(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme

Koko: px
Aloita esitys sivulta:

Download "(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme"

Transkriptio

1 S-446 Fysiikka IV (Sf) Tentti 3934 Oletetaan, että φ ja φ ovat ajasta riippumattoman Scrödingerin yhtälön samaan ominaisarvoon E liittyviä ominaisfunktioita Nämä funktiot ovat normitettuja, mutta eivät * ortogonaalisia ts φφ dx d, missä d on reaalinen Etsi sellainen funktioiden φ ja φ normitettu lineaarikombinaatio, joka on ortogonaalinen a) funktion φ suhteen b) funktion φ + φ suhteen a) Kaksi funktiota A ja B ovat ortogonaalisia, jos on ortogonaalinen φ :tä vastaan: A * ( x) B( x) dx Vaaditaan, että c φ + c φ φ c φ + c φ dx c+ cd c/ c d () missä käytimme φφ dx φφ dx Vaaditaan lisäksi, että c φ c φ * ( ) Oletamme, että kertoimet c ja c ovat reaalisia: ( φ φ ) ( φ φ ) * c + c c + c dx c + c + dc c () Yhtälöistä () ja () saamme + on normitettu c d, c d d Huomaa, että nämä kertoimet voidaan vielä kertoa mielivaltaisella vakiovaihetekijällä että lineaarikombinaation kvanttifysikaaliset ominaisuudet muuttuvat i e δ ilman, b) Vaaditaan nyt, että c φ + c φ on ortogonaalinen φ + φ :tä vastaan: (oletamme jälleen, että kertoimet c ja c ovat reaalisia) ( φ φ * ) ( φ φ ) ( ) + c + c dx ( c+ c) + d c c (3) Normalisointiehdoksi saadaan nytkin yhtälö () Ratkaisemalla ()+(3) saamme c, c d d Vaihetekijään pätee sama kuin a)kohdassa Oletus kertoimien c ja c reaalisuudesta voidaan helposti jättää pois kokeile! Ammus (pistemäinen hiukkanen, jonka massa on m,) törmää kohtioon, jonka kokonaismassa on M Oletamme kohtion rakenteelliseksi systeemiksi, jolla massakeskipisteen liike-energian lisäksi voi olla myös sisäistä kvantittunutta energiaa Systeemin alimmat energiatasot olkoot E ja E Kohtio on aluksi levossa laboratoriokoordinaatistossa Kuinka suuri on ammuksen

2 energian oltava, jotta törmäys voisi olla epäelastinen ts jotta kohtiona oleva systeemi voisi virittyä törmäyksessä? Ratkaisu: Oletamme että ammus on pistemäinen hiukkanen, jonka massa on m, ja kohtiona on systeemi, jonka kokonaismassa on M Kohtion oletamme rakenteelliseksi systeemiksi, jolla voi massakeskipisteen liike-energian lisäksi olla sisäistä kvantittunutta energiaa Oletamme, että kohtio on aluksi levossa laboratoriokoordinaatistossa Jos ammuksen liikemäärä ennen törmäystä on p ja törmäyksen jälkeen p ja edelleen kohtion liikemäärä törmäyksen jälkeen on P, voimme kirjoittaa liikemäärän säilymislain muodossa p p + P () Vastaavasti jos kohtio on aluksi stationäärisessä tilassa jonka energia on E ja epäelastisen törmäyksen tapahduttua stationäärisessä tilassa E, voimme kirjoittaa energian säilymislain muodossa p + E p + P + E m m M Jos merkitsemme E E E, voimme kirjoittaa p p + P + E () m m M Epäelastisessa törmäyksessä, jossa kohtio virittyy energiatilasta E energiatilaan E pienin mahdollinen ammuksen liike-energian arvo on E E Tällöin sekä ammus, että kohtiona oleva systeemi olisivat törmäyksen jälkeen levossa massakeskipistekoordinaatistossa Kaikki massakeskipistekoordinaatistossa käytettävissä oleva liike-energia olisi tällöin käytetty kohtion virittämiseen tilalta E tilalle E Tarkastelemme nyt lähemmin tätä pienimpään tarvittavaan energiaan liittyvää törmäystä Tällöin sekä ammus että kohtio liikkuvat törmäyksen jälkeen laboratoriokoordinaatistossa samalla nopeudella joka on myös ammuksen ja kohtion muodostaman systeemin massakeskipisteen nopeus eli v cm Voimme siis kirjoittaa p mv cm ja P Mv cm Toisaalta jos tiedämme, että ammuksen nopeus ennen törmäystä on v, voimme kirjoittaa massakeskipisteen nopeuden lausekkeen muodossa v cm mv m+ M ja sijoittamalla tämä liikemäärän arvoihin törmäyksen jälkeen saamme m v mp mmv Mp p, P m+ M m+ M m+ M m+ M Nämä yhtälöt ovat tietenkin sopusoinnussa yhtälön () kanssa Sijoittamalla nämä lausekkeet yhtälöön () saamme pienten laskutoimitusten jälkeen

