= e on Schrödingerin yhtälön ratkaisu. ) on redusoitu massa. Aaltofunktio ψ
|
|
- Mika Kahma
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 S-46, FYSIIKKA IV (EST Kvät, LH4 Rtkisut / LH4- Osoit, ttä vyn ltofunktio ψ = on Schöingin yhtälön tkisu Rtkisu: Schöingin yhtälö llokoointiss on ψ ψ ψ sin θ V ψ Eψ + + =, µ µ sin θ θ θ sin θ φ missä µ = mm /( m + m on usoitu mss Altofunktio ψ iiuu vin :stä, jotn muut ivtt ovt nolli Lsktn ivtt ψ / / = = ψ = / ψ = + / ψ = = / Sijoittmll tulos Schöingin yhtälöön sn V E µ ψ + ψ = ψ Tilll sä on = Potntilingi on Coulombin otntili Lisäksi Bohin sä ( h π m missä usoitu mss on Sijoittn Schöingin yhtlöön: Z V =, kun Z = = / = voin kijoitt usoiun mssn vull muotoon =, µ mm mm µ = = m m + m m
2 V ψ Eψ + = µ ψ ψ = Eψ µ µ ψ ψ = Eψ µ µ µ + E ψ = ψ µ 4 µ ψ = ψ 4 µ µ 6π 4 µ = E 8h = Eψ LH4- Ajst iiumttomn Scöingin ltoyhtälön tkisu on muoto ψ ( = A b, jos b j ψ ( = jos > b Millä tonnäköisyyllä hiukknn on välillä [, b / ]? Rtkisu: Ylissti on tn nomitt ltofunktio sitn, ttä tonnäköisyystihyn intgli yli koko vuun (tässä -kslin = Kosk tässä hitu on joitttu liikkumn lull b smm nomitushoksi ψ ( = Ylisyyttä joittmtt voimm vlit nomitusvkion A lisksi Sijoittmll nnttu ltofunktio sn 4 4 A b = A b b + = A b + = Rtkismll tästä nomitusvkion smm A = 6b Lsktn suvksi tonnäköisyys, ttä hitu on välill [, b / ] tonnäköisyystihys yli tämän osvälin: / / 4 4 6b Intgoin A b = b b + = + =
3 LH4- Rubiinilsin mittoimn vlon llonituus on 694, nm Olttn ttä fotonin missioon tällä llonituull liittyy äättömän otntilikuon lktonin tnsitio n= tsolt n= tsoll, lsk kuon lvys L Rtkisu: Potntilikuon ngitsot ovt h n En =, 8mL jotn tnsitioss tillt n + tiln n vutuu ngi E vn, mikä vst mittoitunn fotonin ngi : h h hc E = En+ En = ( n + n + n = (n + = 8mL 8mL λ Nyt n = Tästä tkistn kuon lvys L j sn sijoittmll lktonin mss j vkiot λh λhc (694, nm(4 V nm L = = = = 79nm 6 8mc 8mc 8( V LH4-4 Äättömän kovss otntililtikoss (-kslin välillä [, ] sijitsvn hiukksn ltofunktio jnhtkllä t = on muoto Ψ (, t = = A( ( Mitä voj hiukksn ngi voi s yksittäisissä mittuksiss (b Lsk ngin ootusvo (tilstollinn kskivo kun ngi mittn usit ktoj (c Millä tonnäköisyyllä hiukksll on ngi π /( m? ( Riiuuko ngin ootusvo jst? ( Annttu ltofunktio i ol otntililtikon oministil Kysssä on siis isttionääinn til j ngin ootusvo on otntililtikon ominisngioin inotttu kskivo Yksittäisssä mittuksss sn jokin otntiliboksin ominisngioist n = π / missä n (,,, E n m Kt kvnttifysiikn ksioomt luvust Ktso ityissti Hmiltonin ottoin määitlmä j ootusvojn lskminn (b Käyttämällä ngin ootusvon määitlmää sn: Osoittjst sn * ˆ * E = ψ Hψ ψ ψ Divointi nt ψ * ˆ H ψ = A ( ( m = = Sijoittmll sn
