Sisältö. 1. Kompleksiluvut 2. Funktiot 3. Differentiaalilaskentaa 4. Sarjat 5. Integrointi 6. Möbius-muunnos 7. Diskreetti systeemi
|
|
- Ismo Rantanen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Sisältö 1. Kompleksiluvut 2. Funktiot 3. Differentiaalilaskentaa 4. Sarjat 5. Integrointi 6. Möbius-muunnos 7. Diskreetti systeemi
2 Kompleksiluvut C Kompleksiluvut C määritellään reaalilukuparien (a, b) joukkona:a+bj : j = (0, 1) a = (a, 0), kun a R (a, b) = (a, 0)+(0, b) = a+bj (a+bj)+(c + dj) = (a+c)+(b + d)j (a+bj)(c + dj) = (ac bd)+(ad + bc)j ( j 2 = 1) Yhteenlasku Kertolasku Siten C = {a+bj a, b R, j 2 = 1} missä yhteen- ja kertolasku on määritelty kuten reaaliluvuille. Olkoot x ja y reaalilukuja. Kompleksiluvun z = x + jy konjugaatti : z = x jy (liittoluku) reaaliosa: Re z = x, imaginaariosa: I z = y itseisarvo: z = x2 + y 2 käänteisluku: z 1 = 1 z = x x 2 +y j 2 y x 2 +y 2
3 Napakoordinaattiesitys Kompleksiluvun napaesitys z = r(cosϕ+j sinϕ) r = z = x 2 + y 2 Kompleksiluvun argumentti ϕ = arg z määräytyy ehdoista cosϕ = x r sinϕ = y r r = z ϕ x z=x+jy y z=x jy
4 Argumentin päähaara Argumentti on määritelty, ellei sitä muutoin kiinnitetä, vain 2π:n monikerran tarkkuudella. Argumentin pääarvo Arg z on se ϕ = arg z:n arvo joka on välillä [0, 2π); 0 Argz < 2π. Laskusääntöjä: z + w = z + w, zw = z w, z = z z 0, z = z, zw = z w, Rez z, I z z z + w z + w
5 Stereograafinen projektio Jokaista kompleksitason P pistettä A vastaa täsmälleen yksi piste A yksikköpallopinnalla S, joten jokainen kompleksiluku voidaan samaistaa pallopinnan pisteen kanssa. Piste N ( pohjoisnapa ) on kompleksiluku.
6 Kompleksilukujen yhtäsuuruus Yhtäsuuruus, kun z = x + jy, w = u + jv, z = w x = u, y = v z 1 = r 1 (cosϕ 1 + j sinϕ 1 ),z 2 = r 2 (cosϕ 2 + j sinϕ 2 ), { r 1 = r 2 z 1 = z 2 ϕ 1 = ϕ 2 + k2π, jollakin k Z ϕ 1 = ϕ 2 + k2π ϕ 1 = ϕ 2 mod 2π Tulo napaesityksen avulla: ( ) z 1 z 2 = r 1 r 2 [cos(ϕ 1 +ϕ 2 )+j sin(ϕ 1 +ϕ 2 )]
7 Geometrinen tulkinta Lause 1 (a) arg z 1 z 2 = arg z 1 + arg z 2 (b) arg z w = arg z arg w (c) arg 1 z = arg z mod 2π mod 2π mod 2π Tulon geometrinen tulkinta: z 1 z 2 z 2 ϕ 1 + ϕ 2 ϕ 2 z 1 ϕ 1 z 2 ϕ 2 ϕ 1 z 1 z 2 z 1 Huom. Välttämättä ei ole Argz 1 z 2 = Argz 1 + Argz 2 ( ):n yleistys: ( ) z 1 z 2 z n = r 1 r 2 r n [cos(ϕ 1 + +ϕ n )+j sin(ϕ 1 + +ϕ n )]
8 De Moivre n kaava Jos z = r(cosϕ+j sinϕ), niin De Moivren kaava z n = r n (cos nϕ+j sin nϕ) (cosϕ+j sinϕ) n = cos nϕ+j sin nϕ cos nϕ = Re(cosϕ+j sinϕ) n sin nϕ = I(cosϕ+j sinϕ) n
9 Binomiyhtälö Binomiyhtälön z n = w, missä w = w (cosθ+j sinθ) 0, ratkaisut eli juuret saadaan kaavalla z k = n w [cos( θ n +k 2π n )+j sin(θ n +k 2π n )], k = 0,1,2,...,n 1. Perustelu: z = z (cosϕ+j sinϕ), w = w (cosθ+j sinθ) z n = w z n (cos nϕ+j sinnϕ) = w (cosθ+j sinθ) { z n = w nϕ = θ+k2π { z = n w ϕ = θ n + k 2π n, k = 0,1,...,n 1. Huom.! On vain n eri juurta, sillä z n = z 0, z n+1 = z 1, z n+2 = z 2,...