3 M p m+ M m tai E m Ek p + E (3) m M Yhtälö (3) antaa pienimmän mahdollisen liike-energian arvon jolla ammus voi nostaa kohtien ensimmäiselle viritetylle stationääriselle tilalle Jos ammus on paljon kohtiota kevyempi voimme kirjoittaa likimain Ek E E E Tämä vastaa likimain tilannetta epäelastisissa törmäyksissä, joissa elektroni törmää atomiin tai molekyyliin Olemme hyödyntäneet aiemmin tätä likiarvoa analysoidessamme Frankin-Hertzin koetta Toisaalta jos tarkastelemme epäelastisia törmäyksiä, joissa atomin ydin virittyy protonin törmätessä siihen, meidän on käytettävä kynnysenergian laskemiseen yhtälöä (3) Tämä johtuu siitä, että erityisesti kun protonit törmäävät kevyisiin ytimiin massasuhde mm ei välttämättä ole pieni ykköseen verrattuna ˆ ˆ 3 aske kommutaattorit z, ja ˆ, ˆ x y Miten fysikaalisia suureita vastaavien operaattoreiden kommutitatiivisuus liittyy näiden suureiden yhtäaikaisen mitattavuuden tarkkuuteen? Ratkaisu Johdetaan pari aputulosta (operaattorihatut jätetty pois ): [ ] [ ] x, x ypz zpy, x x, y ypz zpy, y z py, y i z asketaan seuraavaksi ˆ, ˆ x y ˆ, ˆ yp zp, y p, z, p y i p i x p i x y z y y z y y y ( ) ( ) x y z Vastaavasti osoitetaan, että ˆ, ˆ i ˆ, ˆ i y z x z x y opuksi ˆ ˆ z, ˆ ˆ z, z, x z, y + [ ] [ ] z, x x + x z, x + z, y y + y z, y ( i y) x x( i y) ( i x) y y( i x) + + +

4 Tässä käytettiin seuraavia helposti osoitettavia kommutaattorien ominaisuuksia: AA, AB, B[ AB, ] + [ AB, ] B Kulmaliikemäärän z-komponetti voi siis saada samanaikaisesti kulmaliikemäärän itseisarvon kanssa tarkan arvon Sen sijaan hiukkanen ei voi olla tilassa, jossa sen kahdella kulmaliikemäärän vektorikomponentilla olisi tarkka arvo 4 a) aske kuparin Fermienergia, kun tiedetään, että vapaiden elektronien tiheys on kuparissa 8 3 8, 45 m b) aske elektronin keskimääräinen energia lämpötilassa K Käytä 4π elektronitilojen tiheydelle lauseketta ( ) 3/ / ge ( ) m E 3 h Ratkaisu a) Sijoittamalla yhtälöön /3 4/3 /3 π n () 3 EF m 8 3 Sijoittamalla n 8,45 m saadaan Fermienergiaksi E F 7,3 ev b) Elektronin keskimääräinen energia saadaan odotusarvona (huomaa, että miehitystodennäköisyys f( E ) Fermienergiaan saakka ja f( E ) sen ylöpuolella) : E F Eave Eg( E) de N / 3NE missä ge ( ) on tilatiheys kiteessä, jossa on N elektronia (kertaa tilastollisen fysiikan 3/ E F kurssi tai Blatt s 33 ) Sijoittamalla ja laskemalla integraalin saamme 3 Eave EF 5 5 Jos molekyylillä on kaksi yhtä suurta päähitausmomenttia ( I x- ja y-suunnissa), niin sen rotaatioenergiaoperaattori on ˆ ˆ ˆ Hrot + z () I I I aske rotaatiotilojen väli, kun a) I 8I ja b) I I Piirrä energiatasot yksiköissä /I Ratkaisu Katsotaan aluksi miten tehtävän Halmiltoni on johdettu Klassinen pyörimisenergia on pyörähdysellipsoidille

