JOHDATUS TEKOÄLYYN TEEMU ROOS

Koko: px
Aloita esitys sivulta:

Download "JOHDATUS TEKOÄLYYN TEEMU ROOS"

Transkriptio

1 JOHDATUS TEKOÄLYYN TEEMU ROOS

2 TERMINATOR

3 SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN T (AIKA) FUNKTIONA (TAI MUUTTUJAN F (TAAJUUS) => FREQUENCY DOMAIN )

4 SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN T (AIKA) FUNKTIONA (TAI MUUTTUJAN F (TAAJUUS) => FREQUENCY DOMAIN )

5 SIGNAALINKÄSITTELY KUVAN TAI ÄÄNITIEDOSTON KOKO ON USEIN SUURI: ESIM X 1000 PIKSELIÄ = PIKSELIÄ KUVA: RESOLUUTIO [DPI] ÄÄNI: NÄYTTEENOTTOTAAJUUS [HZ] KOHINAA ESIINTYY AINA LUONNOLLISESSA SIGNAALISSA SIGNAALI RIIPPUU MYÖS OLOSUHTEISTA: - KUVAKULMA, VALAISTUS, ETÄISYYS,... - KAIKU, MIKROFONI, TAUSTAHÄLY,... TUNNISTAMINEN TAI LUOKITTELU VAIKEAA

6 SIGNAALINKÄSITTELY GRAFIIKKA KUVAN- PHOTO- SHOPPAILU TIETOKONE- LIIKKEEN- KAAPPAUS HAHMON- TUNNISTUS TAMINEN

7 MOTION CAPTURE

8 SIGNAALINKÄSITTELY GRAFIIKKA KUVAN- PHOTO- SHOPPAILU TIETOKONE- LIIKKEEN- KAAPPAUS HAHMON- TUNNISTUS TAMINEN

9 MICROSOFT PHOTOSYNTH

10 SIGNAALINKÄSITTELY GRAFIIKKA KUVAN- PHOTO- SHOPPAILU TIETOKONE- LIIKKEEN- KAAPPAUS HAHMON- TUNNISTUS TAMINEN

11 AFGHAN GIRL

12 AFGHAN GIRL

13 AFGHAN GIRL INVARIANSSI

14 SIGNAALINKÄSITTELY GRAFIIKKA KUVAN- PHOTO- SHOPPAILU TIETOKONE- LIIKKEEN- KAAPPAUS HAHMON- TUNNISTUS TAMINEN

15 KOHINANPOISTO Example: Denoising Occam s Razor MDL Principle Universal Source Coding MDL Principle (contd.) Modern MDL Histogram Density Estimation Clustering Linear Regression Wavelet Denoising Teemu Roos Introduction to Information-Theoretic Modeling

16 KOHINANPOISTO Example: Denoising Occam s Razor MDL Principle Universal Source Coding MDL Principle (contd.) Modern MDL Histogram Density Estimation Clustering Linear Regression Wavelet Denoising Teemu Roos Introduction to Information-Theoretic Modeling

17 KOHINANPOISTO ALKUPERÄINEN KÄSITELTY

18 KOHINANPOISTO SIGNAALI (ÄÄNI TAI KUVA) ESITETÄÄN NIIN SANOTUSSA AALLOKEMUODOSSA (WAVELET) HIUKAN KUIN TAAJUUS- ESITYS ÄÄNELLÄ KÄSITELLÄÄN SIGNAALIA VEKTORINA

19 KOHINANPOISTO AALLOKEMUODOSSA SIGNAALIN OLENNAINEN OSA KESKITTYNYT VAIN HARVOIHIN, ISOIHIN ELEMENTTEIHIN [0,0,0, 45, 12, 0,0,0,0, 2, 0,0, 120, 0,0,0,...] KOHINA JAKAUTUU TASAISESTI KAIKILLE ELEMENTEILLE [ε,ε,ε,45±ε, 12±ε,ε,ε,ε,ε, 2±ε,ε,ε, 120±ε,ε,ε,ε,...] MENETELMÄ: ASETA NOLLAA LÄHELLÄ OLEVAT ELEMENTIT NOLLIKSI [0,0,0,45±ε, 12±ε,0,0,0,0, 0,0,0, 120±ε,0,0,0,...] TULOS: SUURIN OSA KOHINASTA HÄVIÄÄ VAIN PIENI OSA SIGNAALISTA HÄVIÄÄ

