pq n s n Kyllä Ei N Jäsenyys 5,4% 94.6 % 1500 Adressi 21,6% 78.4 % 1495 Lahjoitus 23,7% 76.3 % 1495 Mielenosoitus 1,1% 98.9 % 1489
|
|
- Miina Juusonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Perusjoukko ja otos Kvatitatiiviset meetelmät Sami Fredriksso Yleie valtio-oppioppi Havaitoyksikkö o empiirise mittaukse kohde Perusjoukko o kaikkie havaitoyksiköide muodostama kokoaisuus Otos o perusjoukkoa pieempi havaitoyksikköjoukko, joho mittaus kohdistetaa Mikko Mattila Mikko Mattila Tilastollie päättely Kuvaileva tilastoaalyysi tiivistää iformaatiota muuttujie omiaisuuksista ja iide välisistä suhteista Ei ole tarkoitus tehdä yleistyksiä perusjoukosta Tilastollise päättely avulla voidaa tehdä johtopäätöksiä perusjoukosta Kuika hyvi otokse avulla mitatut tulokset voidaa yleistää koko perusjoukkoa koskeviksi tuloksiksi? Mikko Mattila Luottamusväli ja -taso Luottamusväli kertoo mille välille perusjouko tuusluvu arvo sijoittuu tietyllä todeäköisyydellä Esim. 95% todeäköisyydellä suomalaiste Nato-kaatus sijoittuu 40-50% välille Mikko Mattila Luottamusväli ja -taso Luottamustaso kertoo, millä todeäköisyydellä perusjoukkoa kuvaava tuusluku o tietyllä luottamusvälillä Edellisessä esimerkissä 95% o luottamustaso Luottamusväli tietämiseksi täytyy tietää luottamustaso ja päivastoi Mitä korkeampi luottamustaso, sitä pidempi luottamusväli ja päivastoi Otatajakauma Luottamusväli laskemiseksi tarvitaa tietoa otatajakaumasta Otatajakauma o tuusluvu jakauma, joka saadaa ottamalla kaikki määräty kokoise otokset perusjoukosta Esim. otetaa kaikki mahdolliset 1000 hege otokset suomalaisista ja lasketaa Nato-kaattajie osuus jokaisesta otoksesta Tuusluku voi olla osuus, keskiarvo, keskihajota, korrelaatiokerroi, regressiokerroi je. Mikko Mattila Mikko Mattila
2 Keskivirhe Keskivirhee laskemie Otatajakauma omiaisuudet voidaa määritellä laskeallisesti tilastotietee meetelmi Luottamusväli laskemiseksi tarvitaa tieto tuusluvu keskivirheestä Tuusluvu keskivirhe kuvaa se otatajakauma hajotaa Jos kyse o osuudesta (esim. kuika mota prosettia suomalaisista kaattaa Nato- jäseyyttä), se saadaa kaavasta: S=keskivirhe, p=kaattajie prosettiosuus, q=vastustajie prosettiosuus, =otoskoko. pq Mikko Mattila Mikko Mattila Keskivirhee laskemie Jos kyse o keskiarvosta (esim. mikä o suomaiste keskipalkka) saadaa keskivirhe kaavasta: Kaavassa S=keskivirhe, s=muuttuja keskihajota otoksessa, =otoskoko s Mikko Mattila Luottamusväli laskemie 95% luottamusväli lasketaa kaavasta: otoskeskiarvo ± 1,96 * keskivirhe Esim. otoksessa 45% kaattaa Natoa ja keskivirhe o 1,57 Silloi Nato-kaatus o välillä 45% ± 1,96*1,57 eli 41,9%-48,1% 48,1% Jos halutaa 99% luottamusväli, käytetää kertoimea 2,58 Mikko Mattila ISSP / esimerkki q32: Oletteko jäseeä jossaki ryhmässä, joka tärkeimpää tavoitteea o luoo- ja ympäristösuojelu? q33: Oletteko viimeksi kuluee vuode aikaa a) Allekirjoittaeet joki ympäristösuojelua koskeee adressi tai vastaava? b) Lahjoittaut rahaa jolleki ympäristösuojelujärjestölle tai ryhmälle? c) Ottaut osaa mieleosoituksee tai marssii joku ympäristöasia vuoksi? ISSP / esimerkki Kyllä Ei N Jäseyys 5,4% 94.6 % 1500 Adressi 21,6% 78.4 % 1495 Lahjoitus 23,7% 76.3 % 1495 Mieleosoitus 1,1% 98.9 % 1489 Mikko Mattila Mikko Mattila