5 x y z z rot + + ( x + y ) + + z I I I I I I I I E Tästä muodostetaan Hamiltoni korvaamalla liikemäärät vastaavilla kvanttimekaanisilla operaattoreilla Vetyatomin energiatasojen yhteydessä olemme osoittaneet, että palloharmoniset funktiot Y lm θ, φ6ovat operaattoreiden ja z yhteisiä ominaisfunktioita: Ylm ll 6 Ylm () Y z lm m Ylm Jälkimmäisestä yhtälöstä seuraa, että palloharmonit ovat myös operaattorin z ominaisfunktioita: Y z lm m Y lm Yhtälöstä () huomataan, että palloharmit ovat myös Hamiltonin () ominaisfunktioita : " # ll Y! I I I $ #! I I I Rataatioenergiat ovat siis 6 6 " $ # (3) " m $ # z lm m Ylm ll Elm! I I I missä l 3,,,, ja m l, l,, l, l Yksiköissä / I energia voidaan esittää muodossa : (Energiat on piirretty oheiseen kuvaan) 6 " /! 6 / $# a) I 8 I Elm l l m I! 4 $# " b) I, I Elm l l m I 6 6 Olkoon elektronin aaltofunktion pallokoordinaatiston kulmasta φ riippuva osa iφ iφ ( ) ψφ ( ) A e 8e φ, a) Mitkä ovat yksittäisessä mittauksessa saatavat z :n mahdolliset arvot tälle elektronille? b) millä todennäköisyydellä ne saadaan? c) Mikä on kulmaliikemäärän z-komponentin odotusarvo? Apuneuvo: Voidaan osoittaa, että pallokoordinaatistossa ˆz i φ + [ ] Ratkaisu Aloitamme yleisillä tarkasteluilla Voidaan osoittaa, että pallokoordinaatistossa z i φ, missä φ on kiertokulma z-akselin ympäri Seuraavissa tarkasteluissa emme kuitenkaan tarvitsepallokoordinaatiston ominaisuuksia i e φ iφ Merkitään χ ( φ ) ja ( ) e χ φ Kokeilemalla huomaamme, että ˆ zχ χ, kyseessä on siis z ominaisfunktio ominaisarvolla toisaalta ˆ zχ χ, kyseessä on siis z ominaisfunktio ominaisarvolla isäksi huomataan, että

6 Iπ I π χ( φ) dφ χ( φ) dφ ja χχ dφ χχ dφ Tällaisia funktioita sanotaan ortonormeeratuiksi a) Normitusvakion laskeminen : I I () ( )( ) ψφ ( ) dφ A χ + 8χ χ + 8χ dφ * * ( ) A χ χ + 8 χ χ + 8χ χ + 8χ χ dφ Yhtälöiden () perusteella saamme suoraan A + 8 A 34π Valitsimme tässä A :n reaaliseksi, sillä aaltofunktion mahdollisella kompleksisella vakiovaihetekijällä ei ole vaikutusta hiukkasen fysikaalisiin ominaisuuksiin (on helppo esimerkiksi havaita, että z :n odotusarvo ei muutu, jos kerromme aaltofunktion millä tahansa vaihetekijällä e iδ missä δ ei riipu kulmasta φ ) b) Yksittäisissä mittauksissa mahdollisia arvoja ovat z :n ominaisarvot Kirjoittamalla ( ) c + c z huomaamme, että z :n ominaisarvo on z :n ominaisarvojen tekijöillä c ja c painotettu keskiarvo Yksittäisessä mittauksessa saamme tulokseksi todennäköisyydellä c ja todennäköisyydellä c c) Merkitään nyt c A ja c 8 A Tällöin alkuperäinen aaltofunktio voidaan kirjoittaa ψ cχ + cχ ja lisäksi c + c z :n odotusarvoksi saamme : (huomaa, että jakajana oleva integraali, koska aaltofunktio on jo normitettu) z * φ z z ( )( ˆ ˆ ) ψ i ψdφ c χ + c χ c χ + c χ dφ missä taas käytimme yhtälöä () ( cχ + cχ)[ c χ+ c( 3 ) χ] dφ c + c ( ) ()

7 Vakioita e p n m 9,9 kg m, 675 kg m, 6748 kg amu, 665 kg c µ B e, 6 C, 9979 m/s, 545 Js 9, 73 JT Ke Km ε 8,8544 C N m / 4πε µ, 566 mkgc µ / 4π A γ 6, 67 Nm kg N 6, 5 mol R 8, 343 JK mol k,385 JK

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan

Lisätiedot

S Fysiikka III (EST) Tentti ja välikoeuusinta

S Fysiikka III (EST) Tentti ja välikoeuusinta S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,

Lisätiedot

Energian säilymislain perusteella elektronin rekyylienergia on fotnien energioiden erotus: (1)

Energian säilymislain perusteella elektronin rekyylienergia on fotnien energioiden erotus: (1) S-11446 Fysiikka IV (Sf), I Väliko 544 1 Osoita, ttä Comptonin sironnassa lktronin suurin mahdollinn rkyylinrgia voidaan sittää muodossa E Kin hf 1 + mc /hf Enrgian säilymislain prustlla lktronin rkyylinrgia

Lisätiedot

Aikariippuva Schrödingerin yhtälö

Aikariippuva Schrödingerin yhtälö Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin

Lisätiedot

J 2 = J 2 x + J 2 y + J 2 z.

