Kepstri - sisältö. Kepstrimuunnos ja puhesignaalien analyysi. Kepstri - Intro. Kepstri - Intro. Luento perustuu kepstri-lukuun teoksissa:
|
|
- Riitta-Liisa Järvenpää
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kepstrimuunnos ja puhesignaalien analyysi S Puheenkäsittelytekniikan metodit Kevät 2011 Unto K. Laine Kepstri - sisältö Kirjallisuuslähteet, taustamateriaali Kepstrin idea ja syntyhistoria Kepstrin teoriaa Kepstri ja LP-malli Kepstri puheanalyysissä (F0) Mel-kepstri Fourier teoriaa Hilbert muunnos diskreetti kausaalinen signaali minimivaiheinen järjestelmä Kepstri - Intro Luento perustuu kepstri-lukuun teoksissa: 1. John R. Deller, John G. Proakis, and John H. L. Hansen: Discrete-Time Processing of Speech Signals Materiaali lainattavissa: Akustiikan E-siipi 2. krs kirjahylly käytävällä vasemmalla Kepstri - Intro 2. Introduction to Digital Speech Processing Lawrence R. Rabiner and Ronald W. Schafer Section 5: Homomorphic Speech Analysis Foundations and Trends R in Signal Processing Vol. 1, Nos. 1 2 (2007) ja... 1
2 Kepstri - Intro Jos lineaarisen järjestelmän tuottamassa signaalissa hyötyinformaatio on matalilla taajuuksilla ja häiritsevä kohina korkeammilla taajuuksilla ne voidaan helposti erottaa lineaarisella suodatuksella. Olkoon w [n] korkeita taajuuksia sisältävä kohina x[n] = x 1 [n]+w[n] ja lin. operaattori I [.] alipäästösuodatin I [x[n]] = I [x 1 [n]+w[n]] = I [x 1 [n]]+ I [w[n]] x 1 [n] Tilanne on ratkaisevasti toinen jos kaksi signaalia ovat konvoluoituneet (*) -> esimerkkinä lähde-suodin malliin perustuva puheentuoton malli: s[n] = e[n]*h[n] e[n] lähde ja h[n] suodin I [s[n]] = I [e[n]*h[n]] Mikä vaikutus signaaleihin e[n ] ja h[n]?? Etsimme operaattoria, joka edes kohtuullisesti kykenee separoimaan konvoluoituneet komponentit! H [s[n]] = H [e[n]*h[n]] = H [e[n]]+h [h[n]] [The complex cepstrum operator transforms convolution into addition.] Kepstri - Intro Kepstrilaskenta antaa työkalut separoida konvoluoituneet signaalit: e[n]*h[n] Kepstrissä alunperin konvoluoituneiden signaalien vastineet ovat lineaarisesti kombinoituneet (vrt. edellä esitetty summautuneiden signaalien lineaarisesti separoituva tapaus) Tämä mahdollistaa alunperin konvoluoituneiden komponenttien lineaarisen separoimisen! Kepstrin Idea Kepstrilaskenta antaa työkalut separoida konvoluoituneet signaalit: e[n]*h[n] Fourier: F [e*h ] = E[k] H[k], missä k taajuusindeksi Log[ E H ] = Log[ E ] + Log[ H ] Komponentit on saatu lineaarikombinaatioksi, jota voidaan edelleen suodattaa Fourier tekniikalla: F-muunnos, haluttujen komponenttien poisto ja muunnos takaisin taajuusalueeseen! Olemme näin johtaneet lifteröinnin! 2
3 Kepstri - Intro Kun konvoluoituneet signaalit saadaan kepstrissä lineaarisesti kombinoituneiksi ne on usein myös mahdollista separoida lineaarisin operaatioin, kuten kepstrialueen kaistanpäästö ja kaistanesto operaatioilla. Koska kepstrialue on sukua aika-alueelle ko. operaatiota voisi luonnehtia pikemminkin aikaikkunoinniksi. Tästä käytetään nimitystä -> lifteröinti liftering Cepstrum - History Bogert, Healy, and Tukey, The quefrency analysis of time series for echoes: Cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking In M. Rosenblatt, ed., Proceedings of the Symposium on Time Series Analysisı. J. Wiley & Sons, pp , NY, Cepstrum John W. Tukey * The FFT man spectrum <-> cepstrum "quefrency," "gamnitude," lifter and saphe. ( Lukihäiriö??) Cepstrum Noll A. M., Cepstrum pitch determination, JASA (Journal of Acoustical Society of America) vol. 41, pp , Feb Homomorphic signal processing Oppenheim (1967, 1969) Shafer (1968) Homomorphic same shape + <-> * ; linear domain <-> convolution domain 3