3 ISSP / esimerkki Jäseyys 5,4% Adressi 21,6% Lahjoitus 23,7% Mieleosoitus 1,1% I political matters people talk of the left ad the right. How would you place your views o this scale? LEFT MAA RIGHT KESKIARVO N KESKIHAJON- TA Suomi 5, ,91 Espaja 4, ,03 Taska 5, ,94 Mikko Mattila Mikko Mattila Lasketaa Suomalaiste vastaajie 95% luottamusväli: s 1,91 0, ,58 1,96 * 0,065 5,45 5,58 1,96 * 0,065 5,71 MAA 95%: luottamusväli Suomi 5,45 5,71 Espaja 4,46 4,74 Taska 5,32 5,56 Mikko Mattila Mikko Mattila Otokse ja perusjouko koko Otoskoo kasvaessa luottamusväli pieeee eli pystytää tekemää tarkempia arvioita perusjoukosta Luottamusväli puolittamiseksi otoskoko täytyy elikertaistaa Perusjouko koko ei vaikuta tilastolliste yleistyste tarkkuutee Samaa otoskokoa voidaa käyttää väestömäärältää eri kokoisissa maissa Mikko Mattila Otoskoko Otoskoo vaikutus Esimerkissä o laskettu eri otoskokoje vaikutus keskivirheesee ja luottamusvälii. Oletuksea o, että 50% vastaajista o vastaut kyllä kysymyksee. Keskivirhe 95%: luottamusväli Mikko Mattila
4 Hypoteesie tilastollie testaus Hypoteesie testaukse perusperiaatteide ymmärtämie tärkeää, koska kaikki moimuuttujameetelmät sisältävät automaattisesti tilastollisia testejä ristiitaulukko 2-testi regressioaalyysi t-testi, testi, F-testi variassiaalyysi F-testi je. Mikko Mattila Hypoteesie tilastollie testaus Huom. tutkimushypoteesi ja tilastollise hypoteesi ero Tutkimushypoteesi: korkeammi koulutetut hekilöt osallistuvat poliittisesti eemmä kui vähemmä koulutusta saaeet Em. hypoteesia voidaa operatioalisoida, mitata ja tutkia moella eri tavalla Tilastollie hypoteesi liittyy aia joki muuttuja jakaumaa tai muuttujie välistä yhteyttä kuvaavaa tuuslukuu Mikko Mattila Hypoteesie tilastollie testaus Hypoteesie testaukse viisi vaihetta: 1) hypoteesie valita 2) tilastollise testi valita 3) merkitsevyystaso valita 4) testi suorittamie 5) päätökse tekemie Kyseessä hypoteesi testaukse oppikirjamalli, todellisuudessa ämä vaiheet ovat tutkija päässä, eikä iitä muuta kui poikkeustapauksissa kirjata esim. tutkimusraporttii Mikko Mattila Hypoteesie valita Nollahypoteesi H 0 Teoriasta johdetu oletukse vastaie hypoteesi Esim. mieste ja aiste keskipalkka o sama Vastahypoteesi H 1 Mieste ja aiste keskipalka ovat erisuuret (kaksisuutaie testaus) Naiste keskipalkka o mieste keskipalkkaa pieempi (yksisuutaie testaus) Mikko Mattila Tilastollise testi valita Riippuu hypoteesi sisällöstä Erilaisia testejä o kymmeiä Moee määrällisee meetelmää sisältyy automaattisesti testit esim. Pearsoi korrelaatiokertoime yhteydessä testataa, eroaako ko. kerroi tilastollisesti merkitsevästi ollasta Merkitsevyystaso valita Kutsutaa myös riskitasoksi Määrittää todeäköisyyde sille, että ollahypoteesi hylätää, vaikka se o tosi Yleesä käytetää 5%, 1% ja 0,1% tasoja Em. tasot aioastaa sopimuksevaraisia Mikko Mattila Mikko Mattila