J 2 = J 2 x + J 2 y + J 2 z. FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,

Lisätiedot

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa

Lisätiedot

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV = S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio

Lisätiedot

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu

Lisätiedot

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä

Lisätiedot

Aineaaltodynamiikkaa

Aineaaltodynamiikkaa Aineaaltodynamiikkaa Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit = kuinka hiukkasen fysikaaliset

Lisätiedot

Kvanttifysiikan perusteet, harjoitus 5

Kvanttifysiikan perusteet, harjoitus 5 Kvanttifysiikan perusteet, harjoitus 5 February 4, 07 Tehtävä Oletetaan energian ominaisfunktiot φ n ortonormitetuiksi, dxφ nφ m = δ nm, jossa δ nm on Kroneckerin delta. Määritetään ensin superpositiotilan

Lisätiedot

Demo: Kahden elektronin spintilojen muodostaminen

Demo: Kahden elektronin spintilojen muodostaminen Demo: Kahden elektronin spintilojen muodostaminen Tämän demonstraation tarkoituksena on havainnollistaa kvanttimekaniikan operaattoriformalismin soveltamista kahden elektronin systeemin spintilojen muodostamiseen.

Lisätiedot

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta 8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin

Lisätiedot

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4) 76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Keät 207. Rekyyli Luentomonisteessa on käsitelty tilanne, jossa hiukkanen (massa M) hajoaa kahdeksi hiukkaseksi (massat m ja m 2 ). Tässä käytetään

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Korkeammat derivaatat

Korkeammat derivaatat Korkeammat derivaatat Jo kerran derivoitu funk6o voidaan derivoida uudelleen. d! df(x) $ dx " # dx % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-

Lisätiedot

Korkeammat derivaatat

Korkeammat derivaatat Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d df(x) dx dx = d2 f(x) dx 2 = f''(x) = f 2 (x) Yleisemmin merkitään: d n f(x) dx n = f n (x) Esimerkki: 2 atominen molekyyli

Lisätiedot

1 Aaltofunktio, todennäköisyystulkinta ja normitus

1 Aaltofunktio, todennäköisyystulkinta ja normitus KEMA5 syksy 16 Kertausta keskeisistä asioista 1 Aaltofunktio, todennäköisyystulkinta ja normitus Kvanttimekaniikassa tarkasteltavaa systeemiä kuvaa aaltofunktio ψ. Aaltofunktio on puhtaan matemaattinen

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 7 Harjoitus 3: ratkaisut Tehtävä Tarkastellaan äärettömän syvässä laatikossa (väli [, L) olevaa hiukkasta. Kirjoita energiatiloja E n vastaavat aaltofunktiot muodossa ψ n (x,

Lisätiedot

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.

Lisätiedot

S Fysiikka III (Est), 2 VK Malliratkaisut (Arvosteluperusteita täydennetään vielä)

S Fysiikka III (Est), 2 VK Malliratkaisut (Arvosteluperusteita täydennetään vielä) S-.7 Fysiikka III (st), VK 8.5.008 Malliratkaisut (Arvosteluperusteita täydennetään vielä). Näytä, että sekä symmetrinen aaltofunktio ψn( x ) ψn ( x) + ψn( x) ψn, että antisymmetrinen aaltofunktioψn( x)

Lisätiedot

Korkeammat derivaatat

Korkeammat derivaatat Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d dx! " # df(x) dx $ % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-

Lisätiedot

Shrödingerin yhtälön johto

Shrödingerin yhtälön johto Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä

Lisätiedot

kertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma

kertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma infoa kertausta Boltzmannin jakauma Huomenna itsenäisyyspäivänä laitos on kiinni, ei luentoa, ei laskareita. Torstaina laboratoriossa assistentit neuvovat myös laskareissa. Ensi viikolla tiistaina vielä

Lisätiedot

Vauhti = nopeuden itseisarvo. Nopeuden itseisarvon keskiarvo N:lle hiukkaselle määritellään yhtälöllä