10 Juurenotto Juurenotto voidaan ajatella myös moniarvoisena funktiona z n = w z = n w missä n w saa n eri arvoa kun w 0. Kukin arvo z k, k = 0,1,...,n 1, antaa juuren erään haaran arvon k = 0 : päähaara, 0 arg z 0 < 2π n k:s haara, k2π n arg z k < (k + 1) 2π n Esimerkiksi neliöjuuri w saa kaksi arvoa, jotka ovat toistensa vastalukuja.
11 Toisen asteen yhtälö Toisen asteen yhtälö az 2 + bz + c = 0, a,b,c C, a 0 a(z b 2a z +( b 2a )2 )+c b2 4a = 0 a(z + b 2a )2 = b2 4ac 4a z = b+ b 2 4ac 2a z + b 2a = 1 2a b 2 4ac Jos kiinnitetään toinen neliöjuuren arvoista, niin z = b± b 2 4ac. 2a
12 Eulerin kaava Kun z C, z = x + jy, määritellään: e z = e x (cos y + j sin y). Tällöin erikoisesti, (Eulerin kaava), e jϕ = cosϕ+j sinϕ, ja De Moivren kaava (kun r = 1) saa muodon (e jϕ ) n = e jnϕ. Reaalisille cos ϕ ja sin ϕ saadaan kaavat: cosϕ = ejϕ + e jϕ 2 sinϕ = ejϕ e jϕ 2j
13 Kompleksinen impedanssi Ohmin lain mukaan U = RI, missä R on vastus, U jännite ja I on virta. Jos U on jännite ja I virta käämissä, jonka induktanssi on L, niin U = L di dt. Kondensaattorissa, jonka kapasitanssi on C, on U = 1 C t I(s)ds + U(0). 0
14 Sähköinen virtapiiri Oletetaan nyt, että ao. piirissä on sinimuotoinen virta, I(t) = I 0 cos wt, Tällöin U R = RI 0 cos wt U L = wli 0 sinwt U C = 1 wc I 0 sin wt + U C (0).
15 Kompleksinen esitys Virran I(t) = I 0 cos wt sijasta kirjoitetaan Ĩ(t) = I 0e jwt jolloin fysikaalinen virranvoimakkuus on Re(Ĩ(t)). Kaavat (1) saavat muodon Ũ R = RĨ Ũ L = jwlĩ (1) Ũ C = 1 jwc Ĩ + vakio, josta Re ŨR = RI 0 cos wt = U R, Re Ũ L = wli 0 sin wt = U L, Re ŨC = 1 wc I 0 sin wt + U C (0) = U C.
16 Kompleksinen impedanssi Jos (2):ssa oletetaan vakio nollaksi, niin kaikki ovat muotoa Ũ = ZĨ, (3) 1 missä Z on R tai jwl tai jwc = j 1 wc. Z on ns. kompleksinen impedanssi. Yllä olevalle piirille on joten Ũ = Ũ R + Ũ L + Ũ C = [R + j(wl 1 wc )]Ĩ, Z = R + j(wl 1 wc ). on piirin kompleksinen impedanssi. Huom. Z:lla on sama rooli kuin R:llä tasavirtapiirissä. Esimerkiksi vastuksen laskusääntöjä sarjan ja rinnan kytketyille piireille vastaavat samat säännöt impedanssille.