5 Testi suorittamie Käytäössä aia tilasto-ohjelmisto ohjelmisto avulla Tuloksea p-arvo, joka määrittää virhee todeäköisyyde, jos ollahypoteesi hylätää Mikko Mattila Päätökse tekemie Jos p-arvo alle valitu merkitsevyystaso ollahypoteesi hylätää Tällöi puhutaa tilastollisesti merkitsevästä tuloksesta (ei merkittävästä ) Merkitää taulukoihi usei tähdillä: * (p<0,05),** (p<0,01), ***(p<0,001) Sisällöllie tulkita tärkeä! p-fetisismi vaara Mikko Mattila Päätökse tekemie Päätöstä tehtäessä o mahdollisuus kahtee virheesee: Jos ollahypoteesi hylätää, vaikka se o tosi hylkäämisvirhe (egl. type I error) Jos ollahypoteesi hyväksytää, vaikka se o epätosi hyväksymisvirhe (type II error) Hyväksymis- ja hylkäämisvirheide todeäköisyydet toisistaa riippuvaisia jos hylkäämisvirheelle asetetaa vaativa raja (esim. 0,1%), kasvaa hyväksymisvirhee todeäköisyys ja päivastoi Mikko Mattila Hypoteesie testaukse kritiikki Tekie: ovatko otokset todella satuaisotoksia? Tieteefilosofie: ollahypoteesi useimmite triviaali Käytäöllie: testit tehdää vääri tai iide ritualistie käyttö Pragmaattie vastakritiikki: testauksessa ogelmia, mutta siitä huolimatta parempi käyttää iitä, kui luopua kokoaa tilastollise merkitsevyyde arvioiista. Mikko Mattila Aieistoa koko perusjoukko? Oko tilastollisessa testauksessa mieltä, jos aieistoa o koko perusjoukko? Asia o joki verra kiistaalaie, mutta valtavirra mielipide o, että testaamie o hyödyllistä myös tässä tapauksessa Esim. tutkitaa Helsigi yliopisto professoreide tieteellistä tuottavuutta ja havaitaa ero alemmista sosiaaliluokista ja korkeimmista sosiaaliluokista tulleide välillä Vaikka kyseessä ei ole otos, voi erot kuiteki johtua satuaisista tekijöistä, koska jos kaikki proffat jaettaisii satuaisesti kahtee ryhmää, myös äide ryhmie välillä olisi todeäköisesti pieiä eroja tilastollie testi kertoo, oko ero ii suuri, että o epätodeäköistä, että yhtä suuri ero saataisii jakamalla perusjoukko satuaisesti ryhmii Mikko Mattila
Kvantitatiiviset menetelmät
Kvatitatiiviset meetelmät Pieryhmii ilmoittautumie alkaa ke 2.2. klo 9.00 Ryhmä 1: Jussi Kiue: Esimmäie kokootumie to 24.2. klo 14-16, paikka?? SPSS-harjoitukset: ti 29.3. klo 11-13 ja to 7.4. klo 15-19
LisätiedotOtantajakauman käyttö päättelyssä
Keskiarvo otatajakauma Toisistaa tietämättä kaksi tutkijaa tutkii samaa ilmiötä, jossa perusjoukko koostuu kuudesta tutkittavasta ja tarkoituksea o laskea keskiarvo A: Kokoaistutkimus B: Otatatutkimus
LisätiedotOtantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä
Otatajakauma kuvaa tarkasteltava parametri jakauma eri otoksista laskettua parametria o joki yleesä tuusluku, esim. keskiarvo, suhteellie osuus, riskisuhde, korrelaatiokerroi, regressiokerroi, je. parametria
LisätiedotSELITETTÄVÄ MUUTTUJA SELITTÄVÄ MUUTTUJA. Välimatka- tai suhdelukuasteikko. Laatuero- tai järjestysasteikko. Laatuero- tai järjestysasteikko
Moimuuttujameetelmät Kvatitatiiviset meetelmät Sami Fredriksso Yleie valtio-oppioppi Mikko Mattila 009 1 Yhde muuttuja meetelmät (uivariate statistics): keskiluvut ja hajotaluvut Moimuuttujameetelmät:
LisätiedotJohdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (004) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo otosjakauma Otosvariassi otosjakauma
LisätiedotTodennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.
Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.
LisätiedotOsa 2: Otokset, otosjakaumat ja estimointi
Ilkka Melli Tilastolliset meetelmät Osa : Otokset, otosjakaumat ja estimoiti Otokset ja otosjakaumat TKK (c) Ilkka Melli (007) 1 Otokset ja otosjakaumat >> Satuaisotata ja satuaisotokset Otostuusluvut
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mitä tilastotiede o? Mat-.04 Tilastollise aalyysi perusteet, kevät 007. lueto: Johdato Tilastotiede kehittää ja soveltaa meetelmiä: reaalimaailma ilmiöistä johtopäätökset ilmiöitä kuvaavie tietoje perusteella
LisätiedotSisältö. Kvantitatiivinen metodologia verkossa. Monitasomallintaminen. Monitasomallit. Regressiomalli dummy-muuttujilla.
Kvatitatiivie metodologia verkossa Moitasomallius Pekka Ratae Helsigi yliopisto isältö Moitasomallit Matemaattisia peruskäsitteitä Esimerkki kovariassista Otatavirhe Esimerkki elittävie muuttujie lisäämie
LisätiedotTestit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot
TKK (c Ilkka Melli (004 Johdatus tilastotieteesee TKK (c Ilkka Melli (004 : Mitä opimme? Tarkastelemme tässä luvussa seuraavia järjestysasteikolliste muuttujie testejä: ja merkkitesti parivertailuille
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016,
LisätiedotTilastolliset menetelmät: Tilastolliset testit
Tilastolliset meetelmät Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille. Testejä järjestysasteikollisille muuttujille.
LisätiedotJohdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (005) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo ja otosvariassi otosjakaumat
LisätiedotKvantitatiiviset menetelmät
Kvatitatiiviset meetelmät Pieryhmii ilmoittautumie alkaa ke.. klo 9.00 Ryhmä 1: Jussi Kiue: Esimmäie kokootumie to 4.. klo 14-16, paikka päärak aud IV SPSS-harjoitukset: ti.3. klo 11-13 ja to 7.4. klo
LisätiedotTILASTOT: johdantoa ja käsitteitä
TILASTOT: johdatoa ja käsitteitä TOD.NÄK JA TILASTOT, MAA10 Tilastotietee tehtävää o esittää ja tulkita tutkimuskohteesee liittyvää havaitoaieistoa eli tilastoaieistoa. Tutkitaa valittua joukkoa ja se
LisätiedotVäliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
Lisätiedot4.3 Signaalin autokorrelaatio
5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.
LisätiedotABHELSINKI UNIVERSITY OF TECHNOLOGY
Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai
LisätiedotTunnuslukuja 27 III TUNNUSLUKUJA
Tuuslukuja 27 III TUNNUSLUKUJA Tuuslukuja 28 Tuuslukuja käytetää, ku tilastoaieistoa havaiollistetaa tiivistetysti yksittäisillä luvuilla. Tuusluvut lasketaa muuttujie arvoje perusteella ja e kuvaavat
Lisätiedot8. laskuharjoituskierros, vko 11, ratkaisut
Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse
LisätiedotTilastollinen päättömyys, kevät 2017 Harjoitus 6A
Tilastollie päättömyys, kevät 07 Harjoitus 6A Heikki Korpela 8. helmikuuta 07 Tehtävä. Moistee teht. 5.. Olkoo Y,..., Y riippumato otos ekspoettiperhee jakaumasta, joka ptf/tf o muotoa fy i ; θ cθhye φθtyi
LisätiedotHarjoitukset 1 : Tilastokertaus
31C99904, Capstoe: Ekoometria ja data-aalyysi TA : markku.siikae(a)aalto.fi & tuuli.vahapelto(a)aalto.fi Harjoitukset 1 : Tilastokertaus (Palautus 10.1.2017) Palautellaa mielii hiema tilasto-oppia ja todeäköisyyslasketaa.