Vauhti = nopeuden itseisarvo. Nopeuden itseisarvon keskiarvo N:lle hiukkaselle määritellään yhtälöllä S-4.35, Fysiikka III (ES) entti 8.3.006. Laske nopeuden itseisarvon keskiarvo v ave ja nopeuden neliöllinen keskiarvo v rms seuraaville 6 molekyylien nopeusjakaumille: a) kaikkien vauhti 0 m/s, b) kolmen

Lisätiedot

Esimerkki: 2- atominen molekyyli. Korkeammat derivaatat 1/24/13. Jo kerran derivoitu funk6o voidaan derivoida uudelleen. Yleisemmin merkitään:

Esimerkki: 2- atominen molekyyli. Korkeammat derivaatat 1/24/13. Jo kerran derivoitu funk6o voidaan derivoida uudelleen. Yleisemmin merkitään: Korkeammat erivaatat Jo kerran erivoitu funk6o voiaan erivoia uuelleen.! f(x) x " # x % & = 2 f(x) = f''(x) = f (2) (x) x 2 Yleisemmin merkitään: n f(x) = f (n) (x) x n erkki: 2- atominen molekyyli Värähtelevän

Lisätiedot

5.10. HIUKKANEN POTENTIAALIKUOPASSA

5.10. HIUKKANEN POTENTIAALIKUOPASSA 5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista

Lisätiedot

missä t on matkaan raosta varjostimelle kuluva aika. Jos suihkun elektronien liikemäärä x- sunnassa on p x,on min y0min 0min

missä t on matkaan raosta varjostimelle kuluva aika. Jos suihkun elektronien liikemäärä x- sunnassa on p x,on min y0min 0min S-11446 Fysiikk IV (Sf), I Välikoe 154 1 Elektronisuihku, joss elektronien noeus on v, suu kohtisuorsti rkoon, jonk leveys on d Ron läi kuljettun elektronit osuvt etäisyydellä D olevn vrjostimeen Mikä

Lisätiedot

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Osallistumislomakkeen viimeinen palautuspäivä on maanantai Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:

Lisätiedot

Tilat ja observaabelit

Tilat ja observaabelit Tilat ja observaabelit Maksimaalinen informaatio systeemistä tietyllä ajanhetkellä sisältyy tilaan ψ (ket). Tila = vektori Hilbertin avaruudessa sisätulo ψ ψ C ψ c 1 ψ 1 + c 2 ψ 2 = c 1 ψ ψ 1 + c 2 ψ ψ

Lisätiedot

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen) Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,

Lisätiedot

S Fysiikka III (Est) Tentti

S Fysiikka III (Est) Tentti S-114137 Fyiikka III (Et) Tentti 9008 1 Vetyatomin elektronin kulmaliikemäärää kuvaa kvanttiluku l =3 Lake miä kaikia kulmia kulmaliikemäärävektori voi olla uhteea kulmaliikemäärän z-komponenttiin ( )

Lisätiedot

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

Lisävaatimuksia aaltofunktiolle

Lisävaatimuksia aaltofunktiolle Lisävaatimuksia aaltofunktiolle (1) Koska Ψ*Ψ on äärellinen => Ψ on äärellinen. () Koska P = Ψ*Ψdτ => Ψ on yksiselitteinen. (3) Ψ on jatkuva. (4) dψ/dτ on jatkuva. Esimerkki Epäkelpoja aaltofunktioita

Lisätiedot

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1 76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

S , Fysiikka III (Sf) tentti/välikoeuusinta

S , Fysiikka III (Sf) tentti/välikoeuusinta S-114.45, Fysiikka III (Sf) tentti/välikoeuusinta.11.4 1. välikokeen alue 1. Osoita, että hyvin alhaisissa lämpötiloissa elektronin FD systeemin energia on U = (3/ 5) ε F. Opastus: oleta, että kaikki tilat

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää

Lisätiedot

j = I A = 108 A m 2. (1) u kg m m 3, (2) v =

j = I A = 108 A m 2. (1) u kg m m 3, (2) v = 764A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 6 Kevät 28. Tehtävä: Aiemmi olemme laskeeet kupari johtavuuselektroie tiheydeksi 8.5 28 m. Kuparijohdossa, joka poikkipita-ala o mm 2, kulkee A: virta. Arvioi Drude

Lisätiedot

Voima ja potentiaalienergia II Energian kvantittuminen

Voima ja potentiaalienergia II Energian kvantittuminen Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Ch10 Spin-1/2 systeemi. Spin-1/2 kvanttimekaniikkaa