4 Nimittäjästä sn * ψ Hˆ ψ = A A A m = = m 6m jotn ngin ootusvo on *, ψ ψ = A = A * ˆ * E = ψ Hψ ψ ψ = m (c Jott smm i ngioin siintymistonnäköisyyt, on nnttu i-sttionääinn til nomitttv j sitttävä otntiliboksin sttionääistn tilojn ltofunktioin vull sjkhitlmänä Nomitushto on (b kohn mukn (vlitn A lisksi Sjkhitlmäksi sn yhtälöllä / sin m π A = cn n= / j intgoin yli [ ] otonomlj, sn oikll uolll / A = nπ sin Kotn tämä uolittin, Kosk boin kntfunktiot ovt / / nπ mπ sin sin = δnm ts mπ summst jää jäljll vin tmi n = m Smm A( sin = cm Lskmll intglin smm määätyksi ktoimn sn mittuksss tonnäköisyyllä Intglitulukoist: c / Lsktn siis 6 π c = ( sin 6 / c m Engi E = π / ( m π sin = 4 Sijoittmll sn π 96 c = =,9986 Toisin snon ustiln ngi sn lähs sn osntin 6 π tonnäköisyyllä ( Engin ootusvo i iiu jst Ks lähmmin otusmonistn simkki 7
5 LH4- Potonin sä on sn intglist R m Tonnäköisyys, ttä lktoni on otonin lull, R = P, missä P( ilin tonnäköisyystihysfunktio Lsk tonnäköisyys / ustilll ψ = Rtkisu: vyn Rilinn tonnäköisyystihysfunktio ktoo siis tonnäköissyn, joll lktoni löytyy llokuolt väliltä, + Rilinn tonnäköisyystihysfunktio voin kijoitt muotoon * / 4 / P = ψψ = =, π missä siis tonnäköisyystihysfunktio kotn tilvuuslmntillä Aoksimoin ksonnttitmiä suvsti / R , 78, missä käytttiin sjkhitlmää j sijoitttiin :n suuin vo = R Näin olln j intgli voin lsk hlosti R R 4 4 R 9, = P = = V P = 4 =
.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek
S-446, FYSIIKKA IV (Sf) Kevät 5, HSf Rtkisut HSf- Kvnttimekninen hrmoninen värähtelijä on perustillln (mss m) Värähtelyn mplitudi on A () ske p (Värähtelijä sijitsee välillä A ) (b) Vert p :tä vstv kineettistä
Puolijohdekomponenttien perusteet A Ratkaisut 1, Kevät Tarvittava akseptoridouppaus p-tyypin kerrokseen saadaan kaavalla
OY/PJKOMP R1 17 Puolijohkoonnttin rustt 5171A Rtkisut 1, Kvät 17 1. ( Trvittv kstoriouus tyyin krroksn sn kvll kbt ln Ł ni ni Ł kbt 1 ( 1 c,85 V 17» 1,8 1 c. 17 1 c Ł,59V Mtrilivkiot on otttu luntoonistn
S Laskennallinen systeemibiologia
S-4.50 Lsknnllinn systmiiologi 4. Hrjoitus. Viill tutkittvll ljill (,, c, j ) on määrätty täisyyt c 0 8 8 8 0 8 8 8 c 0 4 4 0 0 Määritä puurknn käyttän UPGMA-mntlmää. Näytä kunkin vihn osrkntt vstvin täisyyksinn.