20 KOHINANPOISTO AALLOKEMUODOSSA SIGNAALIN OLENNAINEN OSA KESKITTYNYT VAIN HARVOIHIN, ISOIHIN ELEMENTTEIHIN [0,0,0, 45, 12, 0,0,0,0, 2, 0,0, 120, 0,0,0,...] KOHINA JAKAUTUU TASAISESTI KAIKILLE ELEMENTEILLE [ε,ε,ε,45±ε, 12±ε,ε,ε,ε,ε, 2±ε,ε,ε, 120±ε,ε,ε,ε,...] MENETELMÄ: ASETA NOLLAA LÄHELLÄ OLEVAT ELEMENTIT NOLLIKSI [0,0,0,45±ε, 12±ε,0,0,0,0, 0,0,0, 120±ε,0,0,0,...] TULOS: SUURIN OSA KOHINASTA HÄVIÄÄ VAIN PIENI OSA SIGNAALISTA HÄVIÄÄ

21 KOHINANPOISTO kohinanpoisto(x,t): n length(x) c dwt(x) // discrete wavelet transform for i = 1,...,n: if c[i] < t: c[i] = 0 end-for x idwt(c) // inverse wavelet transform return x

22 KOHINANPOISTO kohinanpoisto(x,t): AALLOKEMUUNNOS n length(x) c dwt(x) // discrete wavelet transform for i = 1,...,n: if c[i] < t: c[i] = 0 end-for x idwt(c) // inverse wavelet transform return x

23 KOHINANPOISTO kohinanpoisto(x,t): n length(x) KYNNYSARVO t c dwt(x) // discrete wavelet transform for i = 1,...,n: if c[i] < t: c[i] = 0 end-for x idwt(c) // inverse wavelet transform return x

24 KOHINANPOISTO kohinanpoisto(x,t): n length(x) c dwt(x) // discrete wavelet transform for i = 1,...,n: KÄÄNTEISMUUNNOS if c[i] < t: c[i] = 0 end-for x idwt(c) // inverse wavelet transform return x

25 KOHINANPOISTO AALLOKEMUUNNOS LUONNOLLINEN SIGNAALI

26 KOHINANPOISTO LUONNOLLINEN SIGNAALI 120 AALLOKEMUUNNOS

27 KOHINANPOISTO KOHINAA LUONNOLLINEN SIGNAALI AALLOKEMUUNNOS

28 KOHINANPOISTO KYNNYSARVO T LUONNOLLINEN SIGNAALI AALLOKEMUUNNOS

29 KOHINANPOISTO LUONNOLLINEN SIGNAALI 121 AALLOKEMUUNNOS

30 KOHINANPOISTO AALLOKEMUUNNOS -8 8 SIGNAALI SILEÄMPI KUIN ENNEN JA VÄHEMMÄN KOHINAA LUONNOLLINEN SIGNAALI

31 KOHINANPOISTO

32 SIGNAALINKÄSITTELY GRAFIIKKA KUVAN- PHOTO- SHOPPAILU TIETOKONE- LIIKKEEN- KAAPPAUS HAHMON- TUNNISTUS TAMINEN

33 RADIOHEAD

34 SIGNAALINKÄSITTELY GRAFIIKKA KUVAN- PHOTO- SHOPPAILU TIETOKONE- LIIKKEEN- KAAPPAUS HAHMON- TUNNISTUS TAMINEN

35 SEURANTA (TRACKING)

36 HAHMONTUNNISTUS TAVOITE TUNNISTAMISESSA LÖYTÄÄ PIIRTEET, JOIDEN PERUSTEELLA VOIDAAN TUNNISTAA SAMA HAHMO ERI KUVISSA TAI ÄÄNINÄYTTEISSÄ KUVASSA TYYPILLISIÄ PIIRRETYYPPEJÄ: - REUNAT - KULMAT ÄÄNESSÄ: - TAAJUUS - TAAJUUDEN MUUTOKSET (YLÖS, ALAS,...) - RYTMI -...