Ch10 Spin-1/2 systeemi. Spin-1/2 kvanttimekaniikkaa Ch1 Spin-1/2 systeemi Spin-1/2 kvanttimekaniikkaa Ominaistilat Vain kaksi tilaa sillä kvanttimekaniikan mukaan m = I, I + 1,..., I 1, I siis yhteensä 2I + 1 kpl I JOS I = 1/ 2 niin 2I + 1 = 2! Spinin kantafunktiot

Lisätiedot

S Fysiikka IV (Sf) Tentti

S Fysiikka IV (Sf) Tentti S-11446 Fysiikka IV (Sf) Tntti 95 1 Ammus (pistmäinn hiukkann, jonka massa on m, ) tömää kohtioon, jonka kokonaismassa on M Kohtion oltamm akntllisksi systmiksi, jolla massakskipistn liik-ngian lisäksi

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

S Fysiikka III (Est) 2 VK

S Fysiikka III (Est) 2 VK S-37 Fysiikka III (Est) VK 500 Tarkastellaan vedyn p energiatasoa a) Mikä on tämän tason energia Bohrin mallissa? b) Oletetaan että spinratavuorovaikutus voidaan jättää huomiotta Kirjoita kaikki tähän

Lisätiedot

Todennäköisyys ja epämääräisyysperiaate

Todennäköisyys ja epämääräisyysperiaate Todennäköisyys ja epämääräisyysperiaate Luento 7 Hiukkas-aaltodualismi vaatii uudenlaisen kielenkäytön omaksumista kuvaamaan iukkasten liikettä ja paikkaa. Newtonin mekaniikassa iukkanen on aina jossain

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta

Lisätiedot

kolminkertaisesti tehtäviä tavallisiin harjoituksiin verrattuna, voi sen kokonaan tekemällä saada suunnilleen kolmen tavallisen harjoituksen edestä

kolminkertaisesti tehtäviä tavallisiin harjoituksiin verrattuna, voi sen kokonaan tekemällä saada suunnilleen kolmen tavallisen harjoituksen edestä Matematiikkaa kemisteille, kevät 2013 Ylimääräisiä laskuharjoituksia Tällä laskuharjoituksella voi korottaa laskuharjoituspisteitään, mikäli niitä ei ole riittävästi kurssin läpäisemiseen, tai vaihtoehtoisesti

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä

Lisätiedot

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj S-4.35 Fysiikka (ES) entti 3.8.. ääritä yhden haikaasumoolin (O) (a) sisäenergian, (b) entalian muutos tilanmuutoksessa alkutilasta =, bar, =,8 m3 loutilaan =, bar, =,5 m3. ärähtelyn vaausasteet voidaan

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ

Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ Mat-48 Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ L ẋ = x ẋ = g L sin x rx Epälineaarisen systeemin tasapainotiloja voidaan

Lisätiedot

S , Fysiikka IV (ES) Tentti

S , Fysiikka IV (ES) Tentti S-1436, Fysiikk IV (S) Tetti 81 35 19 1 Vierekkäiste spektriviivje piei hvittu tjuuser Cl F mlekyyli 1 rttispektrissä 1,1 1 Hz Lske tmie välie etäisyys mlekyylissä Rtkisu Kksitmise mlekyyli pyörimiseergi

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ 76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee

Lisätiedot

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg TEHTÄVIEN RATKAISUT 15-1. a) Hyökkääjän liikemäärä on p = mv = 89 kg 8,0 m/s = 71 kgm/s. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 71 p v = = s 6,8 m/s. m 105 kg 15-.

Lisätiedot

Kvanttimekaniikan perusteet

Kvanttimekaniikan perusteet Kvanttimekaniikan perusteet Schrödingerin yhtälö Sironta potentiaaliaskeleesta Elektronitilat potentiaalikuopassa Harmoninen oskillaattori Tilatiheys lisää sirontailmiöistä Aineaaltokenttä ja todennäköisyystiheys

Lisätiedot

5.9 Voiman momentti (moment of force, torque)

5.9 Voiman momentti (moment of force, torque) 5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa

Lisätiedot

Ekvipartitioperiaatteen mukaisesti jokaiseen efektiiviseen vapausasteeseen liittyy (1 / 2)kT energiaa molekyyliä kohden.

Ekvipartitioperiaatteen mukaisesti jokaiseen efektiiviseen vapausasteeseen liittyy (1 / 2)kT energiaa molekyyliä kohden. . Hiilidioksidiolekyyli CO tiedetään lineaariseksi a) Mitkä ovat eteneisliikkeen, pyöriisliikkeen ja värähtelyn suuriat ekvipartitioperiaatteen ukaiset läpöenergiat olekyyliä kohden, kun kaikki vapausasteet

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

(b) Tunnista a-kohdassa saadusta riippuvuudesta virtausmekaniikassa yleisesti käytössä olevat dimensiottomat parametrit.