missä t on matkaan raosta varjostimelle kuluva aika. Jos suihkun elektronien liikemäärä x- sunnassa on p x,on min y0min 0min
S-11446 Fysiikk IV (Sf), I Välikoe 154 1 Elektronisuihku, joss elektronien noeus on v, suu kohtisuorsti rkoon, jonk leveys on d Ron läi kuljettun elektronit osuvt etäisyydellä D olevn vrjostimeen Mikä
S Fysiikka IV (ES) Tentti RATKAISUT. 1,0*10 m. Kineettinen energia saadaan kun tästä vähennetään lepoenergia: 2
S-11436 ysiikk V (ES) Tentti 175001 RATKASUT 1 Tutkittess pieniä kohteit on tutkimukseen käytettävien ltojen llonpituuden oltv yleensä enintään 1/10 os kohteen ulottuvuudest (esim hlkisijst) Lske trvittv
Energian säilymislain perusteella elektronin rekyylienergia on fotnien energioiden erotus: (1)
S-11446 Fysiikka IV (Sf), I Väliko 544 1 Osoita, ttä Comptonin sironnassa lktronin suurin mahdollinn rkyylinrgia voidaan sittää muodossa E Kin hf 1 + mc /hf Enrgian säilymislain prustlla lktronin rkyylinrgia
S Fysiikka III (EST), Tentti
S-114.137 Fysiikk III (ES), entti 30.8.006 1. Lämpövoimkone toteutt oheisen kuvn Crnotin prosessi. Koneess on työineen yksi mooli ideliksu. Lske yksitomisen ksun kierroksen ikn tekemän työn suhde kksitomisen
Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.
S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn
kx ) toiseksi alimman energiatilan aaltofuntio on . Osoita, että tämä funktio on aaltoyhtälön ratkaisu ja määrää sitä vastaava energian ominaisarvo.
1 Hrmonisen oskillttorin ( V = ( 1/ ) k ) toiseksi limmn energitiln ltofuntio on - / f( ) = Ce 1 / 1 / missä = bmw / g, j w = k / mf soit, että tämä funktio on ltoyhtälön rtkisu j määrää sitä vstv energin
S , Fysiikka IV (ES) Tentti
S-1436, Fysiikk IV (S) Tetti 81 35 19 1 Vierekkäiste spektriviivje piei hvittu tjuuser Cl F mlekyyli 1 rttispektrissä 1,1 1 Hz Lske tmie välie etäisyys mlekyylissä Rtkisu Kksitmise mlekyyli pyörimiseergi
Sarjaratkaisun etsiminen Maplella
Srjrtkisun etsiminen Mplell Olkoon trksteltvn ensimmäisen kertluvun differentiliyhtälö: > diffyht:= diff(y(x, x=1y(x^; d diffyht := = dx y( x 1 y( x Tälle pyritään etsimään srjrtkisu origokeskisenä potenssisrjn.
S Fysiikka IV (ES) Tentti
S-46 Fysiikk V (ES) Tentti 95 Mss-bsorptiokerroin on linerinen bsorptiokerroin jettun ineen tiheydellä, µ = Σ ρ Se riippuu ineest j säteilyn energist udn j lyijyn ss-bsorptiokertoiet, MeV:n gsäteilylle
II.1. Suppeneminen., kun x > 0. Tavallinen lasku
II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä
Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot
S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan
sin θ θ θ r 2 sin 2 θ φ 2 = 0.
Mtemtiikn j tilstotieteen litos Osittisdifferentiliyhtälöt Kevät 21 Hrjoitus 9 Rtkisuj Jussi Mrtin 1. Osoit, että Lplce-yhtälö pllokoordinteiss on 2 u 1 r 2 2 u r r 1 r 2 sin θ u 1 2 u sin θ θ θ r 2 sin
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
766328A Termofysiikka Harjoitus no. 12, ratkaisut (syyslukukausi 2014)
7668A Termofysiikk Hrjoitus no 1, rtkisut (syyslukukusi 14) 1 Lämpötilss T K elektronien energit eivät ylitä Fermin energi (ɛ i ɛ F ), lämpötilprmetri β j kemillinen potentili vst Fermin energi (µ() ɛ
SATE2140 Dynaaminen kenttäteoria syksy / 6 Laskuharjoitus 0: Siirrosvirta ja indusoitunut sähkömotorinen voima
ATE14 Dynminen kenttäteori syksy 1 1 / skuhrjoitus : iirrosvirt j inusoitunut sähkömotorinen voim Tehtävä 1. All olevss kuvss esitetyssä pitkässä virtlngss kulkee virt i 1 (t) j sen vieressä on kuvn mukinen
Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi
Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,
Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.
DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
3 Integraali ja derivaatta
3 Integrli j erivtt 3.1 Integrli ylärjns funktion Olkoon funktio f Riemnn-integroituv välin I jokisell suljetull osvälillä j välin I jokin kiinteä luku. Tällöin integrli määrittelee funktion G(): I R,
exp(x) = e x x n n=0 v(x, y) = e x sin y
4 Alkisfunktioita 41 Eksponnttifunktio Eksponnttifunktio xp : R R on määritlty khitlmällä xp(x) = x x n = n! Pyrimm laajntamaan määritlmän koko tasoon C sitn, ttä 1 xp : C C on analyyttinn ja xp(x) = x,
Aineaaltodynamiikkaa
Aineaaltodynamiikkaa Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit = kuinka hiukkasen fysikaaliset
MATEMATIIKAN HARJOITTELUMATERIAALI
SAVONIA-AMMATTIKORKEAKOULU Tekniikk Infrrkentmisen j kivnnisln työnjohdon koulutus (ESR) MATEMATIIKAN HARJOITTELUMATERIAALI Hrjoitustehtävien rtkisut Ari Tuomenlehto - 0 - Hrjoitustehtävien rtkisut 1.
SATE1050 Piirianalyysi II syksy kevät / 8 Laskuharjoitus 12 / Siirtojohdot taajuusalueessa, ketjumatriisi
SAT5 Piirinlyysi syksy 6 kevät 7 / 8 Tehtävä. Lske kuvss esitetyssä piirissä sisäänmenoimpednssi siirtojohdon ketjumtriisin vull, kun ) johdon loppupää on voin ) johdon loppupää on oikosuljettu c) johto
Riemannin integraalista
Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:
Fysikaalinen kemia II kaavakokoelma, osa 1
Fysikaalinen kemia II kaavakokoelma, osa 1 Wienin siirtymälaki: T λ max = 0.2898 cm K (1) Stefan Boltzmanin laki: M = σt 4 σ = 5.67 10 8 W m 2 K 4 (2) Planckin jakauma ρ = 8πkT λ 4 ( 1 ) e hc/λkt 1 (3)
SATE.10xx Staattisen kenttäteorian laajentaminen Sähkömagneettiseksi kenttäteoriaksi
ATE.1xx tttisen kenttäteorin ljentminen ähkömgneettiseksi kenttäteoriksi syksy 212 1 / 5 skuhrjoitus 1: iirrosvirt j inusoitunut sähkömotorinen voim Tehtävä 1. Määritä tjuus, millä johtvuusvirrn tiheys
MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =
9 A I N. Alkuperäinen piiri. Nortonin ekvivalentti R T = R N + - U T = I N R N. Théveninin ekvivalentti DEE-11110 SÄHKÖTEKNIIKAN PERUSTEET
DEE11110 SÄHKÖTEKNIIKAN PERUSTEET http://www.tut.fi/smg/course.php?id=57 Rtkisut Hrjoitukset 3, 2014 Tehtävä 1. Pyydetään muodostmn nnetun piirin Nortonin ekvivlentti. Nortonin, smoin kuin Theveninin,
10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA
MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion
b) (max 3p) Värähtelijän jaksonajan ja taajuuden välinen yhteys on T = 1/ f, eli missä k on jousen jousivakio. Neliöimällä yllä oleva yhtälö saadaan
A1 Lbortoriokokeess keveen kierrejouseen ripustettiin eri mssisi punnuksi. Punnust vedettiin lspäin j sntneen hrmonisen värähteln jksonik mitttiin. Värähtelijän tjus f = 2π 1 k mp. Oheisess tulukoss on
Riemannin integraali
LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu
1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =
S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio
S FYSIIKKA IV (ES), Koulutuskeskus Dipoli, Kevät 2003, LH4. Bohrin vetyatomimallin mukaan elektronin kokonaisenergia tilalla n on. n n.