4 Kepstri - Homomorphic System H[s[n]] = H [e[n]*h[n]] = H [e[n]]+h [h[n]] Tyypillisesti haluamme separoida häiriön eli herätteen e[n] systeemivasteesta h[n] operaattorilla H. Tällöin toivomme, että: H [e[n]] δ[n] ja H [h[n]] h[n]. Kepstrioperaattori toimii tähän suuntaan, mutta ei luonnollisestikaan kykene ideaalisti separoimaan konvoluoituneita komponentteja. Jos separointi onnistuu likimain kuten yllä, kyseessä on homomorfinen järjestelmä. Kepstri Klassinen reaali: Real Cepstrum (RC) Yleistys, kompleksinen: Complex Cepstrum (CC) CC säilyttää signaalin muotoon liittyvän vaiheinformaation Silti CC:n kertoimet aina reaalisia! RC:n ja CC:n ero siinä, että RC on aina symmetrinen kun CC:n spektrissä mukana myös antisymmetrinen komponentti Kepstri - Määritelmä Real Cepstrum: (x[n] ääretön sekvenssi ajassa) c[m] = F -1 [Log[ X[k] ]] [m] = F -1 [Log[ F [x[n]] ]] [m] Complex Cepstrum: y[m] = F -1 [Log[X[k]]] [m] = F -1 [Log[ F [x[n]]]] [m] Log 10 for comparisions (otherw. any Log x ) Kepstri - Operaattori Q Apuoperaattori: Q * real [x[n]] = Log[ X[k] ] Käänteinen operaattori: [Q * real ] -1 [ ] = F -1 [Exp[ ]] Johtaa nollavaiheiseen, ei kausaaliseen signaalin esitykseen aika-alueessa, koska signaalin vaiheinformaatio on tuhottu! 4
5 Real Cepstrum: c[m] Complex Cepstrum: y[m] Kepstri HUOM! Sekä c[m], että y[m] kertoimet ovat reaaliarvoisia! c[m] aina parillisesti symmetrinen y[m] sisältää myös paritonta symmetriaa, jos x[n] ei ole kausaalisesta ja minimivaiheisesta järjestelmästä Kepstri & Lineaariprediktio LP Kun x[n] kausaalinen ja minimivaiheinen y[0] = c[0] = E [Log[X[k]]] y[m] = 2 c[m] m>0, Parillinen[y[m]]= c[m], y[m]=0 m<0 *) LP-malli H[z] (tai H(ω))- ollessaan stabiili - on aina minimivaiheinen. c[0] = E [Log[H[k]]] = Log[G], missä Η[k] = G/A[z] (kun z evaluoidaan yksikköympyrällä: z -> e jkωt/n, missä N signaalikehyksen koko). LP:n perusominaisuus: E [Log[ 1/A[z]]] = 0! ( A[z] prediktiovirhesuodin, E [.] -> Odotusarvo ) *) Kso. Mathematica simulaatio Kepstri & LP LP-malli: G/ (1-a 1 z -1 -a 2 z a p z -p ) = Η [z] Kun x[n] kausaalinen ja minimivaiheinen (impulssivaste) y[0] = c[0] = Log[G] (Markel & Gray) LP:n a-kertoimet voidaan muuntaa kepstrikertoimiksi y[m] kaavalla: y[0] = Log[G], y[1] = a[1], y[m] = a[m] + t=1, m-1 [(t/m) y[t] a[m-t]] 1 < m p ja missä a[m] tarkoittaa m:ttä prediktorikerrointa. Reaalikepstriin päästään kertoimista y[m] seuraavasti: c[0] = y[0], c[m] = y[m]/2, 0 < m p Kepstri - Intuitio Source-Filter Theory: X(w) = S(w) H(w) Log[X(w)] = Log[S(w)] + Log[H(w)] (kompleksinen kepstri) Log[ X(w) ] = Log[ S(w) ] + Log[ H(w) ] (reaalinen kepstri) 5
6 Kepstri - Intuitio Log[ X(w) ] = Log[ S(w) ] + Log[ H(w) ] Lähteen ja suotimen vaikutukset logaritmiseen spektriin summautuvat (voidaan eriyttää/separoida lineaarimuunnoksella - kun osuvat eri alueille) Soinnillinen lähde tuottaa kamparakenteen (taajuusalue: nopeata vaihtelua), suodin muokkaa sen verhokäyrää (taajuusalue: hitaita muutoksia) Taajuusalueen nopeat ja hitaat muutokset saadaan erilleen kun tehdään uusi Fourier muunnos (IFT)! 6
7 Mel-Cepstrum 7