17 Esimerkki Laske alla olevan piirin jännite. Vihje: 1 Z = 1 R + jwl + 1 1/jwC, Ũ = ZĨ, R u(t) = ReŨ = = I 2 + w 2 L 2 0 (1 w 2 LC) 2 + w 2 R 2 cos(wt +ϕ) C2 arg Z = ϕ = arctan(wl/r wcr w 3 L 2 C/R)
18 LTI-systeemi heräte Systeemi vaste Systeemin heräte x(n) Systeemin vaste y(n) Systeemi h(n)
19 LTI-systeemi Aikainvarianttisuus Lineaarisuus x 1 (n) y 1 (n) x 2 (n) y 2 (n) x(n) y(n) x(n+m) y(n+m) } ax 1 (n)+bx 2 (n) ay 1 (n)+by 2 (n) Impulssivaste(funktio) h(n) on systeemin vaste diskreettiin (yksikkö)impulssiin δ(n), { 1,n = 0 δ(n) = 0,n 0,
20 Taajuusvaste Voidaan osoittaa: y(n) = k h(k)x(n k) Signaalin x(n) Fourier-muunnos X(ω) = n x(n)e jωn Voidaan myös osoittaa, että Y(ω) = H(ω)X(ω), π ω π, H(ω) ja Y(ω) ovat h(n):n ja y(n):n Fourier-muunnoksia. H(ω) on taajuusvastefunktio. Taajuusvasteen eksponenttiesitys H(ω) = H(ω) e jθ(ω). H(ω) on systeemin amplitudivaste ja θ(ω) vaihevaste. X(ω) on reaalimuuttujan (digitaalinen taajuus) ω kompleksiarvoinen funktio, jolle on voimassa mm. x(n k) X(ω)e jωk x(n) = Ae jω0n y(n) = H(ω 0 )Ae jω0n
21 Esimerkki 1 Määrää amplitudivaste ja vaihevaste Hanning-suodattimelle, joka määritellään (MA-) differenssiyhtälöllä Piirrä kuvaajat. y(n) = 1 4 x(n)+ 1 2 x(n 1)+ 1 x(n 2). 4
22 Esimerkki 2 Määrää systeemin taajuusvastefunktio H(ω), amplitudivaste H(ω) ja vaihevaste θ(ω), kun vaste y(n) on (kolmen pisteen liukuvan keskiarvon (MA) malli) herätteeseen x(n). y(n) = 1 3 x(n + 1)+ 1 3 x(n)+ 1 x(n 1). 3
23 Särötön siirto Vaatimus: vaste y(n) on sama kuin heräte x(n) tai heräte vaimennettuna ja viivästettynä eli Tällöin y(n) = Ax(n k), A > 0. Y(ω) = Ae jωk X(ω), H(ω) = Ae jωk, Θ(ω) = kω. Amplitudivasteen tulee olla siis vakio ja vaihevasteen lineaarinen. Muussa tapauksessa esiintyy amplitudisäröä ja/tai vaihesäröä. Lineaarivaiheinen FIR-suodatin voidaan saada käyttämällä symmetriaehtoa h(n) = h(m 1 n), n = 0,1,...,M 1, tai käyttämällä antisymmetriaehtoa h(n) = h(m 1 n), n = 0,1,...,M 1.
24 Esimerkki 3 Määrää amplitudivaste H(ω) ja vaihevaste Θ(ω) = arg H(ω) suodattimelle, joka määritellään differenssiyhtälöllä y(n) = 1 2 x(n) 1 2 x(n 2)+ 1 2 x(n 4) 1 x(n 6), 2 missä x(n) on heräte ja y(n) on vaste. Kirjoita taajuusvastefunktiolle H(ω) esitys H(ω) = R(ω)e jφ(ω), missä R(ω) ja φ(ω) ovat reaalisia. Piirrä amplitudivasteen kuvaaja.
25 Z-muunnos Signaalin x(n) Z-muunnos on kompleksimuuttujan z kompleksiarvoinen funktio X(z), X(z) = n x(n)z n. Z-muunnoksen laskusäännöt Y(z) = H(z)X(z) ja x(n k) X(z)z k. H(z):aa sanotaan systeemin siirtofunktioksi. Selvästi H(ω) = H(z) z=e jω.
26 Digitaalisen suodattimen suunnittelu Nollien ja napojen sijoittamisen avulla M b k z k H(z) = k=0 = G 1+ N a k z k k=1 M Π k=1 N Π k=1 (1 z k z 1 ) (1 p k z 1 ) 1 Napojen tulee sijaita yksikköympyrän sisällä (R stabiilisuus) 2 Kompleksisten nollien ja napojen tulee esiintyä konjugaattipareina jotta systeemi olisi reaalinen. Esimerkiksi 2-napaiselle ja 2-nollaiselle systeemille ja H(z) = G (z z 1)(z z 2 ) (z p 1 )(z p 2 ) = G (1 z 1z 1 )(1 z 2 z 1 ) (1 p 1 z 1 )(1 p 2 z 1 ) H(ω) = H(z) z=e jω = G (1 z 1e jω )(1 z 2 e jω ) (1 p 1 e jω )(1 p 2 e jω )
27 Diskreetti Fourier-muunnos (DFT) Signaalin arvoihin x(0),x(1),...,x(n 1) liitetään diskreetti Fourier-muunnos ja käänteismuunnos: X(k) = x(n) = 1 N N 1 n=0 N 1 k=0 x(n)e j2πkn/n = X(ω) ω=2πk N X(k)e j2πkn/n (IDFT) (DFT) Tällöin Y(k) = H(k)X(k).