37 SURF HAHMONTUNNISTUKSESSA SUOSIOSSA INVARIANTIT PIIRTEET, KUTEN SIFT (Scale Invariant Feature Transform) JA SURF (Speeded Up Robust Features). H. Bay, T. Tuytelaars & l. van Gool. SURF: Speeded Up Robust Features, Computer Vision and Image Understanding (CVIU), Vol. 110, No. 3, pp , 2008 IDEANA LÖYTÄÄ KUVASTA JOUKKO PIIRTEITÄ (FEATURE), JOTKA SÄILYVÄT SAMANA - ERI KOOSSA INVARIANSSI - ERI KULMASSA JA JOTKA VOI LASKEA - NOPEASTI.

38 SURF VAIHE I: AVAINPISTEIDEN VALINTA: 1. ESITETÄ KUVA INTEGRAALIMUODOSSA (NOPEUTUS) X Y I(X,Y) = Σ Σ F(i,j) i=1 j=1 2. LASKE HESSEN MATRIISIN (HESSIAN) DETERMINANTTI : INTENSITEETIN 2. DERIVAATAT ERI SUUNTIIN

39 SURF VAIHE I: AVAINPISTEIDEN VALINTA: 1. ESITETÄ KUVA INTEGRAALIMUODOSSA (NOPEUTUS) X Y I(X,Y) = Σ Σ F(i,j) i=1 j=1 2. LASKE HESSEN MATRIISIN (HESSIAN) DETERMINANTTI : INTENSITEETIN 2. DERIVAATAT ERI SUUNTIIN

40 SURF VAIHE I: AVAINPISTEIDEN VALINTA: 1. ESITETÄ KUVA INTEGRAALIMUODOSSA (NOPEUTUS) X Y I(X,Y) = Σ Σ F(i,j) i=1 j=1 2. LASKE HESSEN MATRIISIN (HESSIAN) DETERMINANTTI : INTENSITEETIN 2. DERIVAATAT ERI SUUNTIIN

41 SURF VAIHE I: AVAINPISTEIDEN VALINTA: 1. ESITETÄ KUVA INTEGRAALIMUODOSSA (NOPEUTUS) X Y I(X,Y) = Σ Σ F(i,j) i=1 j=1 2. LASKE HESSEN MATRIISIN (HESSIAN) DETERMINANTTI : INTENSITEETIN 2. DERIVAATAT ERI SUUNTIIN

42 SURF VAIHE I: AVAINPISTEIDEN VALINTA: 1. ESITETÄ KUVA INTEGRAALIMUODOSSA (NOPEUTUS) X Y I(X,Y) = Σ Σ F(i,j) i=1 j=1 2. LASKE HESSEN MATRIISIN (HESSIAN) DETERMINANTTI : INTENSITEETIN 2. DERIVAATAT ERI SUUNTIIN

43 SURF VAIHE I: AVAINPISTEIDEN VALINTA: 1. ESITETÄ KUVA INTEGRAALIMUODOSSA (NOPEUTUS) X Y I(X,Y) = Σ Σ F(i,j) i=1 j=1 2. LASKE HESSEN MATRIISIN (HESSIAN) DETERMINANTTI : INTENSITEETIN 2. DERIVAATAT ERI SUUNTIIN 3. TOISTA ERI SKAALAUKSILLA (SKAALAINVARIANTTI) 4. VALITSE det(h):n PAIKALLISET MAKSIMIT AVAINPISTEIKSI

44 SURF VAIHE I: AVAINPISTEIDEN VALINTA: 1. ESITETÄ KUVA INTEGRAALIMUODOSSA (NOPEUTUS) X Y I(X,Y) = Σ Σ F(i,j) i=1 j=1 2. LASKE HESSEN MATRIISIN (HESSIAN) DETERMINANTTI : INTENSITEETIN 2. DERIVAATAT ERI SUUNTIIN 3. TOISTA ERI SKAALAUKSILLA (SKAALAINVARIANTTI) 4. VALITSE det(h):n PAIKALLISET MAKSIMIT AVAINPISTEIKSI

45 SURF VAIHE II: PIIRTEIDEN KUVAUS: 1. TARKASTELE JOKAISEN AVAINPISTEEN YMPÄRISTÖÄ 2. LASKE ORIENTAATIO (INTENSITEETIN PERUSTEELLA) 3. KONSTRUOI INTENSITEETIN VAIHTELUN PERUSTEELLA KUVAAJAVEKTORI (SURFISSA 64-DIMENSIOINEN)