8 Esimerkki Kompleksisen kepstrin laskenta Mathematicalla (laskentatulos seuraavalla kalvolla) Epäsymmetria! w1: Hamming ikkuna vv: parametri joka valitsee vokaalin signaalimatriisista voc vv = 7;(*valitaan /ae/ vokaali*) fu = Fourier[w1*voc[[vv]]]; clogfu = Log[fu]; ccps = InverseFourier[clogfu]; ListLinePlot[Re[ccps], Frame -> True,PlotRange -> {20, -20}] Indeksi 512 = folding = Fs/2 Vokaali /ae/ kompleksinen kepstri. Huomaa epäsymmetria! Kompleksisen spektrin rakenne Imaginääriosa: projektio pystypinnalle Reaaliosa: projektio vaakapinnalle 0 Im[H[jw]] antisymmetric jw Re[H[jw]] Fourier Transform Muista! Re[ F [x[n]]] -> cos-sarja (even) Im[ F [x[n]]] -> sin-sarja (odd) Re[H[jw]] symmetric -w 0 +w 0 H[jw] 8
9 Hilbert Transform, H [.] Discrete Causal signals discrete causal cepstrum minimum phase Analytic signals Linear time-invariant causal system: Multiplication in frequency domain by H function H(e j" ) = G(")e j#(" ) #(") = H [ G(") ], causal min phase case Hilbert transform by DFT: H [x] = F -1 [H F [x]] Note that the input signal must be discrete causal, i.e., the second half must be zero. Use zero-padding to ensure that this condition is met. There are times when we desire to create a so-called discrete analytic signal. This can be done using the Hilbert transform. The discrete analytic signal has a DFT whose second half vanishes (nothing in negative frequencies). The weighting function H (multiplication in frequency domain) ensures that this is the case. The imaginary output is the Hilbert Transform of the real output. H = 0 at DC and Folding frequency H = j at positive and -j at negative frequencies. Some properties of the Hilbert transform: Signals are denoted by x and y. H [x] denotes the Hilbert Transform of signal x. Scalar constants are denoted by a and b. 1. If x is real, then H [x] is real 2. H [a] = 0 3. H [a x + b y] = a H [x] + b H [y] 4. H [H [x]] = -x 5. For any x, H [x] and x are orthogonal 6. H [x*y] = x* H [y] = H [x]*y 7. H [x] is odd for even x and even for odd x 8. H [cos(ωt)] = sin(ω t) and H [sin(ω t) = -cos(ω t) 9
10 Vaihtoehtoinen tehtävä! Esimerkki Harjoitustyön tehtävä 1.3 on osoittautunut monelle opiskelijalle melko haastavaksi etenkin jos signaalinkäsittelyn teoria ei ole hallinnassa. Silti kannustaisin yrittämään tätä! Kausaalinen, minimivaiheinen impulssivaste Vaihtoehtona 1.3:lle on tutkia mel-kepsrin käyttöä vokaalien luokittelussa - laajennus tehtävään 4.2 Teette siis saman tehtävän sekä standardi-kepstrillä, että melkepstrillä. Helpotuksena tarjoamme mel-suodinpankin käyttöönne (laitettu jakeluun kurssisivun kautta) Kompleksinen kepstri (CC) Reaalinen kepstri (RC) 10
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 5.5.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 18.3.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
LisätiedotT SKJ - TERMEJÄ
T-61140 SKJ - termit Sivu 1 / 7 T-61140 SKJ - TERMEJÄ Nimi Opnro Email Signaalinkäsittelyyn liittyviä termejä ja selityksiä Kevät 2005 Täytä lomaketta kevään aikana ja kerää mahdollisesti puuttuvia termejä
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-100 Signaalinkäsittelyn menetelmät Välikoe 6.4.010 Sivuilla 1- on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-00 Signaalinkäsittelyn menetelmät, Tentti 6.3.006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja
Lisätiedotz muunnos ja sen soveltaminen LTI järjestelmien analysointiin
z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten
LisätiedotKompleksiluvut signaalin taajuusjakauman arvioinnissa
Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos
LisätiedotKompleksianalyysi, viikko 7
Kompleksianalyysi, viikko 7 Jukka Kemppainen Mathematics Division Fourier-muunnoksesta Laplace-muunnokseen Tarkastellaan seuraavassa kausaalisia signaaleja eli signaaleja x(t), joille x(t) 0 kaikilla t
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-00 Signaalinkäsittelyn menetelmät, Tentti..005 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja sen
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 30.1.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
LisätiedotDigitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu
Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen,
LisätiedotSIGNAALITEORIAN KERTAUSTA 1
SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
LisätiedotAlipäästösuotimen muuntaminen muiksi perussuotimiksi
Alipäästösuotimen muuntaminen muiksi perussuotimiksi Usein suodinsuunnittelussa on lähtökohtana alipäästösuodin (LPF), josta voidaan yksinkertaisilla operaatioilla muodostaa ylipäästö- (HPF), kaistanpäästö-
LisätiedotSpektri- ja signaalianalysaattorit
Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia/Exercises 2017 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
Lisätiedot1 Vastaa seuraaviin. b) Taajuusvasteen
Vastaa seuraaviin a) Miten määritetään digitaalisen suodattimen taajuusvaste sekä amplitudi- ja vaihespektri? Tässä riittää sanallinen kuvaus. b) Miten viivästys vaikuttaa signaalin amplitudi- ja vaihespektriin?
LisätiedotLuento 8. Suodattimien käyttötarkoitus
Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden
LisätiedotIIR-suodattimissa ongelmat korostuvat, koska takaisinkytkennästä seuraa virheiden kertautuminen ja joissakin tapauksissa myös vahvistuminen.
TL536DSK-algoritmit (J. Laitinen)..5 Välikoe, ratkaisut Millaisia ongelmia kvantisointi aiheuttaa signaalinkäsittelyssä? Miksi ongelmat korostuvat IIR-suodatinten tapauksessa? Tarkastellaan Hz taajuista
LisätiedotDiskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa. Pentti Romppainen
Diskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa Pentti Romppainen Kajaanin ammattikorkeakoulu Oy Kajaani University of Applied Sciences Diskreetti Fourier-muunnos ja
LisätiedotKapeakaistainen signaali
Tiedonsiirrossa sellaiset signaalit ovat tyypillisiä, joilla informaatio jakautuu kapealle taajuusalueelle jonkun keskitaajuuden ympäristöön. Tällaisia signaaleja kutustaan kapeakaistaisiksi signaaleiksi
LisätiedotDigitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006
Digitaalinen Signaalinkäsittely T5 Luento 4-7.4.6 Jarkko.Vuori@evtek.fi Z-taso Z-taso on paljon käytetty graafinen esitystapa jonka avulla voidaan tarkastella signaalien taajuussisältöjä sekä järjestelmien
LisätiedotSGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen
SGN-11 Signaalinkäsittelyn perusteet Välikoe 3.5.16 Heikki Huttunen Laskimen käyttö sallittu. Muiden materiaalien käyttö ei sallittu. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla 1-3 on. Sivuilla 4-5
LisätiedotSIGNAALITEORIAN KERTAUSTA OSA 1
1 SIGNAALITEORIAN KERTAUSTA OSA 1 Millainen on signaalin spektri ja miten se lasketaan? SIGNAALIEN JA SPEKTRIN PERUSKÄSITTEITÄ 2 Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka graafinen
LisätiedotAlternatives to the DFT
Alternatives to the DFT Doru Balcan Carnegie Mellon University joint work with Aliaksei Sandryhaila, Jonathan Gross, and Markus Püschel - appeared in IEEE ICASSP 08 - Introduction Discrete time signal
Lisätiedot5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z
5. Z-muunnos ja lineaariset diskreetit systeemit Jono: (x(n)) n=0 = (x(0), x(1), x(2),..., x(n),...) Z-muunnos: X(z) = n=0 x(n)z n, jos sarja suppenee jossain kompleksitason osassa. Esim. 4. Ykkösjonon
LisätiedotThe CCR Model and Production Correspondence
The CCR Model and Production Correspondence Tim Schöneberg The 19th of September Agenda Introduction Definitions Production Possiblity Set CCR Model and the Dual Problem Input excesses and output shortfalls
LisätiedotSäätötekniikan ja signaalinkäsittelyn työkurssi
Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D102: Sinimuotoisen signaalin suodattaminen 0.4 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio
LisätiedotT-61.246 DSP: GSM codec
T-61.246 DSP: GSM codec Agenda Johdanto Puheenmuodostus Erilaiset codecit GSM codec Kristo Lehtonen GSM codec 1 Johdanto Analogisen puheen muuttaminen digitaaliseksi Tiedon tiivistäminen pienemmäksi Vähentää
LisätiedotSIMULINK S-funktiot. SIMULINK S-funktiot
S-funktio on ohjelmointikielellä (Matlab, C, Fortran) laadittu oma algoritmi tai dynaamisen järjestelmän kuvaus, jota voidaan käyttää Simulink-malleissa kuin mitä tahansa valmista lohkoa. S-funktion rakenne
LisätiedotNumeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42
Numeeriset menetelmät TIEA381 Luento 13 Kirsi Valjus Jyväskylän yliopisto Luento 13 () Numeeriset menetelmät 8.5.2013 1 / 42 Luennon 13 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Moniaskelmenetelmien
Lisätiedotu = 2 u (9.1) x + 2 u
9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,
Lisätiedot4. Fourier-analyysin sovelletuksia. Funktion (signaalin) f(t) näytteistäminen tapahtuu kertomalla funktio näytteenottosignaalilla
4.1 Näytteenottolause 4. Fourier-analyysin sovelletuksia Näyttenottosignaali (t) = k= δ(t kt). T on näytteenottoväli, ja ω T = 1 T on näyttenottotaajuus. Funktion (signaalin) f(t) näytteistäminen tapahtuu
LisätiedotRemez-menetelmä FIR-suodinten suunnittelussa
Luku Remez-menetelmä FIR-suodinten suunnittelussa Remez-menetelmä, eli optimaalinen menetelmä etsii minimax-mielessä optimaalista suodinta. Algoritmi johdetaan seuraavassa (täydellisyyden vuoksi) melko
LisätiedotSignaalit ja järjestelmät aika- ja taajuusalueissa
Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)
LisätiedotT Digitaalinen signaalinkäsittely ja suodatus
T-63 Digitaalinen signaalinkäsittely ja suodatus 2 välikoe / tentti Ke 4528 klo 6-9 Sali A (A-x) ja B (x-ö)m 2 vk on oikeus tehdä vain kerran joko 75 tai 45 Tee välikokeessa tehtävät, 2 ja 7 (palaute)
LisätiedotDynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002.
Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed. DAFX Digital Audio Effects. Wiley & Sons, 2002. Sisältö:! Johdanto!! Ajallinen käyttäytyminen! oteutus!
LisätiedotELEC-C7230 Tietoliikenteen siirtomenetelmät
ELEC-C7230 Tietoliikenteen siirtomenetelmät Laskuharjoitus 8 - ratkaisut 1. Tehtävässä on taustalla ajatus kantoaaltomodulaatiosta, jossa on I- ja Q-haarat, ja joka voidaan kuvata kompleksiarvoisena kantataajuussignaalina.
Lisätiedot3 Ikkunointi. Kuvio 1: Signaalin ikkunointi.
