonon käsite, lukujonon suppeneminen ja raja-arvo

2.1. Lukujonon käsite, lukujonon suppeneminen ja raja-arvo .1. Lukuj käsite, suppeemie j rj-rv.1. Lukuj käsite, lukuj suppeemie j rj-rv S lukuj vi yksikertisimmill ymmärtää tdellki j, jh kirjitettu lukuj peräkkäi. Sellisell jll, jk luvut vlittu täysi stuisesti,

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44,

601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44, Pyrmidi 3 Geometri tehtävien rtkisut sivu 08 60 Olkoon tuntemton kteetti j tuntemttomt kulmt j β Rtkistn kulmt. 8,4 cos 8,4 cos 45,579... 46 β 90 60 4 Rtkistn vrjon pituus 3 44,470... 44 Rtkistn kteetti.

Lisätiedot

S Fysiikka IV (Sf) tentti

S Fysiikka IV (Sf) tentti S-11446 Fysii IV (Sf) tetti 9114 1 Oletet, että protoi j eletroi välie vetovoim o verrollie suureesee r ( F r) eiä etäisyyde eliö ääteisrvoo ( F / r ) Käytä ulmliiemäärä vtittumissäätöä j osoit, että sttioääriste

Lisätiedot

Pinta-alan laskeminen

Pinta-alan laskeminen Pint-ln lskeminen Esimerkki Välillä, jtkuvn, einegtiivisen funktion f määrätt integrli nt suorn pint-ln, eli f = A. INTEGRAALILASKENTA, MAA9 A = f Toislt, jos f on välillä,, eipositiivinen, eli f R, niin

Lisätiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.

Lisätiedot

Kohina. Mittaustekniikan perusteet / luento 8. Kohina. Kohina. Kohinan mittaaminen

Kohina. Mittaustekniikan perusteet / luento 8. Kohina. Kohina. Kohinan mittaaminen Mttutkk prutt / luto 8 Koh Koh mttm Koh lttyvää trmolog Kohtyypt Mttuvhvt Kohll trkott lktro järjtlmää pot fluktutot, jok hutuu jok ltt, kompot t mtrl fykt Ku mtt pä glj, mttuk lrj (pmmä mtttv gl) määrää

Lisätiedot

Kuvausta f sanotaan tällöin isomorfismiksi.

Kuvausta f sanotaan tällöin isomorfismiksi. Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,

Lisätiedot

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus. KOLMIULOTTEISI KPPLEIT Tsogeometriss käsiteltiin kuvioit vin ydessä tsoss. vruusgeometriss tsoon tulee kolms ulottuvuus, jolloin sdn kppleen tilvuus. SUORKULMINEN SÄRMIÖ Suorkulmisess särmiössä kikki kulmt

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,

Lisätiedot

3.7. Rekursiivisista lukujonoista

3.7. Rekursiivisista lukujonoista .7 Rekursiivisist lukujooist.7. Rekursiivisist lukujooist Kerrt vielä, että lukujoo void määritellä khdell eri tvll, joko käyttämällä lyyttistä säätöä ti rekursiivist säätöä. Joo määrittelemie rekursiivisesti

Lisätiedot

Kvanttimekaniikan perusteet

Kvanttimekaniikan perusteet Kvttimekiik perusteet Aieltokettä j todeäköisyystieys Scrödigeri ytälö Sirot potetiliskeleest lektroitilt potetilikuopss Hrmoie oskillttori Tiltieys lisää sirotilmiöistä Altofuktio o yleisesti kompleksie

Lisätiedot

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

ELEC-E8419 tentti joulukuu 2016

ELEC-E8419 tentti joulukuu 2016 ELECE849 tntti oulukuu 6 rtkisut. Erilisiss päsymmtrisissä vioiss komponnttivrkot kytktään yhtn ri tvoin. Ehot komponnttivrkkon kytknnöill päsymmtrisissä vioiss ovt survt: vihinn msulku: vihinn moikosulku:

Lisätiedot

Näytejonosysteemit-kertaus

Näytejonosysteemit-kertaus TL56, DSK-algoritmit (K6 Esimrkkittäviä Näytoosystmit-krtaus. Olkoo x(t cos(πtcos(8πt. a Poimi sigaalista x äytpistitä taauudlla 8 H. Suodata äi saamasi äytoo x( FIR-suotimlla, oka suodikrtoimt ovat a.6,

Lisätiedot

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä? Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.

Lisätiedot

SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 7 / Kapasitanssi ja eristeaineet

SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 7 / Kapasitanssi ja eristeaineet SATE0 Stttinen kenttäteoi kevät 07 / Lskuhjoitus 7 / Kpsitnssi j eisteineet Tehtävä. All olevss kuvss sisimmän johteen ( = mm) potentilieo uloimpn johtimeen ( = 00 mm) nähen on 40 V. Alueell < < 50 mm

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 5, 8. 12. helmikuut Demonstrtiotehtävien rtkisut D1: Hhmolusekkeet ovt esimerkiksi UN*X-järjestelmien tekstityökluiss käytetty säännöllisten lusekkeiden

Lisätiedot

Moraalinen uhkapeli: laajennuksia

Moraalinen uhkapeli: laajennuksia Morlinen uhkeli: ljennuksi Mt-2.4142 Otimointioin seminri Juho Kokkl 4.3.2008 steeminlsin Lbortorio Teknillinen korkekoulu Esitelmä 12 Juho Kokkl Otimointioin seminri - Kevät 2008 Esitksen rkenne Informtiivisuus

Lisätiedot

Laskut kirjoitetaan vasempaan reunaan, vastaukset tulevat oikeaan reunaan.

Laskut kirjoitetaan vasempaan reunaan, vastaukset tulevat oikeaan reunaan. 2. Peruslsket 2.1 Yhtee- j väheyslsku Lske: 23 14 9 MENU. Vlitse Mi Syötä lskuluseke. Pi EXE. Lskut kirjoitet vsemp reu, vstukset tulevt oike reu. 2.2 Näytö tyhjeys Vlitse Edit j pi Cler All. Pi OK. Huom!

Lisätiedot

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat (0) LINSSI- JA PEILITYÖ MOTIVOINTI Tutustutn linsseihin j peileihin geometrisen optiikn mittuksiss Tutkitn vlon käyttäytymistä linsseissä j peileissä Määritetään linssien j peilien polttopisteet Optiset

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.4 Rtkisut j rvostelu. Koululisen todistuksen keskirvo x on lskettu ) b) c) d) kymmenen ineen perusteell. Jos koululinen nostisi neljän ineen

Lisätiedot

OUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050

OUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050 OUML7421B3003 Jänniteohjttu venttiilimoottori TUOTETIEDOT OMINAISUUDET Helppo j nope sent Ei trvitse erillistä sennustelinettä Ei trvitse liikepituuden säätöä Momenttirjkytkimet Käsikäyttömhdollisuus Mikroprosessorin

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 2, 18. 22. tmmikuut Demonstrtiotehtävien rtkisut D1: Formuloi luennoll (monisteen s. 17) esitetty yksinkertinen khviutomtti täsmällisesti äärellisen

Lisätiedot

Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja

Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja 58226 Lskennn mllit (syksy 27) Hrjoitus 5, rtkisuj. Muodostetn NF kielelle : ε ε Muunnetn DF:ksi: {,,} {,} {,} {,} Luennoll (s. 5) stiin kielelle seurv DF: Poistmll tästä svuttmttomt tilt sdn Tulos on

Lisätiedot

Geometrinen lukujono. Ratkaisu. a2 = 50 4 = 200 a3 = = 800 a4 = = 3 200

Geometrinen lukujono. Ratkaisu. a2 = 50 4 = 200 a3 = = 800 a4 = = 3 200 Geometrie lukujoo 7. Geometrise lukujoo esimmäie jäse o = 0 j peräkkäiste jäsete suhde =. Määritä lukujoo kolme seurv jäsetä. = 0 = 00 = 0 = 800 = 0 = 00 8. Geometrie lukujoo lk seurvsti: ), 0, 0, b) 000,

Lisätiedot

S , Fysiikka IV (ES) Tentti

S , Fysiikka IV (ES) Tentti S-1436, Fysiikk IV (S) Tetti 81 35 19 1 Vierekkäiste spektriviivje piei hvittu tjuuser Cl F mlekyyli 1 rttispektrissä 1,1 1 Hz Lske tmie välie etäisyys mlekyylissä Rtkisu Kksitmise mlekyyli pyörimiseergi

Lisätiedot

Kertausosa. Kertausosa. Verrattuna lähtöarvoon kurssi oli laskenut. Kalliimman tukkuhinta 1,2 480 = 576 Kalliimman myyntihinta 1,3

Kertausosa. Kertausosa. Verrattuna lähtöarvoon kurssi oli laskenut. Kalliimman tukkuhinta 1,2 480 = 576 Kalliimman myyntihinta 1,3 Kertusos. ) Edullisemm hit 480, = 64 Klliimm tukkuhit, 480 = 576 Klliimm myytihit, 576 = 748,80 b) 748,80 64 = 0,666... = 6,66% 7% 748,80. Liittymä puhelimell mks khde vuode ik 4 8,50 = 684. Liittymä ilm

Lisätiedot

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

MATA172 Sami Yrjänheikki Harjoitus Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki!