46 SURF VAIHE II: PIIRTEIDEN KUVAUS: 1. TARKASTELE JOKAISEN AVAINPISTEEN YMPÄRISTÖÄ 2. LASKE ORIENTAATIO (INTENSITEETIN PERUSTEELLA) 3. KONSTRUOI INTENSITEETIN VAIHTELUN PERUSTEELLA KUVAAJAVEKTORI (SURFISSA 64-DIMENSIOINEN)

47 SURF VAIHE II: PIIRTEIDEN KUVAUS: 1. TARKASTELE JOKAISEN AVAINPISTEEN YMPÄRISTÖÄ 2. LASKE ORIENTAATIO (INTENSITEETIN PERUSTEELLA) 3. KONSTRUOI INTENSITEETIN VAIHTELUN PERUSTEELLA KUVAAJAVEKTORI (SURFISSA 64-DIMENSIOINEN) TULOKSENA PIIRREVEKTORI: (X,Y,SKAALA,ORIENTAATIO,KUVAAJAVEKTORI)

48 SURF

49 SURF-ESIMERKKI

50 SURF VAIHE III: HAHMONTUNNISTUS 1. ETSI PIIRTEET YHDESTÄ KUVASTA 2. ETSI PIIRTEET TOISESTA KUVASTA 3. ETSI ERI KUVISSA ESIINTYVIÄ PIIRREPAREJA, JOTKA OVAT RIITTÄVÄN LÄHELLÄ TOISIAAN (EUKLIDINEN ETÄIYYS) 4. VOI PARANTAA GEOMETRISILLA RAJOITTEILLA (KORVAT ERI PUOLELLA PÄÄTÄ, SILMÄT SIINÄ VÄLISSÄ, JNE.)

51 SURF

52 SURF

53 SURF

54 ENSI VIIKOSTA LEGOILLA LEIKKIMISTÄ LASKUHARJOITUSRYHMISSÄ PAJAMEININKIÄ LISÄRYHMIÄ PERUSTETAAN LISÄOHJEITA KURSSIN SIVULLA (MYÖHEMMIN)

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS AI-TUTKIJAN URANÄKYMIÄ AJATUSTENLUKUA COMPUTER VISION SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA MUUTTUJIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

Kokeessa piti vastata viiteen (5) tehtävään kuudesta (6). Jokaisen tehtävän maksimipistemäärä on 8.

Kokeessa piti vastata viiteen (5) tehtävään kuudesta (6). Jokaisen tehtävän maksimipistemäärä on 8. 582216 Johdatus tekoälyyn (T. Roos) Kurssikoe 19.10.2012 ARVOSTELUPERUSTEET Kokeessa piti vastata viiteen (5) tehtävään kuudesta (6). Jokaisen tehtävän maksimipistemäärä on 8. 1. Tekoälyn filosofiaa yms.

Lisätiedot

Johdatus tekoälyyn (T. Roos) Kurssikoe

Johdatus tekoälyyn (T. Roos) Kurssikoe 582216 Johdatus tekoälyyn (T. Roos) Kurssikoe 18.10.2013 Kokeessa saa pitää mukana käsinkirjoitettua A4-kokoista kaksipuolista lunttilappua, joka on palautettava koepaperin mukana. Huomaa että jokaisen

Lisätiedot

a. (2 p) Selitä Turingin koe. (Huom. ei Turingin kone.) Minkälainen tekoäly on saavutettu, kun Turingin koe ratkaistaan?

a. (2 p) Selitä Turingin koe. (Huom. ei Turingin kone.) Minkälainen tekoäly on saavutettu, kun Turingin koe ratkaistaan? 582216 Johdatus tekoälyyn (T. Roos) Kurssikoe 19.10.2012 Kokeessa saa pitää mukana käsinkirjoitettua A4-kokoista kaksipuolista lunttilappua, joka on palautettava koepaperin mukana. Huomaa että jokaisen

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA)

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) JOHDATUS TEKOÄLYYN TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) KONEOPPIMISEN LAJIT OHJATTU OPPIMINEN: - ESIMERKIT OVAT PAREJA (X, Y), TAVOITTEENA ON OPPIA ENNUSTAMAAN Y ANNETTUNA X.

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 4

Inversio-ongelmien laskennallinen peruskurssi Luento 4 Inversio-ongelmien laskennallinen peruskurssi Luento 4 Kevät 20 Regularisointi Eräs keino yrittää ratkaista (likimääräisesti) huonosti asetettuja ongelmia on regularisaatio. Regularisoinnissa ongelmaa

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

Kuvan pakkaus JPEG (Joint Photographic Experts Group)

Kuvan pakkaus JPEG (Joint Photographic Experts Group) Kuvan pakkaus JPEG (Joint Photographic Experts Group) Arne Broman Mikko Toivonen Syksy 2003 Historia 1840 1895 1920-luku 1930-luku Fotografinen filmi Louis J. M. Daguerre, Ranska Ensimmäinen julkinen elokuva

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

AHTI OKSANEN SIFT-MENETELMÄ PIIRTEENSOVITUKSESSA. Kandidaatintyö

AHTI OKSANEN SIFT-MENETELMÄ PIIRTEENSOVITUKSESSA. Kandidaatintyö AHTI OKSANEN SIFT-MENETELMÄ PIIRTEENSOVITUKSESSA Kandidaatintyö Tarkastaja: lehtori Heikki Huttunen Jätetty tarkastettavaksi 8. toukokuuta 2011 ii TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Signaalinkäsittelyn

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS ROBOTIIKKA TEKOÄLYN GRAND CHALLENGE YHDISTÄÄ LÄHES KAIKKI TEKOÄLYN OSA-ALUEET: ROBOTIIKKA TEKOÄLYN GRAND CHALLENGE YHDISTÄÄ LÄHES KAIKKI TEKOÄLYN OSA-ALUEET: AIVOT : + KONENÄKÖ

Lisätiedot

Tiedonkeruu ja analysointi

Tiedonkeruu ja analysointi Tiedonkeruu ja analysointi ViDRoM Virtual Design of Rotating Machines Raine Viitala 30.9.2015 ViDRoM Virtual Design of Rotating Machines Mitataan dynaamista käyttäytymistä -> nopeuden funktiona Puhtaat

Lisätiedot

2D piirrelaskennan alkeet, osa I

2D piirrelaskennan alkeet, osa I 2D piirrelaskennan alkeet, osa I Ville Tirronen aleator@jyu.fi University of Jyväskylä 18. syyskuuta 2008 Näkökulma Aiheet Tarkastellaan yksinkertaisia 2D kuvankäsittelyoperaattoreita Näkökulmana on tunnistava

Lisätiedot

Tiedonkeruu ja analysointi

Tiedonkeruu ja analysointi Tiedonkeruu ja analysointi ViDRoM Virtual Design of Rotating Machines Raine Viitala ViDRoM Virtual Design of Rotating Machines Mitataan dynaamista käyttäytymistä -> nopeuden funktiona Puhtaat laakerit,

Lisätiedot

Radioastronomian käsitteitä

Radioastronomian käsitteitä Radioastronomian käsitteitä allonpituusalue ~ 100 m - 1 mm MHz 300 GHz Leveä aallonpituusalue: erilaisia antenneja, monenlaista tekniikkaa Ei (suoraan) kuvia Signaali yleensä

Lisätiedot

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x

Lisätiedot

r > y x z x = z y + y x z y + y x = r y x + y x = r

r > y x z x = z y + y x z y + y x = r y x + y x = r HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

Jos sinulla on kysyttävää 10. Vastaanotin toimi.

Jos sinulla on kysyttävää 10. Vastaanotin toimi. Tärkeät turvallisuustiedot ennen käyttöönottoa 1 Onnea uuden Langattoman Baby Guardin johdosta. Ennen kuin otat langattoman Baby Guardin käyttöösi, lue kaikki turvallisuus- ja käyttööhjeet huolellisesti,

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden

Lisätiedot

Vektorilaskenta, tentti

Vektorilaskenta, tentti Vektorilaskenta, tentti 27102017 Tentin kesto n 3 tuntia Vastaa NELJÄÄN tehtävään Jos vastaat kaikkiin, niin neljä PARASTA otetaan huomioon Kuvat vievät tilaa, joten muista kurkistaa paperin toiselle puolelle

Lisätiedot

Differentiaaliyhtälöryhmä

Differentiaaliyhtälöryhmä Differentiaaliyhtälöryhmä Ensimmäisen kertaluvun differentiaaliyhtälöryhmä vaikkapa korkeamman kertaluvun yhtälöä vastaava normaaliryhmä voidaan ratkaista numeerisesti täsmälleen samanlaisilla kaavoilla

Lisätiedot

Tarvitseeko informaatioteknologia matematiikkaa?