28 Käänteismunnos Käänteismuunnos (IDFT) todella antaa alkuperäiset arvot x(n) sillä N 1 1 X(k)e j2πkn/n = 1 N N = 1 N = 1 N k=0 m=0 N 1 ( N 1 k=0 k=0 m=0 N 1 N 1 x(m)e j2πk(m n)/n N 1 m=0 N 1 x(m) k=0 Aputulos (harjoitustehtävä 10) N 1 k=0 e j2πkr/n = x(m)e j2πm/n ) e j2πk(m n)/n = 1 x(n) N = x(n). N { 0, r = 1,...,N 1, N, r = 0, e j2πkn/n
Kompleksianalyysi. Jukka Kemppainen. Mathematics Division
Kompleksianalyysi Jukka Kemppainen Mathematics Division Sisältö 1. Kompleksiluvut 2. Funktiot 3. Differentiaalilaskentaa 4. Integrointi 5. Sarjat 6. Residylaskentaa 7. Diskreetti systeemi 2 / 43 Kompleksiluvut
Kompleksiluvut., 15. kesäkuuta /57
Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
MS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Kompleksiluvut Riikka Korte (muokannut Riikka Kangaslammen materiaalin pohjalta) Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.11.2015 1 /
1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2
Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................
Kompleksianalyysi, viikko 7
Kompleksianalyysi, viikko 7 Jukka Kemppainen Mathematics Division Fourier-muunnoksesta Laplace-muunnokseen Tarkastellaan seuraavassa kausaalisia signaaleja eli signaaleja x(t), joille x(t) 0 kaikilla t
Kompleksiluvut Kompleksitaso
. Kompleksiluvut.. Kompleksitaso 8. Todista kompleksilukujen yhteen- ja kertolaskun (lukuparien avulla annettuihin) määritelmiin perustuen osittelulaki: z (z + z ) = z z + z z. 8. Todista kompleksilukujen
Kompleksiluvut. JYM, Syksy /99
Kompleksiluvut JYM, Syksy 2014 1/99 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa
1 ja perusominaisuuksia 2 Laskutoimitukset kompleksiluvuilla 3 Reaaliluvut ja kompleksiluvut Matematiikan peruskurssi KP3 I OSA 1: Johdatus kompleksilukuihin 4 Kompleksilukujen algebraa 5 Kompleksitaso
5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z
5. Z-muunnos ja lineaariset diskreetit systeemit Jono: (x(n)) n=0 = (x(0), x(1), x(2),..., x(n),...) Z-muunnos: X(z) = n=0 x(n)z n, jos sarja suppenee jossain kompleksitason osassa. Esim. 4. Ykkösjonon
1. Viikko. K. Tuominen MApu II 1/17 17
1. Viikko Keskeiset asiat ja tavoitteet: 1. Kompleksiluvut, kompleksitaso, polaariesitys, 2. Kompleksilukujen peruslaskutoimitukset, 3. Eulerin ja De Moivren kaavat, 4. Potenssi ja juuret, kompleksinen
y z = (x, y) Kuva 1: Euklidinen taso R 2
Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z
2. Funktiot. Keijo Ruotsalainen. Mathematics Division
2. Funktiot Keijo Ruotsalainen Mathematics Division Kompleksimuuttujan funktio Kompleksimuuttujan z kompleksiarvoinen funktio f(z) voi olla yksiarvoinen tai moniarvoinen, esimerkiksi f(z) = e z f(z) =
Analyysi I. Visa Latvala. 3. joulukuuta 2004
Analyysi I Visa Latvala 3. joulukuuta 004 95 Sisältö 6 Kompleksiluvut 96 6.1 Yhteen- ja kertolasku.............................. 96 6. Napakoordinaattiesitys............................. 10 96 6 Kompleksiluvut
1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen
VII. KOMPLEKSILUVUT. VII.1. Laskutoimitukset
VII. KOMPLEKSILUVUT Kompleksilukujen joukko on VII.1. Laskutoimitukset C = {(x, y x R ja y R} ; siis joukkona C = taso R 2. Kun z = (x, y C, niin x R on z:n reaaliosa ja y R imaginaariosa, merkitään x
Kompleksianalyysi Funktiot
Kompleksianalyysi Funktiot Jukka Kemppainen Mathematics Division Kompleksimuuttujan funktio Aloitetaan funktion määritelmällä. Määr. 1 Kompleksimuuttujan funktio f : C C on sääntö, joka liittää joukkoon
Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa
Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa Antti Rasila 2016 Polaarimuoto Kuvasta nähdään: { x = r cos θ, y = r sin θ. Siis z = x + iy = r cos θ + ir sin θ. Saadaan kompleksiluvun
1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7
Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.