3 Ikkunointi Puhe ei ole stationaarinen signaali, vaan puheen ominaisuudet muuttuvat varsin nopeasti ajan myötä. Tämä on täysin luonnollinen ja hyvä asia, mutta tämä tekee sellaisten signaalinkäsittelyn
Lisätiedotspektri taajuus f c f c W f c f c + W
Kaistanpäästösignaalit Monet digitaaliset tiedonsiirtosignaalit ovat keskittyneet jonkin tietyn kantoaaltotaajuuden f c ympäristöön siten, että signaali omaa merkittäviä taajuuskomponetteja vain kaistalla
Lisätiedot21~--~--~r--1~~--~--~~r--1~
- K.Loberg FYSE420 DIGITAL ELECTRONICS 13.05.2011 1. Toteuta alla esitetyn sekvenssin tuottava asynkroninen pun. Anna heratefunktiot, siirtotaulukko ja kokonaistilataulukko ( exitation functions, transition
LisätiedotLuku 4 - Kuvien taajuusanalyysi
Luku 4 - Kuvien taajuusanalyysi Matti Eskelinen 8.2.2018 Kuvien taajuusanalyysi Tässä luvussa tutustumme taajuustasoon ja opimme analysoimaan kuvia ja muitakin signaaleja Fourier-muunnoksen avulla. Aiheina
Lisätiedot1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä
OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 81122P (4 ov.) 30.5.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan
LisätiedotTaajuus-, Fourier- ja spektraalianalyysi
Taajuus-, Fourier- ja spektraalianalyysi Impulssi- ja askelvastetekniikat sekä korrelaatioanalyysi tähtäävät impulssivasteen mallintamiseen aikataso Taajuus- Fourier- ja spektraalianalyysi tähtäävät systeemin
LisätiedotMatemaattinen Analyysi
Vaasan yliopisto, kevät 01 / ORMS1010 Matemaattinen Analyysi. harjoitus, viikko 1 R1 ke 1 16 D11 (..) R to 10 1 D11 (..) 1. Määritä funktion y(x) MacLaurinin sarjan kertoimet, kun y(0) = ja y (x) = (x
LisätiedotJOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN
LisätiedotF {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:
BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()
LisätiedotMATEMATIIKAN JAOS Kompleksianalyysi
MATEMATIIKAN JAOS Kompleksianalyysi Harjoitustehtäviä, syksy 00. Määrää kompleksiluvun a) = 3 j + 3j, b) = j, + j c) = ( 3 3 3 j)( j) itseisarvo ja argumentti.. Määrää sellaiset reaaliluvut x ja y, että
LisätiedotDigitaalinen signaalinkäsittely Kuvankäsittely
Digitaalinen signaalinkäsittely Kuvankäsittely Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn menetelmät,
Lisätiedot5 Akustiikan peruskäsitteitä
Puheen tuottaminen, havaitseminen ja akustiikka / Reijo Aulanko / 2016 2017 14 5 Akustiikan peruskäsitteitä ääni = ilmapartikkelien edestakaista liikettä, "tihentymien ja harventumien" vuorottelua, ilmanpaineen
LisätiedotOsa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246
Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331
LisätiedotLuento 2. Jaksolliset signaalit
Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi
LisätiedotDynaamisten systeemien identifiointi 1/2
Dynaamisten systeemien identifiointi 1/2 Mallin rakentaminen mittausten avulla Epäparametriset menetelmät: tuloksena malli, joka ei perustu parametreille impulssi-, askel- tai taajusvaste siirtofunktion
Lisätiedot6.5.2 Tapering-menetelmä
6.5.2 Tapering-menetelmä Määritelmä 6.7. Tapering on spektrin estimointimenetelmä, jossa estimaattori on muotoa f m (ω) = 1 m ( ) k w 2π m Γ(k)e ikω, k= m missä Γ on otosautokovarianssifunktio ja ikkunafunktio
LisätiedotMS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä
MS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä Tehtävä 4.1. Ncss-ohjelmiston avulla on generoitu AR(1)-, AR(2)-, MA(1)- ja MA(2)-malleja vastaavia aikasarjoja erilaisilla parametrien arvoilla.
LisätiedotKompleksianalyysi, viikko 6
Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että
LisätiedotSGN-4200 Digitaalinen audio
SGN-4200 Digitaalinen audio Luennot, kevät 2013, periodi 4 Anssi Klapuri Tampereen teknillinen yliopisto Kurssin tavoite Johdanto 2! Tarjota tiedot audiosignaalinkäsittelyn perusteista perusoperaatiot,
LisätiedotOsa IX. Z muunnos. Johdanto Diskreetit funktiot
Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto
LisätiedotTietoliikennesignaalit & spektri
Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia
LisätiedotSÄÄTÖJÄRJESTELMIEN SUUNNITTELU
ENSO IKONEN PYOSYS 1 SÄÄTÖJÄRJESTELMIEN SUUNNITTELU Enso Ikonen professori säätö- ja systeemitekniikka http://cc.oulu.fi/~iko Oulun yliopisto Älykkäät koneet ja järjestelmät / systeemitekniikka Jan 019
Lisätiedot1 Olkoon suodattimen vaatimusmäärittely seuraava:
Olkoon suodattimen vaatimusmäärittely seuraava: Päästökaistan maksimipoikkeama δ p =.5. Estokaistan maksimipoikkeama δ s =.. Päästökaistan rajataajuus pb = 5 Hz. Estokaistan rajataajuudet sb = 95 Hz Näytetaajuus
LisätiedotDiskreetin LTI-systeemin stabiilisuus
Diskreetin LTI-systeemin stabiilisuus LuK-tutkielma Johannes Ylitalo 2372956 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2016 Sisältö Johdanto 2 Merkintöjä 2 1 Kompleksifunktiot 3 2 Signaalianalyysi
LisätiedotIlkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
Lisätiedot1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7
Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.
LisätiedotJOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN
LisätiedotSIGNAALITEORIAN KERTAUSTA OSA 2
1 SIGNAALITEORIAN KERTAUSTA OSA 2 Miten spektri lasketaan moduloiduille ja näytteistetyille tietoliikennesignaaleille? KONVOLUUTIO JA KERTOLASKU 2 Kantataajuussignaali (baseband) = sanomasignaali ilman
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt. osa 2 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 1 R. Kangaslampi Matriisihajotelmista
LisätiedotReturns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu
Returns to Scale II Contents Most Productive Scale Size Further Considerations Relaxation of the Convexity Condition Useful Reminder Theorem 5.5 A DMU found to be efficient with a CCR model will also be
LisätiedotCapacity Utilization
Capacity Utilization Tim Schöneberg 28th November Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori
LisätiedotDigitaalinen signaalinkäsittely Johdanto, näytteistys
Digitaalinen signaalinkäsittely Johdanto, näytteistys Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn
Lisätiedot2. Funktiot. Keijo Ruotsalainen. Mathematics Division
2. Funktiot Keijo Ruotsalainen Mathematics Division Kompleksimuuttujan funktio Kompleksimuuttujan z kompleksiarvoinen funktio f(z) voi olla yksiarvoinen tai moniarvoinen, esimerkiksi f(z) = e z f(z) =
LisätiedotSGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen
SGN- Signaalinkäsittelyn perusteet Välikoe.5.4 Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla -3 on. Sivuilla 4-5 on. Sivulla
LisätiedotHelsinki University of Technology
Helsinki University of Technology Laboratory of Telecommunications Technology S-38.11 Signaalinkäsittely tietoliikenteessä I Signal Processing in Communications ( ov) Syksy 1997. Luento: Pulssinmuokkaussuodatus
LisätiedotAlternative DEA Models
Mat-2.4142 Alternative DEA Models 19.9.2007 Table of Contents Banker-Charnes-Cooper Model Additive Model Example Data Home assignment BCC Model (Banker-Charnes-Cooper) production frontiers spanned by convex
LisätiedotOperatioanalyysi 2011, Harjoitus 2, viikko 38
Operatioanalyysi 2011, Harjoitus 2, viikko 38 H2t1, Exercise 1.1. H2t2, Exercise 1.2. H2t3, Exercise 2.3. H2t4, Exercise 2.4. H2t5, Exercise 2.5. (Exercise 1.1.) 1 1.1. Model the following problem mathematically:
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 17. marraskuuta 2016 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori 2 (18)
LisätiedotKONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ
KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ https://community.plm.automation.siemens.com/t5/tech-tips- Knowledge-Base-NX/How-to-simulate-any-G-code-file-in-NX- CAM/ta-p/3340 Koneistusympäristön määrittely
LisätiedotSignaalimallit: sisältö
Signaalimallit: sisältö Motivaationa häiriöiden kuvaaminen ja rekonstruointi Signaalien kuvaaminen aikatasossa, determinisitinen vs. stokastinen Signaalien kuvaaminen taajuustasossa Fourier-muunnos Deterministisen
LisätiedotJOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN
LisätiedotSatunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
LisätiedotEfficiency change over time
Efficiency change over time Heikki Tikanmäki Optimointiopin seminaari 14.11.2007 Contents Introduction (11.1) Window analysis (11.2) Example, application, analysis Malmquist index (11.3) Dealing with panel
LisätiedotMissä mennään. systeemi. identifiointi. mallikandidaatti. validointi. malli. (fysikaalinen) mallintaminen. mallin mallin käyttötarkoitus, reunaehdot
Missä mennään systeemi mallin mallin käyttötarkoitus, reunaehdot käyttö- (fysikaalinen) mallintaminen luonnonlait yms. yms. identifiointi kokeita kokeita + päättely päättely vertailu mallikandidaatti validointi
LisätiedotPianon äänten parametrinen synteesi
Pianon äänten parametrinen synteesi Jukka Rauhala Pianon akustiikkaa Kuinka ääni syntyy Sisält ltö Pianon ääneen liittyviä ilmiöitä Pianon äänen synteesi Ääniesimerkkejä Akustiikan ja äänenkäsittelytekniikan
LisätiedotSpektrianalysaattori. Spektrianalysaattori
Mittaustekniikan perusteet / luento 9 Spektrianalysaattori Spektrianalyysi Jean Baptiste Fourier (1768-1830): Signaali voidaan esittää taajuudeltaan ja amplitudiltaan (sekä vaiheeltaan) erilaisten sinien
LisätiedotVastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons.
Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons. Sisältö:! Johdanto! IIR vai FIR äänten suodattamiseen?!
Lisätiedot6.2.3 Spektrikertymäfunktio
ja prosessin (I + θl + + θl q )ε t spektritiheysfunktio on Lemman 6. ja Esimerkin 6.4 nojalla σ π 1 + θ 1e iω + + θ q e iqω. Koska viivepolynomien avulla määritellyt prosessit yhtyvät, niin myös niiden
LisätiedotY Yhtälöparista ratkaistiin vuorotellen siirtofunktiot laittamalla muut tulot nollaan. = K K K M. s 2 3s 2 KK P
Säädön kotitehtävä vk3 t. 1 a) { Y =G K P E H E=R K N N G M Y Yhtälöparista ratkaistiin vuorotellen siirtofunktiot laittamalla muut tulot nollaan. G R s = Y R = GK P s 1 = KK 1 GK P K N G P M s 2 3s 2
LisätiedotDSP:n kertausta. 1 Spektri, DFT, DTFT ja aika-taajuusresoluutio
DSP:n kertausta Kerrataan/käydään läpi: ffl Spektri, DFT, DTFT ja FFT ffl signaalin jaksollisuuden ja spektrin harmonisuuden yhteys ffl aika-taajuusresoluutio Spektri, DFT, DTFT ja aika-taajuusresoluutio
LisätiedotTIETOLIIKENNETEKNIIKKA I A
TIETOLIIKENNETEKNIIKKA I 521359A KURSSI ANALOGISEN TIEDONSIIRRON PERUSTEISTA Dos. Kari Kärkkäinen Tietoliikennelaboratorio, huone TS439, 4. krs. kk@ee.oulu.fi, http://www.telecomlab.oulu.fi/~kk/ puh: 08
LisätiedotPerusmittalaitteet 2. Spektrianalyysi. Mittaustekniikan perusteet / luento 4. Spektrianalyysi. Logaritmiasteikko ja db (desibel) Spektrianalysaattori
Mittaustekniikan perusteet / luento 4 Perusmittalaitteet Spektrianalyysi Jean Baptiste Fourier (1768-1830): Signaali voidaan esittää taajuudeltaan ja amplitudiltaan (sekä vaiheeltaan) erilaisten sinien
Lisätiedot1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä
OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 811122P (5 op.) 12.12.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan
LisätiedotSisältö. 1. Kompleksiluvut 2. Funktiot 3. Differentiaalilaskentaa 4. Sarjat 5. Integrointi 6. Möbius-muunnos 7. Diskreetti systeemi
Sisältö 1. Kompleksiluvut 2. Funktiot 3. Differentiaalilaskentaa 4. Sarjat 5. Integrointi 6. Möbius-muunnos 7. Diskreetti systeemi Kompleksiluvut C Kompleksiluvut C määritellään reaalilukuparien (a, b)
LisätiedotJohdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
LisätiedotSynteesi-analyysi koodaus
Luku 2 Synteesi-analyysi koodaus Tärkein koodausmenetelmä puheenkoodausstandardeissa 9-luvulta alkaen on ollut synteesi-analyysi koodaus (engl. analysis-by-synthesis). Tässä lähestymistavassa optimaaliset
LisätiedotDynaaminen ohjelmointi ja vaikutuskaaviot
Dynaaminen ohjelmointi ja vaikutuskaaviot. Taustaa 2. Vaikutuskaaviot ja superarvosolmut 3. Vaikutuskaavion ratkaiseminen 4. Vaikutuskaavio ja dynaaminen ohjelmointi: 5. Yhteenveto Esitelmän sisältö Optimointiopin
LisätiedotTHE audio feature: MFCC. Mel Frequency Cepstral Coefficients
THE audio feature: MFCC Mel Frequency Cepstral Coefficients Ihmiskuulo MFCC- kertoimien tarkoituksena on mallintaa ihmiskorvan toimintaa yleisellä tasolla. Näin on todettu myös tapahtuvan, sillä MFCC:t
Lisätiedot