Lisätiedotn = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:
1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:
Lisätiedot****************************************************************** ****************************************************************** 7 Esim.
8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi
LisätiedotHarjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
LisätiedotTilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-.104 Tilastollise aalyysi perusteet, kevät 007 6. lueto: Johdatus regressioaalyysii S ysteemiaalyysi Tekillie korkeakoulu Kai Virtae 1 Regressioaalyysi idea Tavoitteea selittää selitettävä tekiä/muuttua
LisätiedotMat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat:
Mat-.090 Sovellettu todeäköisyyslasku A Mat-.090 Sovellettu todeäköisyyslasku A / Ratkaisut Aiheet: Avaisaat: Otos- ja otosjakaumat Estimoiti Estimoitimeetelmät Väliestimoiti Aritmeettie keskiarvo, Beroulli-jakauma,
LisätiedotTilastollinen todennäköisyys
Tilastollie todeäköisyys TOD.NÄK JA TILASTOT, MAA10 Klassisessa todeäköisyydessä oli ehdot: äärellisyys ja symmetrisyys. Tämä tilae o usei mahdoto ts. alkeistapauksia o usei ääretö määrä tai e eivät ole
Lisätiedot1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä
LisätiedotTilastolliset menetelmät: Tilastolliset testit
Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille 0. Testejä järjestysasteikollisille muuttujille. Testejä laatueroasteikollisille
LisätiedotTestit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille: Esitiedot
TKK (c) Ilkka Melli (4) Testit suhdeasteikollisille muuttujille Johdatus tilastotieteesee Testit suhdeasteikollisille muuttujille Testit ormaalikauma parametreille Yhde otokse t-testi Kahde otokse t-testi
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita
LisätiedotTilastollinen päättömyys, kevät 2017 Harjoitus 5b
Tilastollie päättömyys, kevät 07 Harjoitus b Heikki Korpela 3. helmikuuta 07 Tehtävä. a Olkoot Y,..., Y Bθ. Johda uskottavuusosamäärä testisuuree ry, Waldi testisuuree wy ja Rao pistemäärätestisuuree uy
LisätiedotNormaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?
TKK (c) Ilkka Melli (4) Johdato Johdatus todeäköisyyslasketaa TKK (c) Ilkka Melli (4) : Mitä opimme? / Tutustumme tässä luvussa seuraavii ormaalijakaumasta (ks. lukua Jatkuvia jakaumia) johdettuihi jakaumii:
LisätiedotOtoskoon arviointi. Tero Vahlberg
Otoskoon arviointi Tero Vahlberg Otoskoon arviointi Otoskoon arviointi (sample size calculation) ja tutkimuksen voima-analyysi (power analysis) ovat tilastollisen tutkimuksen suunnittelussa keskeisiä kysymyksiä
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen
LisätiedotMat Sovellettu todennäköisyyslasku 9. harjoitukset/ratkaisut. Luottamusvälit
Mat-.09 Sovellettu todeäköisyyslasku Mat-.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Estimoiti Luottamusvälit Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Estimaattori, Estimoiti, Frekvessi,
LisätiedotMS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II
Otokset MS-A050 Todeäköisyyslaskea ja tilastotietee peruskurssi Lueot, osa II Kaksi hyödyllista jakaumaa 3 Estimoiti G. Gripeberg 4 Luottamusvälit Aalto-yliopisto. helmikuuta 05 5 Hypoteesie testaus 6
LisätiedotLuentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012
Luentokalvoja tilastollisesta päättelystä Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Otanta Otantamenetelmiä Näyte Tilastollinen päättely Otantavirhe Otanta Tavoitteena edustava otos = perusjoukko
LisätiedotTilastolliset luottamusvälit
Luku 8 Tilastolliset luottamusvälit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017 8.1 Piste-estimaatti ja väliestimaatti Edellisessä luvussa opittii määrittämää parametreille estimaatteja suurimma uskottavuude
Lisätiedot2-suuntainen vaihtoehtoinen hypoteesi
Mat-.6 Sovellettu todeäköisyyslasketa. harjoitukset Mat-.6 Sovellettu todeäköisyyslasketa B. harjoitukset / Ratkaisut Aiheet: Tilastolliset testit Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, F-jakauma,
LisätiedotJohdatus tilastotieteeseen Tilastollinen riippuvuus ja korrelaatio. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteesee Tilastollie riippuvuus ja korrelaatio TKK (c) Ilkka Melli (2004) 1 Tilastollie riippuvuus ja korrelaatio Tilastollie riippuvuus, korrelaatio ja regressio Kahde muuttuja havaitoaieisto
LisätiedotTutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)
1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi
Lisätiedotr = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.
A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät
LisätiedotMatematiikan tukikurssi
Matematiika tukikurssi Kurssikerta 1 Iduktiotodistus Iduktiotodistukse logiikka Tutkitaa tapausta, jossa haluamme todistaa joki väittee P() site, että se pätee kaikilla luoollisissa luvuilla. Eli halutaa
LisätiedotMTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu
5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017
LisätiedotOtoskoko 107 kpl. a) 27 b) 2654
1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää
Lisätiedot( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.
Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä
LisätiedotLIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3
LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi
LisätiedotEstimointi. Luottamusvälin laskeminen keskiarvolle α/2 α/2 0.1
Estimointi - tehdään päätelmiä perusjoukon ominaisuuksista (keskiarvo, riskisuhde jne.) otoksen perusteella - mitä suurempi otos, sitä tarkemmat estimaatit Otokseen perustuen määritellään otantajakaumalta
LisätiedotYhden selittäjän lineaarinen regressiomalli
Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli
LisätiedotMTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu
10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 15. marraskuuta 2007 Antti Rasila () TodB 15. marraskuuta 2007 1 / 19 1 Tilastollisia testejä (jatkoa) Yhden otoksen χ 2 -testi varianssille Kahden riippumattoman
LisätiedotJohdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Estimoitimeetelmät TKK (c) Ilkka Melli (2005) 1 Estimoitimeetelmät Todeäköisyysjakaumie parametrie estimoiti Momettimeetelmä Normaalijakauma parametrie estimoiti Ekspoettijakauma
LisätiedotLisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?
MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo
LisätiedotMat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:
Mat-.04 Tilastollise aalyysi perusteet / Ratkaisut Aiheet: Avaisaat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahde riippumattoma otokse t-testit, Nollahypoteesi, p-arvo, Päätössäätö, Testi,
Lisätiedot806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ
LisätiedotTestejä suhdeasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman
LisätiedotJohdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden
LisätiedotTehtävä 1. Riku Eskelinen DEMOVASTAUKSET Demokerta 3/ vk 15 Tilastomenetelmien peruskurssi TILP150 Tulostuspv Sivu 1/6
Riku Eskelie DEMOVASTAUKSET Demokerta 3/ vk 15 Tilastomeetelmie peruskurssi TILP150 Tulostuspv 05.04.013 Sivu 1/6 Tehtävä 1 Muuttuja MATPIT o luokitteluasteikollie. Muuttuja OPPMIN o järjestysasteikollie.
LisätiedotEstimointi. Otantajakauma
Otantajakauma Otantajakauma kuvaa jonkin parametrin arvojen (esim. keskiarvon) jakauman kaikille tietyn kokoisille otoksille. jotka perusjoukosta voidaan muodostaa Histogrammissa otantajakauman parametrin
LisätiedotMat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat:
Mat-.60 Sovellettu todeäköisyyslasketa B Mat-.60 Sovellettu todeäköisyyslasketa B / Ratkaisut Aiheet: Estimoiti Estimoitimeetelmät Väliestimoiti Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Beroulli-koe,
LisätiedotTestit laatueroasteikollisille muuttujille. Testit laatueroasteikollisille muuttujille. Testit laatueroasteikollisille muuttujille: Esitiedot
TKK (c) Ilkk Melli (24) Johdtus tilstotieteesee TKK (c) Ilkk Melli (24) 2 : Mitä opimme? Trkstelemme tässä luvuss seurvi ltuerosteikolliste muuttujie testejä: Testukse kohtee testeissä o Beroulli-jkum
LisätiedotValitaan testisuure, jonka jakauma tunnetaan H 0 :n ollessa tosi.