MATA172 Sami Yrjänheikki Harjoitus Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki! MATA17 Sami Yrjäheikki Harjoitus 7 1.1.018 Tehtävä 1 Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki! (a) Jokaie jatkuva fuktio f : R R o tasaisesti jatkuva. (b) Jokaie jatkuva fuktio f : [0, 1[ R

Lisätiedot

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että Anlyysi Hrjoituksi lukuihin 3 / Kevät 5. Ann sellinen välillä ], [ jtkuv j rjoitettu funktio f, että () sup A m A j inf A min A, (b) sup A m A j inf A = min A, (c) sup A = m A j inf A min A, (d) sup A

Lisätiedot

Pakkauksen sisältö: Sire e ni

Pakkauksen sisältö: Sire e ni S t e e l m a t e p u h u v a n v a r a s h ä l y t ti m e n a s e n n u s: Pakkauksen sisältö: K e s k u s y k sikk ö I s k u n t u n n i s ti n Sire e ni P i u h a s a rj a aj o n e st or el e Ste el

Lisätiedot

2 Epäoleellinen integraali

2 Epäoleellinen integraali ANALYYSI C, HARJOITUSTEHTÄVIÄ, SYKSY 8 Epäoleellinen integrli Integrointivihje: Hyödynnä yhdistetyn funktion integrointisääntöä.. Määritä 9 9 (c) ( ). Tutki, millä vkion p rvoill epäoleellinen integrli

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 7 / Kapasitanssi ja eristeaineet

SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 7 / Kapasitanssi ja eristeaineet ATE0 tttinen kenttäteoi kevät 06 / 6 Lskuhjoitus 7 / Kpsitnssi j eisteineet Tehtävä. Kuvss esitetyn kpelin sisimmän johteen ( =,5 mm) potentilieo uloimpn johtimeen ( = 00 mm) nähen on 00. Alueell,5 <

Lisätiedot

Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki > tai < tai =.

Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki > tai < tai =. Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki tai < tai =. 1 Valitse ruutuun oikea merkki tai < tai =. ------------------------------------------------------------------------------

Lisätiedot

SATE.10xx Staattisen kenttäteorian laajentaminen Sähkömagneettiseksi kenttäteoriaksi

SATE.10xx Staattisen kenttäteorian laajentaminen Sähkömagneettiseksi kenttäteoriaksi ATE.1xx tttisen kenttäteorin ljentminen ähkömgneettiseksi kenttäteoriksi syksy 212 1 / 5 skuhrjoitus 1: iirrosvirt j inusoitunut sähkömotorinen voim Tehtävä 1. Määritä tjuus, millä johtvuusvirrn tiheys

Lisätiedot

Usko, toivo ja rakkaus

Usko, toivo ja rakkaus Makku Lulli-Seppälä sko toivo a akkaus 1. Ko. 1 baitoille viululle alttoviululle a uuille op. kummityttöi Päivi vihkiäisii 9.8.1986 iulu a alttoviulu osuude voi soittaa sama soittaa. Tavittaessa alttoviulu

Lisätiedot

S Fysiikka III (EST), Tentti

S Fysiikka III (EST), Tentti S-114.137 Fysiikk III (ES), entti 30.8.006 1. Lämpövoimkone toteutt oheisen kuvn Crnotin prosessi. Koneess on työineen yksi mooli ideliksu. Lske yksitomisen ksun kierroksen ikn tekemän työn suhde kksitomisen

Lisätiedot

F e. R kertaa ioniparien lukumäärä N. Kun laskemme tämän yhteen Coulombin attraktioenergian kanssa saamme kiteen kokonaisenergiaksi.

F e. R kertaa ioniparien lukumäärä N. Kun laskemme tämän yhteen Coulombin attraktioenergian kanssa saamme kiteen kokonaisenergiaksi. S-436, FYSIIKKA IV (EST) Kevät 5, LH Rtisut LH- Lse liui Ferieergi olettll että joie toi luovutt yhde eletroi johtovyöhö Johtvuuseletroit uodostvt vp vuoroviutttto eletroisu Kliui tiheys o 8,5 g / c 3

Lisätiedot

Riemannin integraali

Riemannin integraali LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu

Lisätiedot

766328A Termofysiikka Harjoitus no. 12, ratkaisut (syyslukukausi 2014)

766328A Termofysiikka Harjoitus no. 12, ratkaisut (syyslukukausi 2014) 7668A Termofysiikk Hrjoitus no 1, rtkisut (syyslukukusi 14) 1 Lämpötilss T K elektronien energit eivät ylitä Fermin energi (ɛ i ɛ F ), lämpötilprmetri β j kemillinen potentili vst Fermin energi (µ() ɛ

Lisätiedot