S-1146 FYSIIKKA IV (S), Koulutuskskus Dipoli, Kvät 00, LH4 LH4-1* Vdy spkti s Pasch-saja viivat sijaitsvat ifapua-alulla N sytyvät tasitioissa, joissa lktoi siityy kokaalta viitystilalta i tilall f = i
Ristitulo ja skalaarikolmitulo
Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden
Esimerkki 1 Ratkaise differentiaaliyhtälö
Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi
Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?
Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.
S Fysiikka IV (Sf) Tentti
S-11446 Fysiikka IV (Sf) Tntti 95 1 Ammus (pistmäinn hiukkann, jonka massa on m, ) tömää kohtioon, jonka kokonaismassa on M Kohtion oltamm akntllisksi systmiksi, jolla massakskipistn liik-ngian lisäksi
1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria
Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.
SATE.2010 Dynaaminen kenttäteoria syksy / 5 Laskuharjoitus 1: Siirrosvirta ja indusoitunut sähkömotorinen voima
ATE.1 Dynminen kenttäteori syksy 11 1 / 5 Lskuhrjoitus 1: iirrosvirt j inusoitunut sähkömotorinen voim Tehtävä 1. Määritä tjuus, millä johtvuusvirrn tiheys on kksinkertinen verrttun siirrosvirrn tiheyteen
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Keät 207. Rekyyli Luentomonisteessa on käsitelty tilanne, jossa hiukkanen (massa M) hajoaa kahdeksi hiukkaseksi (massat m ja m 2 ). Tässä käytetään
4. Määritä oheisen kehän plastinen rajakuorma. Tarkista, ettei myötöehtoa rikota missään. Piirrä tasapainoehdot toteuttava taivutusmomenttijakauma.
Rk-4.00 Rkenteiden mekniikk I tentti/exm,..0 Kirjoit jokiseen koeeriin selvästi - ointojkson nimi, koodi j tentin äivämäärä - kikki nimesi uhuttelunimi lleviivttun - koulutusohjelm, oiskelijnumero, myös
S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon
S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,
Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista
Mtemtiikn johntokurssi, syksy 07 Hrjoitus 6, rtkisuist. Onko jokin emojen 5 tehtävän reltioist ) R := {(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )}, ) S := {(, ), (, ), (, ), (, ), (, ), (, ), (, ),
S Fysiikka III (EST) Tentti ja välikoeuusinta
S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,
J 2 = J 2 x + J 2 y + J 2 z.
FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,
5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 9 5 Riemnn-integrli 5. Al- j yläintegrli Voit olett tunnetuksi ll esitetyt supremumin j infimumin ominisuudet (joukot A j B ovt rjoitettuj sekä epätyhjiä j λ R). Jos
a) Määritä signaalin x[n] varianssi (keskimääräinen teho) σ x c) Määritä signaalikvantisointikohinasuhde SQNR, kun tiedetään, että
TL, DSK-lgoritmit S rjoitus. Trkstll kosiisigli [] cosπt s. Määritä sigli [] vrissi kskimääräi to. b Määritä sigli [] jot c Määritä siglikvtisoitikoisud SQNR, ku tidtää, ttä.79. b SQNR log Kvss b o kvtisoij
MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Peruslaskutoimitukset. Isto Jokinen 2015
MATEMATIIKKA Mtemtiikk pintkäsittelijöille Peruslskutoimitukset Isto Jokinen 01 SISÄLTÖ 1. Lskujärjestys 1. Murtoluvuill lskeminen. Suureet j mittyksiköt. Potenssi. Juuri 6. Tekijäyhtälöiden rtkiseminen
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,
Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.
Muodostetn vektorikentän kri-integrli yksinkertisen kren tpuksess. Plutetn mieleen, että joukko C R m on yksinkertinen kri, jos löytyy sellinen jtkuv bijektio γ : [, b] C, jok on ploittin C 1 -funktio
Teoriaa tähän jaksoon on talvikurssin luentomonisteessa luvussa 10. Siihen on linkki sivulta
Jkso 10. Sähkömgneettinen induktio Näytä ti plut tämän jkson tehtävät viimeistään tiistin 13.6.2017. Ekstr-tehtävät vstvt kolme tvllist tehtävää, kun lsketn lskuhrjoituspisteitä. Teori tähän jksoon on
Differentiaaliyhtälöt I, kevät 2017 Harjoitus 3
Differentiaaliyhtälöt I, kevät 07 Harjoitus 3 Heikki Korpela. helmikuuta 07 Tehtävä. Ratkaise alkuarvo-ongelmat a) y + 4y e x = 0, y0) = 4 3 b) Vastaus: xy + y = x 3, y) =.. a) Valitaan integroivaksi tekijäksi
763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014
763333A KIINTEÄN AINEEN FYSIIKKA Rtkisut 1 Kevät 014 1. Tehtävä: Lske, kuink mont hilpistettä on yksikkökopiss ) yksinkertisess kuutiollisess, b) tkk:ss j c) pkk:ss. (Ot huomioon, että esimerkiksi yksikkökopin
6 Integraalilaskentaa
6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion
Suorakaidekanavat. lindab suorakaidekanavat
Suorkideknvt lind suorkideknvt lind suorkideknvt Sisällysluettelo Suorkideknvt Knv LKR... Liitosost Liitoslist LS... Liitoslist LS-... Kulmyhde LBR... Liitoslist LS... S-mutk LBXR... LBSR... Liitoslist
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 7 Harjoitus 3: ratkaisut Tehtävä Tarkastellaan äärettömän syvässä laatikossa (väli [, L) olevaa hiukkasta. Kirjoita energiatiloja E n vastaavat aaltofunktiot muodossa ψ n (x,
Klassisen fysiikan ja kvanttimekaniikan yhteys
Klassise fysiika ja kvattimekaiika yhteys Scrödigeri yhtälö ei statioäärisistä tiloista muodostuvie aaltopakettie aikakäyttäytymie oudattaa Newtoi lakeja. Newtoi mekaiikka voidaa johtaa Schrödigeri yhtälöstä.
Kertaustehtävien ratkaisut
Rtkisuist Nämä Juuri- j logritmiunktiot -kurssin krtusthtävin j -srjojn rtkisut prustuvt oppikirjn titoihin j mntlmiin. Kustkin thtävästä on ylnsä vin yksi rtkisu, mikä i kuitnkn trkoit sitä, ttä rtkisu
S , Fysiikka IV (Sf), 2 VK
S-11446, Fysiikk IV (Sf, VK 455 1 Slitä lyhysti mutt mhdollisimm täsmällissti: Kskimääräis ktä mlli j itsäist lktroi roksimtio b Mo frmioi ltofuktio hiukksvihtosymmtri j s totutumi dtrmittiltofuktioss
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,
x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli
BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus, Syksy 015 1. a) Funktio f ) = 1) vaihtaa merkkinsä pisteissä = 1, = 0 ja = 1. Lisäksi se on pariton funktio joten voimme laskea vain pinta-alan
riippumattomia ja noudattavat samaa jakaumaa.