MATEMATIIKAN JAOS Kompleksianalyysi
MATEMATIIKAN JAOS Kompleksianalyysi Harjoitustehtäviä, syksy 00. Määrää kompleksiluvun a) = 3 j + 3j, b) = j, + j c) = ( 3 3 3 j)( j) itseisarvo ja argumentti.. Määrää sellaiset reaaliluvut x ja y, että
a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1)
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Osoita, että kompleksilukujen yhteenlasku määriteltynä tasopisteiden kautta koordinaateittain on liitännäinen, so. z + (z + z ) = (z + z )
SGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-100 Signaalinkäsittelyn menetelmät Välikoe 6.4.010 Sivuilla 1- on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
PERUSASIOITA ALGEBRASTA
PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen
1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet.
BM0A5700 - Integraalimuunnokset Harjoitus 1 1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet. a Piste z 1 i. Ympyrä z 1 i. Avoin kiekko z 1 i
KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut
KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen
1 Vastaa seuraaviin. b) Taajuusvasteen
Vastaa seuraaviin a) Miten määritetään digitaalisen suodattimen taajuusvaste sekä amplitudi- ja vaihespektri? Tässä riittää sanallinen kuvaus. b) Miten viivästys vaikuttaa signaalin amplitudi- ja vaihespektriin?
SGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
Kompleksilukujen alkeet
Kompleksilukuje alkeet Samuli Reuae Soja Kouva Kuva 1: Abraham De Moivre (1667-175) Sisältö 1 Kompleksiluvut ja kompleksitaso 1.1 Yhtee- ja väheyslasku...................... 1. Kertolasku ja z = x + yi
Oulussa, kesäkuussa 2016 Jukka Kemppainen. The shortest route between two truths in the real domain passes through the complex domain
Kompleksianalyysin luentorunko Oulun yliopisto Tekniikan matematiikka 8. lokakuuta 206 Kuva : Funktion f (z) = z reaaliosa Kuva 2: Funktion f (z) = ez reaaliosa Tämä luentomoniste on tehty emeritusprofessori
Osa IX. Z muunnos. Johdanto Diskreetit funktiot
Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto
6. Kompleksiluvut. Kompleksilukuja esiintyy usein polynomiyhtälöiden ratkaisuina. Esim:
6. Kompleksiluvut Yhtälöllä x = 1 ei ole reaalilukuratkaisua: tarvitaan uusia lukuja. Kompleksiluku on kahden reaaliluvun järjesteby "pari" (x,y): Z = x +iy Missä i on imaginääriyksikkö, jolla on ominaisuus
KOMPLEKSIANALYYSIN KURSSI SYKSY 2012
KOMPLEKSIANALYYSIN KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 1. Kompleksiluvuista Kaksiulotteinen reaalinen vektoriavaruus R 2 koostuu lukupareista (x 1, x 2 ), missä x 1 ja x 2 ovat reaalilukuja, eli R 2
Sähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Vaihtovirta ja osoitinlaskenta Luento Sinimuotoinen virta ja jännite Tehollisarvo, huippuarvo, vaihekulma Ajan vai taajuuden funktiona? Viime viikon kytkentäilmiöt
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 30.1.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
Säätötekniikan ja signaalinkäsittelyn työkurssi
Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D102: Sinimuotoisen signaalin suodattaminen 0.4 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio
Kompleksiluvut signaalin taajuusjakauman arvioinnissa
Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos
Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R }
7 Kompleksiluvut Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. 7.1 Kompleksilukujen määritelmä Määritelmä 7.1.1. Kompleksilukujen joukko