Tarvitseeko informaatioteknologia matematiikkaa? Tarvitseeko informaatioteknologia matematiikkaa? Oulun yliopisto Matemaattisten tieteiden laitos 1 Kyllä kai IT matematiikkaa tarvitsee!? IT ja muu korkea teknologia on nimenomaan matemaattista teknologiaa.

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-100 Signaalinkäsittelyn menetelmät Välikoe 6.4.010 Sivuilla 1- on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää

Lisätiedot

Ajatellaan jotakin datajoukkoa joka on talletettu datamatriisiin X: n vectors. TKK, Informaatiotekniikan laboratorio 1

Ajatellaan jotakin datajoukkoa joka on talletettu datamatriisiin X: n vectors. TKK, Informaatiotekniikan laboratorio 1 3. DATA VEKTORINA 3.1. Vektorit, matriisit, etäisyysmitat Ajatellaan jotakin datajoukkoa joka on talletettu datamatriisiin X: n vectors {}}{ d vector elements X TKK, Informaatiotekniikan laboratorio 1

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS LUONNOLLISEN KIELEN KÄSITTELY (NATURAL LANGUAGE PROCESSING, NLP) TEKOÄLYSOVELLUKSET, JOTKA LIITTYVÄT IHMISTEN KANSSA (TAI IHMISTEN VÄLISEEN) KOMMUNIKAATIOON, OVAT TEKEMISISSÄ

Lisätiedot

Talousmatematiikan perusteet: Luento 9

Talousmatematiikan perusteet: Luento 9 Talousmatematiikan perusteet: Luento 9 Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo ja pituus Vektorien välinen kulma Motivointi Tähän asti olemme tarkastelleet yhden

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

SGN-4200 Digitaalinen Audio Harjoitustyö-info

SGN-4200 Digitaalinen Audio Harjoitustyö-info 1 SGN-4200 Digitaalinen Audio Harjoitustyö-info 04.04.2012 Joonas Nikunen Harjoitystyö - 2 Suorittaminen ja Käytännöt Kurssin pakollinen harjoitustyö: Harjoitellaan audiosignaalinkäsittelyyn tarkoitetun

Lisätiedot

1 Rajoittamaton optimointi

1 Rajoittamaton optimointi Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y

Lisätiedot

9. Tila-avaruusmallit

9. Tila-avaruusmallit 9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia

Lisätiedot

Janne Mustaniemi Eemeli Ristimella Joonas Jyrkkä Esineiden mittaaminen älypuhelimella

Janne Mustaniemi Eemeli Ristimella Joonas Jyrkkä Esineiden mittaaminen älypuhelimella TIETO- JA SÄHKÖTEKNIIKAN TIEDEKUNTA Janne Mustaniemi Eemeli Ristimella Joonas Jyrkkä Esineiden mittaaminen älypuhelimella Kandidaatintyö Tietotekniikan tutkinto-ohjelma Toukokuu 2017 Mustaniemi Janne,

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 2 To 8.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 2 To 8.9.2011 p. 1/33 p. 1/33 Lukujen tallennus Kiintoluvut (integer) tarkka esitys aritmeettiset operaatiot

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 7 8

Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Kevät 2011 1 Iteratiivisista menetelmistä Tähän mennessä on tarkasteltu niin sanottuja suoria menetelmiä, joissa (likimääräinen) ratkaisu saadaan

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Alkuviikolla harjoitustehtäviä lasketaan harjoitustilaisuudessa. Loppuviikolla näiden harjoitustehtävien tulee olla ratkaistuina harjoituksiin

Lisätiedot

Radiointerferometria II

Radiointerferometria II Radiointerferometria II Kolme ALMA-antennia ALMA tulevaisuudessa Puuttuva informaatio Epätäydellinen uv-tason peitto: 1. Keskusaukko : pintamaisen lähteen kokonaisvuontiheys jää mittaamatta, V (0, 0) =

Lisätiedot

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv 2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyvien vakioiden määrittämiseen. Jännitystila on siten

Lisätiedot

Videoista voimaa! Parempia videoita mobiilisti. Jonne Hirvonen.

Videoista voimaa! Parempia videoita mobiilisti. Jonne Hirvonen. Videoista voimaa! Parempia videoita mobiilisti Jonne Hirvonen Miksi video? Herättää huomiota Kertoo tarinoita Synnyttää tunteita Jää mieleen Videoita mobiilisti? Älypuhelin = tietokone + kamera = kaikki

Lisätiedot

Johdatus materiaalimalleihin

Johdatus materiaalimalleihin Johdatus materiaalimalleihin 2 kotitehtäväsarja - kimmoisat materiaalimallit Tehtävä Erään epälineaarisen kimmoisen isotrooppisen aineen konstitutiivinen yhtälö on σ = f(i ε )I + Ge () jossa venymätensorin

Lisätiedot

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan

Lisätiedot

Organization of (Simultaneous) Spectral Components

Organization of (Simultaneous) Spectral Components Organization of (Simultaneous) Spectral Components ihmiskuulo yrittää ryhmitellä ja yhdistää samasta fyysisestä lähteestä tulevat akustiset komponentit yhdistelyä tapahtuu sekä eri- että samanaikaisille

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

Ultraäänen kuvausartefaktat. UÄ-kuvantamisen perusoletukset. Outi Pelkonen OYS, Radiologian Klinikka 29.4.2005

Ultraäänen kuvausartefaktat. UÄ-kuvantamisen perusoletukset. Outi Pelkonen OYS, Radiologian Klinikka 29.4.2005 Ultraäänen kuvausartefaktat Outi Pelkonen OYS, Radiologian Klinikka 29.4.2005 kaikissa radiologisissa kuvissa on artefaktoja UÄ:ssä artefaktat ovat kaikuja, jotka näkyvät kuvassa, mutta eivät vastaa sijainniltaan

Lisätiedot

Digitaalinen audio

Digitaalinen audio 8003203 Digitaalinen audio Luennot, kevät 2005 Tuomas Virtanen Tampereen teknillinen yliopisto Kurssin tavoite Johdanto 2 Tarjota tiedot audiosignaalinkäsittelyn perusteista perusoperaatiot, sekä niissä

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Lokaalit ääriarvot Yhden muuttujan funktion f (x) lokaali maksimi on piste x 0, jossa f (x) on suurempi kuin muualle pisteen x 0 ympäristössä, eli kun f (x 0 )

Lisätiedot

Ratkaisuehdotukset LH 8 / vko 47

Ratkaisuehdotukset LH 8 / vko 47 Ratkaisuehdotukset LH 8 / vko 47 Tehtävä 1: Olkoot A R n n matriisi, jonka singulaariarvohajotelma on A [ ] [ ] Σ U 1 U r 0 [V1 ] T 2 V 0 0 2 Jossa Σ r on kääntyvä matriisi, [ U 1 U 2 ] ja [ V1 V 2 ] ovat

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 30.1.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

Äänen eteneminen ja heijastuminen

Äänen eteneminen ja heijastuminen Äänen ominaisuuksia Ääni on ilmamolekyylien tihentymiä ja harventumia. Aaltoliikettä ja värähtelyä. Värähtelevä kappale synnyttää ääntä. Pistemäinen äänilähde säteilee pallomaisesti ilman esteitä. Käytännössä

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 2. luento 10.11.2017 Keinotekoiset neuroverkot Neuroverkko koostuu syöte- ja ulostulokerroksesta

Lisätiedot

Johdatus tekoälyyn. Luento 6.10.2011: Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ]

Johdatus tekoälyyn. Luento 6.10.2011: Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ] Johdatus tekoälyyn Luento 6.10.2011: Koneoppiminen Patrik Hoyer [ Kysykää ja kommentoikaa luennon aikana! ] Koneoppiminen? Määritelmä: kone = tietokone, tietokoneohjelma oppiminen = ongelmanratkaisukyvyn

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

3.2.2 Tikhonovin regularisaatio

3.2.2 Tikhonovin regularisaatio 3 Tikhonovin regularisaatio Olkoon x 0 R n tuntematon, M R m n teoriamatriisi ja y Mx + ε R m (316 annettu data Häiriöherkässä ongelmassa pienimmän neliösumman miniminormiratkaisu x M + y Q N (M x + M

Lisätiedot

Kuvanlaadunparantaminen. Mikko Nuutinen 21.3.2013

Kuvanlaadunparantaminen. Mikko Nuutinen 21.3.2013 Kuvanlaadunparantaminen Mikko Nuutinen 21.3.2013 Luennon sisältö Termistöä Kuvanentisöinti Terävyys unsharp masking Kohina non-local means Linssivääristymän korjaus Kuvanlaadunehostaminen Kontrasti Auto-levels

Lisätiedot

JOHDATUS ELEKTRONIIKKAAN. Oppitunti 2 Elektroniikan järjestelmät

JOHDATUS ELEKTRONIIKKAAN. Oppitunti 2 Elektroniikan järjestelmät JOHDATUS ELEKTRONIIKKAAN Oppitunti 2 Elektroniikan järjestelmät 2 ELEKTRONIIKAN JÄRJESTELMÄT Aktiivisuusranneke Mittaa liikettä Keskustelee käyttäjän kanssa ledeillä ja värinällä Keskustelee radioiden

Lisätiedot

Talousmatematiikan perusteet: Luento 15. Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta

Talousmatematiikan perusteet: Luento 15. Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta Talousmatematiikan perusteet: Luento 15 Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta Viime luennolla Tarkastelimme usean muuttujan funktioiden rajoittamatonta optimointia:

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37

Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37 Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37 Tehtävä 1: Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske

Lisätiedot

Viikon aiheet. Funktion lineaarinen approksimointi

Viikon aiheet. Funktion lineaarinen approksimointi Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen

Lisätiedot

3 Ikkunointi. Kuvio 1: Signaalin ikkunointi.

3 Ikkunointi. Kuvio 1: Signaalin ikkunointi. 3 Ikkunointi Puhe ei ole stationaarinen signaali, vaan puheen ominaisuudet muuttuvat varsin nopeasti ajan myötä. Tämä on täysin luonnollinen ja hyvä asia, mutta tämä tekee sellaisten signaalinkäsittelyn

Lisätiedot

2. Teoriaharjoitukset

2. Teoriaharjoitukset 2. Teoriaharjoitukset Demotehtävät 2.1 Todista Gauss-Markovin lause. Ratkaisu. Oletetaan että luentokalvojen standardioletukset (i)-(v) ovat voimassa. Huomaa että Gauss-Markovin lause ei vaadi virhetermien

Lisätiedot

Tekoäly muuttaa arvoketjuja

Tekoäly muuttaa arvoketjuja Tekoäly muuttaa arvoketjuja Näin kartoitat tekoälyn mahdollisuuksia projektissasi Harri Puolitaival Harri Puolitaival Diplomi-insinööri ja yrittäjä Terveysteknologia-alan start-up: Likelle - lämpötilaherkkien

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 4 OP PERIODI 1: 6.9.2012-12.10.2012 (6 VIIKKOA) LUENNOT (B123, LINUS TORVALDS -AUDITORIO): TO 10-12, PE 12-14 LASKUHARJOITUKSET

Lisätiedot

Matemaattinen Analyysi, k2012, L1

Matemaattinen Analyysi, k2012, L1 Matemaattinen Analyysi, k22, L Vektorit Merkitsemme koulumatematiikasta tuttua vektoria v = 2 i + 3 j sarake matriisilla ( ) 2 v = v = = ( 2 3 ) T 3 Merkintätavan muutos helpottaa jatkossa siirtymistä

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 17. helmikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55

Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55 Numeeriset menetelmät TIEA381 Luento 14 Kirsi Valjus Jyväskylän yliopisto Luento 14 () Numeeriset menetelmät 15.5.2013 1 / 55 Luennon 14 sisältö Nopeat Fourier-muunnokset (FFT) Yleinen algoritmi 2-kantainen

Lisätiedot

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

Vektorianalyysi II (MAT21020), syksy 2018

Vektorianalyysi II (MAT21020), syksy 2018 Vektorianalyysi II (MAT21020), syksy 2018 Ylimääräisiä harjoitustehtäviä 1. Osoita, että normin neliö f : R n R, f(x) = x 2 on differentioituva pisteessä a R n ja, että sen derivaatalle on voimassa 2.

Lisätiedot

Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén

Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén Sonifikaatio Menetelmä Sovelluksia Mahdollisuuksia Ongelmia Sonifikaatiosovellus: NIR-spektroskopia kariesmittauksissa

Lisätiedot

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Nelli Salminen nelli.salminen@helsinki.fi D433 Neuraalimallinnuksen osuus neljä luentokertaa, muutokset alla olevaan suunnitelmaan todennäköisiä

Lisätiedot