12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta
6 Kertausosa. 6 Kertausosa
Kertusos Kertusos. ) b). ) b). ) ( ( ) : ) ( : ) b) { : [ ( ) ]} { :[ - ]} { : } -{ - } -{} c) ( ) : - ( ) ( ) ( ) ( 9) 9 9 Kertusos. ) ( ) b) ( ). ) ) ) b) / / c) : 7 7. ) ) ) b) Kertusos c) : 7 ( 9)
S SÄHKÖTEKNIIKKA Kimmo Silvonen
S55. SÄHKÖTKNKK 9.5.998 Kimmo Silvonen Tentti: tehtävät,,5,7,9. välikoe: tehtävät,2,,4,5 2. välikoe: tehtävät 6,7,8,9, Oletko muitnut täyttää plutekyelyn Teeenytj huku mll välikokeet.. Lke virt. =4Ω, =2Ω,
601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44,
Pyrmidi 3 Geometri tehtävien rtkisut sivu 08 60 Olkoon tuntemton kteetti j tuntemttomt kulmt j β Rtkistn kulmt. 8,4 cos 8,4 cos 45,579... 46 β 90 60 4 Rtkistn vrjon pituus 3 44,470... 44 Rtkistn kteetti.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015
1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori
FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos
Analyyttiset funktiot ja integrointiteorian alkeita
Anlyyttiset funktiot j integrointiteorin lkeit 6. helmikuut 2006 isältö 1 Kertust 1 2 Anlyyttiset funktiot 2 2.1 Anlyyttiset funktiot tsoll................... 2 2.2 Monogeeniset funktiot vruudess R n.............
y 1 = f 1 (t,y 1,,y n ) y 2 = f 2 (t,y 1,,y n ) (1) y n = f n (t,y 1,,y n ) DY-ryhmään liittyvä alkuarvotehtävä muodostuu ryhmästä (1) ja alkuehdoista
9 5 DIFFERENTIAALIYHTÄLÖRYHMÄT 5. Esimmäis krtluvu diffrtilihtälörhmät Diffrtilihtälörhmiä trvit usiss sovlluksiss. Näistä usimmt void mllit simmäis krtluvu diffrtilihtälörhmi vull. Esimmäis krtluvu diffrtilihtälörhmä
Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1
Pinopiste Snomme ts-ineiseksi kpplett, jonk mteriliss ei ole sisäisiä tiheyden vihteluj. Tällisen kppleen pinopisteen sijinti voidn joskus päätellä kppleen muodon perusteell. Esimerkiksi ts-ineisen pllon
Aineaaltodynamiikka. Aikariippuva Schrödingerin yhtälö. Stationääriset tilat. Ei-stationääriset tilat
Aieaaltodyamiikka Aikariiuva Scrödigeri ytälö Aieaaltoketä aikariiuvuude määrää ytälö Aieaaltokettie riiuvuus ajasta aikariiuva Scrödigeri ytälö Statioääriset ja ei-statioääriset tilat Aaltoaketit Kvattimekaiika
Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että
Anlyysi Hrjoituksi lukuihin 3 / Kevät 5. Ann sellinen välillä ], [ jtkuv j rjoitettu funktio f, että () sup A m A j inf A min A, (b) sup A m A j inf A = min A, (c) sup A = m A j inf A min A, (d) sup A
Moraalinen uhkapeli: laajennuksia
Morlinen uhkeli: ljennuksi Mt-2.4142 Otimointioin seminri Juho Kokkl 4.3.2008 steeminlsin Lbortorio Teknillinen korkekoulu Esitelmä 12 Juho Kokkl Otimointioin seminri - Kevät 2008 Esitksen rkenne Informtiivisuus
Tfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.
T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä
(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme
S-446 Fysiikka IV (Sf) Tentti 3934 Oletetaan, että φ ja φ ovat ajasta riippumattoman Scrödingerin yhtälön samaan ominaisarvoon E liittyviä ominaisfunktioita Nämä funktiot ovat normitettuja, mutta eivät
Aikariippuva Schrödingerin yhtälö
Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin
ICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C2 Tietojenkäsittelyteori Kevät 2 Kierros,. 5. helmikuut Demonstrtiotehtävien rtkisut D: Sievennä seurvi säännöllisiä lusekkeit (so. konstruoi yksinkertisemmt lusekkeet smojen kielten kuvmiseen): ()
Koulutoimen henkilöstörakenne
Koulutoimen henkilöstörakenne 11.11.2016 Virka/toimi Toimen/viran nimike Toimisto V 1 koulutusjohtaja T 2 toimistosihteeri T 3 toimistosihteeri V0033 4 koulukuraattori T 5 koulupsykologi Yhtenäiskoulu,
MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali
MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November
Hakemus- ja ilmoituslomake LAPL, BPL, SPL, PPL, CPL, IR lupakirjoja varten vaadittava lentokoe- ja tarkastuslentolausunto
kijn tiot kijn sukunimi kijn tunimt kijn llkirjoitus Lupkirjn tyyppi* Lupkirjn numro* Lupkirjn myöntänyt vltio kmus- j ilmoituslomk LPL, BPL, SPL, PPL, CPL, IR lupkirjoj vrtn vittv lntoko- j trkstuslntolusunto
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 30.3.2016 Susanna Hurme Yleisen tasoliikkeen kinetiikka (Kirjan luku 17.5) Osaamistavoitteet Osata ratkaista voimia ja niiden aiheuttamia kiihtyvyyksiä tasoliikkeessä
OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA
OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla
Lisävaatimuksia aaltofunktiolle
Lisävaatimuksia aaltofunktiolle (1) Koska Ψ*Ψ on äärellinen => Ψ on äärellinen. () Koska P = Ψ*Ψdτ => Ψ on yksiselitteinen. (3) Ψ on jatkuva. (4) dψ/dτ on jatkuva. Esimerkki Epäkelpoja aaltofunktioita
Kertausta: Vapausasteet
Maanantai 8.9.2014 1/19 Kertausta: Vapausasteet Liikkeen kuvailu: massapisteen koordinaatit (x, y, z) ja nopeudet (v x, v y, v z ). Vapaasti liikkuvalla massapisteellä on kolme vapausastetta. N:llä vapaasti
Jäykän kappaleen tasokinetiikka harjoitustehtäviä
ynmiikk 1 Liite lukuun 6. Jäykän kppleen tskinetiikk - hrjitustehtäviä 6.1 vlvpkettiutn mss n 1500 kg. ut lähtee levst liikkeelle 10 % ylämäkeen j svutt vkikiihtyvyydellä npeuden 50 km / h 1 10 60 m mtkll.
Avaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
1 Tieteellinen esitystapa, yksiköt ja dimensiot
1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen
/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla
17.11.2016/1 MTTTP5, luento 17.11.2016 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla likimain Jos X ~ Bin(n, p), niin X ~ N(np, np(1 p)), kun n suuri. 17.11.2016/2
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla
780392A/782631S Fysikaalinen kemia II, 5 op / 4 op
78392A/782631S Fysikaalinen kemia II, 5 op / 4 op Luennot: 5.9.-15.11.216 Ma klo 8-1 PR12 Ti klo 12-14 PR12 Risto Laitinen (22.2.-14.3.) Epäorgaanisen kemian tutkimusyksikkö (KE 313) PL 3 914 Oulun yliopisto
Talousmatematiikan perusteet, L2 Kertaus Aiheet
Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-
MITEN MÄÄRITÄN ASYMPTOOTIT?
MITEN MÄÄRITÄN ASYMPTOOTIT? Asmptootti Asmptootti on suor ti muu kärä, jot funktion kuvj f() rjtt lähest, kun muuttujn rvot lähestvät tiettä luku ti ääretöntä. Rjoitutn luksi niihin tpuksiin, joiss smptootti
Shrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
b) (max 3p) Värähtelijän jaksonajan ja taajuuden välinen yhteys on T = 1/ f (++), eli
1 Lbortoriokokeess keveen kierrejouseen ripustettiin eri mssisi punnuksi. Punnust vedettiin lspäin j sntneen hrmonisen värähteln jksonik mitttiin. Värähtelijän tjus f = 2π 1 k mp. Oheisess tulukoss on