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut
Kompleksiluvut 1/6 Sisältö Kompleksitaso Lukukäsitteen vaiheittainen laajennus johtaa luonnollisista luvuista kokonaislukujen ja rationaalilukujen kautta reaalilukuihin. Jokaisessa vaiheessa ratkeavien
MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =
(a, 0) + (c, 0) = (a + c, 0)
. Kompleksiluvut Kompleksiluvut C saadaan varustamalla taso R komponenteittaisella yhteenlaskulla (Esimerkki.3 (b)) ja kertolaskulla, joka määritellään asettamalla Huomaa, että ja (a, b)(c, d) =(ac bd,
DEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Luennon keskeinen termistö ja tavoitteet Osoitin eli kompleksiluku: Trigonometrinen muoto
2. Kompleksiluvut. 2A. Kompleksilukujen konstruktio
2 Kompleksiluvut 2A Kompleksilukujen konstruktio Kompleksiluvut ovat syntyneet reaaliluvuista luonnollisen tarpeen myötä: kaikilla epätriviaaleilla polynomiyhtälöillä, kuten yhtälöllä z 2 +1 = 0, ei ole
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 5 Mikko Salo 5.9.2017 The natural development of this work soon led the geometers in their studies to embrace imaginary as well as real values of the variable.... It came
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 5.5.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
Numeeriset menetelmät
Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan väitteiden todistamista tai kumoamista vastaesimerkin
Valintakoe
Valintakoe 7.3.05 Kokeessa saa käyttää kirjoitusvälinewiden lisäksi ainoastaan kokeessa jaettavaa funktiolaskinta ja taulukkoa Pisteytys 8*3p=4p. Tehtävien alakohtien pistemäärät voivat poiketa toisistaan..
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan
Kompleksianalyysi, viikko 6
Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että
Yksinkertaisin (jollain tavalla mielenkiintoinen) yhtälö lienee muotoa. x + a = b,
Kompleksiluvut c Pekka Alestalo 013 Tämä moniste sisältää perusasiat kompleksiluvuista. Tähdellä merkityt kohdat ovat lähinnä oheislukemistoksi tarkoitettua materiaalia. 1 Lukujoukot Uuden tyyppisten lukujen
Kompleksiluvut Kompleksitaso Kompleksifunktiot ja kuvaukset Funktioiden raja-arvo, jatkuvuus ja derivaatta Eräitä kompleksifun.
17. lokakuuta 2016 Kompleksiluvut Kompleksiluku Kompleksiluku z on järjestetty reaalilukupari missä x ja y ovat reaalilukuja. z = (x, y), Lukuparin reaaliosa on x ja imaginaariosa on y. Lukuparin reaaliosa
(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A3/A5 Matriisilaskenta Laskuharjoitus 2 / vko 45 Tehtävä (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 2i = 2, b) z 2i < 2, c) /z
y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x
BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen
1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen
Lukualueet. Lotta Oinonen, Petri Ola Matematiikan ja tilastotieteen laitos Helsingin yliopisto. 13. syyskuuta 2009
Lukualueet Lotta Oinonen, Petri Ola Matematiikan ja tilastotieteen laitos 00014 Helsingin yliopisto 13. syyskuuta 2009 Johdanto. Tämä kurssi on lyhyt johdatus kompleksilukujen alkeisominaisuuksiin siinä
Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos
Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 1. joulukuuta 2015 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujono Lukujono on diskreetti funktio
Harjoitus 1. Tehtävä 1. Malliratkaisut. f(t) = e (t α) cos(ω 0 t + β) L[f(t)] = f(t)e st dt = e st t+α cos(ω 0 t + β)dt.