(b) Tunnista a-kohdassa saadusta riippuvuudesta virtausmekaniikassa yleisesti käytössä olevat dimensiottomat parametrit. Tehtävä 1 Oletetaan, että ruiskutussuuttimen nestepisaroiden halkaisija d riippuu suuttimen halkaisijasta D, suihkun nopeudesta V sekä nesteen tiheydestä ρ, viskositeetista µ ja pintajännityksestä σ. (a)

Lisätiedot

Tilavuusintegroin. f(x,y,z)dxdydz. = f(x,y,z)dx dy

Tilavuusintegroin. f(x,y,z)dxdydz. = f(x,y,z)dx dy z 2 y 2 x 2 z y x Tilavuusintegroin. f(x,y,z)dxdydz z 2 y 2 x 2 = f(x,y,z)dx dy dz z y x Tyypillises. kemian sovelluksissa f(x,y,z) on massa.heys, jolloin integraalin arvo on massa alueella jota integroin.rajat

Lisätiedot

= 84. Todennäköisin partitio on partitio k = 6,

= 84. Todennäköisin partitio on partitio k = 6, S-435, Fysiikka III (ES) entti 43 entti / välikoeuusinta I Välikokeen alue Neljän tunnistettavissa olevan hiukkasen mikrokanonisen joukon mahdolliset energiatasot ovat, ε, ε, 3ε, 4ε,, jotka kaikki ovat

Lisätiedot

780392A/782631S Fysikaalinen kemia II, 5 op / 4 op

780392A/782631S Fysikaalinen kemia II, 5 op / 4 op 78392A/782631S Fysikaalinen kemia II, 5 op / 4 op Luennot: 5.9.-15.11.216 Ma klo 8-1 PR12 Ti klo 12-14 PR12 Risto Laitinen (22.2.-14.3.) Epäorgaanisen kemian tutkimusyksikkö (KE 313) PL 3 914 Oulun yliopisto

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten

Lisätiedot

Voiman ja liikemäärän yhteys: Tämä pätee kun voima F on vakio hetken

Voiman ja liikemäärän yhteys: Tämä pätee kun voima F on vakio hetken Liikemäärä Henkilöauto törmää tukkirekkaan, miksi henkilöautossa olijat loukkaantuvat vakavasti, mutta rekan kuljettaja selviää yleensä aina vammoitta? Mihin suuntaan ja millä nopeudella rekka ja henkilöauto

Lisätiedot

Luento 6: Liikemäärä ja impulssi

Luento 6: Liikemäärä ja impulssi Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)

Lisätiedot

MEI Kontinuumimekaniikka

MEI Kontinuumimekaniikka MEI-55300 Kontinuumimekaniikka 1 MEI-55300 Kontinuumimekaniikka 3. harjoitus matemaattiset peruskäsitteet, kinematiikkaa Ratkaisut T 1: Olkoon x 1, x 2, x 3 (tai x, y, z) suorakulmainen karteesinen koordinaatisto

Lisätiedot

λ x = 0,100 nm, Eγ = 0,662 MeV, θ = 90. λ λ+ λ missä ave tarkoittaa aikakeskiarvoa.

λ x = 0,100 nm, Eγ = 0,662 MeV, θ = 90. λ λ+ λ missä ave tarkoittaa aikakeskiarvoa. S-114.46 Fysiikka V (Sf) Tetti 16.5.00 välikokee alue 1. Oletetaa, että protoi ja elektroi välie vetovoia o verraollie suureesee r ( F =- kr) eikä etäisyyde eliö kääteisarvoo ( F =-k / r ). Käytä kulaliikeäärä

Lisätiedot

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä 1 / 46 Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen

Lisätiedot

6 Monen kappaleen vuorovaikutukset (Many-body interactions)

6 Monen kappaleen vuorovaikutukset (Many-body interactions) 6 Monen kappaleen vuorovaikutukset (Many-body interactions) 6.1 Newtonin III laki Voimme laskea kappaleen liiketilan Newtonin II lain avulla, jos tunnemme kaikki kappaleeseen vaikuttavat voimat. Jos kappaleita