9.10.2018/1 MTTTP1, luento 9.10.2018 KERTAUSTA TESTAUKSESTA, p-arvo Asetetaan H 0 H 1 Valitaan testisuure, jonka jakauma tunnetaan H 0 :n ollessa tosi. Lasketaan otoksesta testisuureelle arvo. 9.10.2018/2
LisätiedotTilastollinen testaaminen tai Tilastollinen päättely. Geneettinen analyysi
Tilastollinen testaaminen tai Tilastollinen päättely Geneettinen analyysi Tilastollisen testaamisen tarkoitus Tilastollisten testien avulla voidaan tutkia otantapopulaatiota (perusjoukkoa) koskevien väittämien
Lisätiedot2-suuntainen vaihtoehtoinen hypoteesi
MS-A53 Todeäköisyyslaskea ja tilastotietee peruskurssi Esimerkkikokoelma 5 Aiheet: Tilastolliset testit Yhde otokse t-testi Testausasetelma yhde otokse t-testissä odotusarvolle Olkoo X i, i =,,, riippumato
Lisätiedothttps://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014
1 MTTTP3 Tilastollisen päättelyn perusteet 2 Luennot 8.1.2015 ja 13.1.2015 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014
LisätiedotTilastollisten aineistojen kuvaaminen. Tilastollisten aineistojen kuvaaminen. Tilastollisten aineistojen kuvaaminen: Mitä opimme?
TKK (c) Ilkka Melli (004) Tilastolliste aieistoje kuvaamie Tuusluvut Laatueroasteikolliste muuttujie tuusluvut Johdatus tilastotieteesee Tilastolliste aieistoje kuvaamie TKK (c) Ilkka Melli (004) Tilastolliste
Lisätiedotχ 2 -yhteensopivuustesti
Mat-.60 Sovellettu todeäköisyyslasketa B. harjoitukset Mat-.60 Sovellettu todeäköisyyslasketa B. harjoitukset / Ratkaisut Aiheet: Yhteesopivuude, homogeeisuude ja riippumattomuude testaamie Tilastollie
Lisätiedot5 Lisa materiaali. 5.1 Ristiintaulukointi
5 Lisa materiaali 5.1 Ristiintaulukointi 270. a) Aineiston koko nähdään frekvenssitaulukon oikeasta alakulmasta: N = 559. Tilastotieteen johdantokurssille osallistui yhteensä 559 opiskelijaa. Huomaa: Opiskelijoiden
LisätiedotOsa 2: Otokset, otosjakaumat ja estimointi
Ilkka Melli Tilastolliset meetelmät Osa 2: Otokset, otosjakaumat ja estimoiti Estimoitimeetelmät TKK (c) Ilkka Melli (2007) Estimoitimeetelmät >> Todeäköisyysjakaumie parametrie estimoiti Suurimma uskottavuude
LisätiedotKuluttajahintaindeksi (KHI) Kuluttajahintaindeksi (KHI) Kysymys Miten mitata rahan arvon muutoksia?
Kuluttajahitaideksi (KHI) Kysymys Mite mitata raha arvo muutoksia? Kuluttajahitaideksi (KHI) o sovittu kulutustavaroide ja palveluide hitakehitykse mittari. KHI muodostetaa paiotettua keskiarvoa eri pääryhmie
LisätiedotTilastolliset menetelmät
Tilastolliset meetelmät tilastolliste meetelmie tarkoitus o: estimoida eliaika- (vikaatumisaika, korjausaika- jakaumie ja -mallie parametreja eliaikakokeide, laitteide käyttökokemustiedo yms. perusteella
LisätiedotAki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET
Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET 19.5.2016 SISÄLLYS 0 JOHDANTO... 1 1 TILASTOLLINEN PÄÄTTELY... 2 1.1 Tiekartta... 4 2 VIRHEMARGINAALI JA LUOTTAMUSVÄLI... 5 2.1 Keskiarvon virhemarginaali ja
LisätiedotTilastollisen analyysin perusteet Luento 2: Tilastolliset testit
Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja
Lisätiedot5. Väliestimoi tehtävän 3 tilanteessa tulppien keskimääräinen kestoa.
MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuiee luetomoistee lukuu 5 liittye 1. Olkoo puoluee A kaatusosuus populaatiossa 30 %. Tarkastellaa tästä populaatiosta tehtyä satuaisotosta, joka koko
LisätiedotTilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003
Nimi Opiskelijanumero Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Normaalisti jakautuneiden yhdistyksessä on useita tuhansia jäseniä. Yhdistyksen sääntöjen mukaan sääntöihin tehtävää muutosta
Lisätiedot= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1
35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,
LisätiedotTilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),
LisätiedotTilastollisia peruskäsitteitä ja Monte Carlo
Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia
LisätiedotIlkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset
LisätiedotDiskreetin Matematiikan Paja Ratkaisuja viikolle 4. ( ) Jeremias Berg. n(n + 1) 2. k =
Diskreeti Matematiika Paja Ratkaisuja viikolle 4. (7.4-8.4) Jeremias Berg. Osoita iduktiolla että k = ( + ) Ratkaisu: Kute kaikissa iduktiotodistuksissa meidä täytyy siis osoittaa asiaa. Ns. perustapaus,
LisätiedotAki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET
Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET 9.4.2010 SISÄLLYS 0 JOHDANTO... 1 1 TILASTOLLINEN PÄÄTTELY... 2 1.1 Tiekartta... 4 2 YHTÄ MUUTTUJAA KOSKEVA PÄÄTTELY... 5 2.1 Keskiarvon luottamusväli... 5 2.2
LisätiedotLuento 6 Luotettavuus Koherentit järjestelmät
Lueto 6 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi ja-erik.holmberg@aalto.fi Määritelmä Tarkasteltava yksikö luotettavuus
LisätiedotTeoria. Tilastotietojen keruu
S-38.348 Tietoverkkoje simuloiti / Tuloste keruu ja aalyysi Teoria Johdato simuloitii Simuloii kulku -- prosessi realisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta Tuloste keruu ja aalyysi
LisätiedotLuottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.
6.10.2015/1 MTTTP1, luento 6.10.2015 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla
LisätiedotHAVAITUT JA ODOTETUT FREKVENSSIT
HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies
LisätiedotLuottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.
5.10.2017/1 MTTTP1, luento 5.10.2017 KERTAUSTA Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla todennäköisyydellä,
LisätiedotMat-2.090 Sovellettu todennäköisyyslasku A
Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Ilman Ruotsia: r = 0.862 N Engl J Med 2012; 367:1562-1564. POIKKEAVAN HAVAINNON VAIKUTUS PAIRWISE VAI LISTWISE? Kun aineistossa on muuttujia, joilla
LisätiedotEstimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
Lisätiedot2.3.1. Aritmeettinen jono
.3.1. Aritmeettie joo -joo, jossa seuraava termi saadaa edellisestä lisäämällä sama luku a, a + d, a+d, a +3d, Aritmeettisessa joossa kahde peräkkäise termi erotus o aia vakio: Siis a +1 a d (vakio Joo
LisätiedotMat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 11 (vko 48/003) (Aihe: Tilastollisia testejä, Laininen luvut 4.9, 15.1-15.4, 15.7) Nordlund 1. Kemiallisen prosessin
LisätiedotSormenjälkimenetelmät
Sormejälkimeetelmät Matti Risteli mristeli@iksula.hut.fi Semiaariesitelmä 23.4.2008 T-106.5800 Satuaisalgoritmit Tietotekiika laitos Tekillie korkeakoulu Tiivistelmä Sormejälkimeetelmät ovat satuaisuutta
LisätiedotJohdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (005) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden
LisätiedotEhdollinen todennäköisyys
Ehdollie todeäköisyys Kerrataa muutama todeäköisyyslaskea laskusäätö. Tapahtuma E komplemettitapahtuma E o "E ei tapahdu". Koska todeäköisyyksie summa o 1, P ( E = 1 P (E. Joskus o helpompi laskea komplemettitapahtuma
LisätiedotJohdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Keskivirheyksiköllä ilmaistuna voidaan erottaa otantajakaumalta kriittisiä kohtia: Keskimmäinen 95 % otoskeskiarvoista välillä [-1.96,+1.96] Keskimmäinen
LisätiedotOngelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?
Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus
Lisätiedot