Harjoitus Malliratkaisut Tehtävä L[f(t)] ˆ f(t) e (t α) cos(ω t + β) f(t)e st dt ˆ e st t+α cos(ω t + β)dt cos(ω t + β) 2 (ej(ωt+β) + e j(ωt+β) ) L[f(t)] 2 eα 2 ˆ ˆ e st t+α (e j(ω t+β) + e j(ω t+β) )
SMG-2100: SÄHKÖTEKNIIKKA
SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka
Kolmannen asteen yhtälön ratkaisukaava
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Johanna Harju Kolmannen asteen yhtälön ratkaisukaava Matematiikan tilastotieteen laitos Matematiikka Heinäkuu 008 Tampereen yliopisto Matematiikan tilastotieteen
Lineaarialgebra MATH.1040 / Piirianalyysiä 2
Lineaarialgebra MATH.1040 / Piirianalyysiä 2 1 Seuraavat tarkastelut nojaavat trigonometrisille funktioille todistettuihin kaavoihin. sin(α + β) = sinα cosβ + cosα sinβ (1) cos(α + β) = cosα cosβ sinα
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-00 Signaalinkäsittelyn menetelmät, Tentti 6.3.006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja
Kaikki tarpeellinen kompleksiluvuista
Solmu 1 Kaikki tarpeellinen kompleksiluvuista Matti Lehtinen Maanpuolustuskorkeakoulu Kompleksiluvut ovat poistumassa lukion matematiikan opetussunnitelmista Ne ovat kuitenkin keskeinen osa matematiikan
R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1
Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen
RCL-vihtovirtapiiri: resonanssi
CL-vihtovirtapiiri: resonanssi Olkoon tarkastelun kohteena tavallinen LC-vaihtovirtapiiri. Piirissä on kolme komponenttia, ohmin vastus, L henryn induktanssi ja C faradin kapasitanssi. Piiriin syötettyyn
SMG-2100: SÄHKÖTEKNIIKKA
Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,
Sisältö MONISTEESTA...2 KOMPLEKSILUVUT...4 JOHDANNOKSI...4 KERTAUSTA LUKUJOUKOISTA...4 HUOMAUTUS...8 KOMPLEKSILUKUJEN MÄÄRITTELY...5 ARGUMENTTI...
Sisältö MONISTEESTA KOMPLEKSILUVUT4 JOHDANNOKSI4 KERTAUSTA LUKUJOUKOISTA 4 HUOMAUTUS5 KOMPLEKSILUKUJEN MÄÄRITTELY 5 HUOMAUTUS8 ARGUMENTTI 9 KOMPLEKSILUVUN ITSEISARVO9 LIITTOLUKU 0 VASTALUKU KOMPLEKSILUKUJEN
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 01 RITVA HURRI-SYRJÄNEN 5. Eksponenttifunktio ja sini- ja kosinifunktiot Kertausta. (1 Reaaliselle eksponenttifunktiolle e x : R R + pätee e x x k = kaikilla x R. k! (
Derivaatta. Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen.
Derivaatta Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen. Määritelmä Funktio f : A C on derivoituva pisteessä z 0 A jos raja-arvo (riippumatta
Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos
Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 5. joulukuuta 2016 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujonot Lukujonot Z-muunnoksen ominaisuuksia
Simo K. Kivelä. Kompleksiluvut. 30.8.2009 Versio 1.01, 23.10.2012
Simo K. Kivelä Kompleksiluvut 30.8.2009 Versio 1.01, 23.10.2012 c Simo K. Kivelä Tämän teoksen käyttöoikeutta koskee Creative Commons Nimeä-JaaSamoin 3.0 Muokkaamaton -lisenssi (http://creativecommons.org/licenses/by-sa/3.0/deed.fi)
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI. Matematiikan ja tilastotieteen laitos. Matemaattis-luonnontieteellinen
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matemaattis-luonnontieteellinen Tekijä Författare Author Esa
Diskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa. Pentti Romppainen
Diskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa Pentti Romppainen Kajaanin ammattikorkeakoulu Oy Kajaani University of Applied Sciences Diskreetti Fourier-muunnos ja
DEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-00 Signaalinkäsittelyn menetelmät, Tentti..005 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja sen
3.3 Funktion raja-arvo
3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.
Kompleksianalyysi viikko 3
Kompleksianalyysi viikko 3 Jukka Kemppainen Mathematics Division Derivaatta Oletetaan seuraavassa, että joukko A C on avoin, eli jokaista z 0 A kohti on olemassa sellainen ǫ > 0, että z z 0 < ǫ z A. f
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Mat Systeemien Identifiointi. 4. harjoitus
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.4129 Systeemien Identifiointi 4. harjoitus 1. a) Laske valkoisen kohinan spektraalitiheys. b) Tarkastellaan ARMA-prosessia C(q 1 )y = D(q 1 )e,
w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.
Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)
Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi
31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
Mat Matematiikan peruskurssi KP3-i. Osa I. Kompleksiluvut. TKK lokakuuta Määritelmä ja perusominaisuuksia
Mat-1.1331 Matematiikan peruskurssi KP3-i A.Rasila J.v.Pfaler TKK27 19. lokakuuta 27 A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 19. lokakuuta 27 1 / 353 A.Rasila, J.v.Pfaler () Mat-1.1331
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden
Kompleksianalyysi I. Helsingin yliopisto Matematiikan ja tilastotieteen laitos Syyslukukausi Kari Astala
Kompleksianalyysi I Helsingin yliopisto Matematiikan ja tilastotieteen laitos Syyslukukausi 2016 Kari Astala Teksti hyödyntää myös Pekka Niemisen ja Ritva Hurri-Syrjäsen aikaisempia muistiinpanoja. Kuvat:
OLLI HUOPIO JOHDANTO KOMPLEKSISIIN MONIARVOISIIN FUNKTIOI- HIN. Kandidaatintyö
OLLI HUOPIO JOHDANTO KOMPLEKSISIIN MONIARVOISIIN FUNKTIOI- HIN Kandidaatintyö Tarkastaja: Petteri Laakkonen 1.12.2017 i TIIVISTELMÄ OLLI HUOPIO: Johdanto kompleksisiin moniarvoisiin funktioihin Tampereen
Kompleksianalyysi. Tero Kilpeläinen
Kompleksianalyysi Tero Kilpeläinen Luentomuistiinpanoja keväälle 2005 26. huhtikuuta 2006 Alkusanat Seuraavilla sivuilla on luentomuistiinpanoja kompleksianalyysin laudatur-kurssille. Toivoakseni kirjoitus
6.1 Autokovarianssifunktion karakterisaatio aikatasossa
6. Spektraalianalyysi Tällä kurssilla on käyty läpi eräitä stationääristen aikasarjojen ominaispiirteitä, kuten aikasarjaa mallintavan stokastisen prosessin X t odotusarvo E[X t ] ja autokovarianssifunktio
C 2. + U in C 1. (3 pistettä) ja jännite U C (t), kun kytkin suljetaan ajanhetkellä t = 0 (4 pistettä). Komponenttiarvot ovat
S-87.2 Tentti 6..2007 ratkaisut Vastaa kaikkiin neljään tehtävään! C 2 I J 2 C C U C Tehtävä atkaise virta I ( pistettä), siirtofunktio F(s) = Uout ( pistettä) ja jännite U C (t), kun kytkin suljetaan
Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 18.3.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
1 Analyyttiset funktiot
Analyyttiset funktiot. Kompleksimuuttujan kompleksiarvoinen funktio Olkoot A ja B kompleksitason C osajoukkoja. Kuvausta f : A B sanotaan kompleksimuuttujan kompleksiarvoiseksi funktioksi. Usein on B C..Vakiokuvaus.
Kompleksianalyysi, viikko 5
Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa
RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi
Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa
Funktioteoria I. Helsingin yliopisto Matematiikan ja tilastotieteen laitos Syyslukukausi 2009
Funktioteoria I Helsingin yliopisto Matematiikan ja tilastotieteen laitos Syyslukukausi 2009 Kari Astalan muistiinpanoista (2005) muokannut Pekka Nieminen Kuvat: Martti Nikunen Funktioteorian eli kompleksianalyysin
Mat-1.433/443 Matematiikan peruskurssit K3/P3 syksy 2004 KOMPLEKSILUVUT JA -FUNKTIOT. Sisältö
Mat-1.433/443 Matematiikan peruskurssit K3/P3 syksy 2004 KOMPLEKSILUVUT JA -FUNKTIOT Sisältö Päivitetty 16. syyskuuta 2004 Johdanto ii 1. Kompleksiluvun määritelmä ja perusominaisuudet 1 1.1. Kompleksiluvun
Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008
Mat-.3 / Mat-.33 Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 4, loppuviikko, syksy 8 Ennen malliratkaisuja, muistin virkistämiseksi kaikkien rakastama osittaisintegroinnin kaava: b a u(tv (t
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.
DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla
Lukualueet. Lotta Oinonen, Petri Ola Matematiikan ja tilastotieteen laitos Helsingin yliopisto
Lukualueet Lotta Oinonen, Petri Ola Matematiikan ja tilastotieteen laitos 00014 Helsingin yliopisto Johdanto. Tämä kurssi on lyhyt johdatus kompleksilukujen alkeisominaisuuksiin siinä laajudessa kuin niitä
S SÄHKÖTEKNIIKKA Kimmo Silvonen
S55.0 SÄHKÖTEKNKKA 9.5.000 Kimmo Silvonen Tentti: tehtävät,,5,8,9. välikoe: tehtävät,,,4,5. välikoe: tehtävät 6,7,8,9,0 Oletko muistanut vastata palautekyselyyn Voit täyttää lomakkeen nyt.. aske virta.