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

Kvanttimekaniikka I tentti : 4 tehtävää, 4 tuntia

Kvanttimekaniikka I tentti : 4 tehtävää, 4 tuntia Kvanttimekaniikka I.. 4 tentti : 4 tehtävää, 4 tuntia. (a (p. Olkoon H systeemin Hamiltonin operaattori, ja A jotakin observaabelia kuvaava operaattori. Johda Ehrenfestin teoreema d A dt = ī [A, H] + A

Lisätiedot

, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,

, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n, S-114.6, Fysiikka IV (EST),. VK 4.5.005, Ratkaisut 1. Selitä lyhyesti mutta mahdollisimman täsmällisesti: a) Keskimääräisen kentän malli ja itsenäisten elektronien approksimaatio. b) Monen fermionin aaltofunktion

Lisätiedot

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =

Lisätiedot

S , Fysiikka III (Sf) tentti/välikoeuusinta

S , Fysiikka III (Sf) tentti/välikoeuusinta S-445, Fysiikka III (Sf) tentti/välikoeuusinta 43 välikokeen alue ristetyssä astiassa, jonka lämötila idetään, kelvinissä, on nestemäistä heliumia tasaainossa helium kaasun kanssa Se on erotettu toisesta

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella

Lisätiedot

Matematiikkaa kemisteille, kevät 2012 Ylimääräinen laskuharjoitus Palautus 7.5. klo (suositellaan kuitenkin tekemään ennen välikoetta 30.4!

Matematiikkaa kemisteille, kevät 2012 Ylimääräinen laskuharjoitus Palautus 7.5. klo (suositellaan kuitenkin tekemään ennen välikoetta 30.4! Matematiikkaa kemisteille, kevät 2012 Ylimääräinen laskuharjoitus Palautus 7.5. klo 16.00 (suositellaan kuitenkin tekemään ennen välikoetta 30.4! Tämä laskuharjoitus ei ole pakollinen, eikä sen pisteitä

Lisätiedot

S Fysiikka III (EST), Tentti

S Fysiikka III (EST), Tentti S-114.137 Fysiikk III (ES), entti 30.8.006 1. Lämpövoimkone toteutt oheisen kuvn Crnotin prosessi. Koneess on työineen yksi mooli ideliksu. Lske yksitomisen ksun kierroksen ikn tekemän työn suhde kksitomisen

Lisätiedot

kertausta kertausta tavoitteet gallup

kertausta kertausta tavoitteet gallup kertausta kertausta Kahden kappaleen keskeisliikkeessä havaittiin, että E = K + U ja L ovat vakioita. Yhdistämällä yo. säilyvät suureet ja muokkaamalla ongelma yksiulotteiseksi havaittiin, että ratakäyrä

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1 763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi

Lisätiedot

Energia, energian säilyminen ja energiaperiaate

Energia, energian säilyminen ja energiaperiaate E = γmc 2 Energia, energian säilyminen ja energiaperiaate Luennon tavoitteet Lepoenergian, liike-energian, potentiaalienergian käsitteet haltuun Työ ja työn merkki* Systeemivalintojen miettimistä Jousivoiman

Lisätiedot

Ortogonaaliset matriisit, määritelmä 1

Ortogonaaliset matriisit, määritelmä 1 , määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

Klassisen fysiikan ja kvanttimekaniikan yhteys

Klassisen fysiikan ja kvanttimekaniikan yhteys Klassise fysiika ja kvattimekaiika yhteys Scrödigeri yhtälö ei statioäärisistä tiloista muodostuvie aaltopakettie aikakäyttäytymie oudattaa Newtoi lakeja. Newtoi mekaiikka voidaa johtaa Schrödigeri yhtälöstä.

Lisätiedot

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5 Tehtävä a) Energia ja rataliikemäärämomentti säilyy. Maa on r = AU päässä auringosta. Mars on auringosta keskimäärin R =, 5AU päässä. Merkitään luotaimen massaa m(vaikka kuten tullaan huomaamaan sitä ei

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,

Lisätiedot

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

x 4 e 2x dx Γ(r) = x r 1 e x dx (1) HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1

Lisätiedot

Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin:

Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin: Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin: Translaatioliike (hiukkanen laatikossa) Rotaatio eli pyörimisliike Vibraatio eli värähdysliike 1 Vapaan hiukkasen (V =0) Schrödingerin yhtälön

Lisätiedot

Kvanttimekaniikan tulkinta

Kvanttimekaniikan tulkinta Kvanttimekaniikan tulkinta 20.1.2011 1 Klassisen ja kvanttimekaniikan tilastolliset formuloinnit 1.1 Klassinen mekaniikka Klassisen mekaniikan systeemin tilaa kuvaavat kappaleiden koordinaatit ja liikemäärät

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot