Lisävaatimuksia aaltofunktiolle
|
|
- Ari-Pekka Uotila
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Lisävaatimuksia aaltofunktiolle (1) Koska Ψ*Ψ on äärellinen => Ψ on äärellinen. () Koska P = Ψ*Ψdτ => Ψ on yksiselitteinen. (3) Ψ on jatkuva. (4) dψ/dτ on jatkuva. Esimerkki Epäkelpoja aaltofunktioita Aaltofunktion antama informaatio Tarkastellaan yksidimensionaalista aaltofunktiota ψ(x): HΨ = EΨ H = m d dx +V x ( ) Ratkaisu vapaalle hiukkaselle [V(x) = 0], jonka massa on m: Ψ = Ae ikx + Be ikx ja E = k m
2 Osoitus, että kyseessä on aaltoyhtälön ratkaisu: m d Ψ dx = m d dx ( Ae ikx + Be ikx ) = m # A ik = k m ( ) e ikx + B( ik) e ikx ( Aeikx + Be ikx ) = EΨ $ % Ominaisyhtälö: Ωf = ω f (operaattori)(funktio) = (vakio) x (funktio) ominaisarvo ominaisfunktio Esimerkki Osoita, että e ax on operaattorin d/dx ominaisfunktio. Mikä on sen ominaisarvo? Onko e ax operaattorin d/dx ominaisfunktio? Jos tunnetaan systeemin aaltofunktio ja havaittavaa suuretta vastaava operaattori siten, että aaltofunktio on operaattorin ominaisfunktio, havaittavalle suureelle saadaan arvo yhtälön ominaisarvosta Schrödingerin aaltoyhtälö: (energiaoperaattori)(aaltofunktio) = (energia)x(aaltofunktio) havaittava suure
3 Liikemääräoperaattori Tarkastellaan yksiulotteista tapausta: ˆp = i d dx ˆpΨ = pψ Esimerkki Vapaa hiukkanen V(x) = 0 d Ψ m dx = EΨ Ψ = Aeikx + Be ikx ;E = k m (1) B = 0 Ψ = Ae ikx ˆpΨ = i p = k dψ dx = i A deikx dx = kaeikx Johtopäätökset: - Hiukkanen, jonka aaltofunktio on e ikx, liikkuu +x-suuntaan. - Hiukkanen, jonka aaltofunktio on e -ikx, liikkuu x-suuntaan. - Liikemäärä kummassakin tapauksessa on k. () A = 0 Ψ = Be ikx p = k (3) A = B Ψ = A( e ikx + e ikx ) = Acos x ˆpΨ = i d ( coskx) A dx = ka sinkx i Aaltofunktio ei ole ominaisfunktio
4 Odotusarvo Liikemäärällä ei ole täsmällistä arvoa. Ψ = Ψ + Ψ (1) Jos p mitataan, havaitaan yksi arvo liikemäärälle, joka vastaa tilaa Ψ i. () Havainnon todennäköisyys = c i p = k p = k tod. näk. 50 % tod. näk. 50 % Odotusarvo <Ω>: - suuren havaintojoukon keskiarvo Superpositio: => Ψ = Σc i Ψ i Ω = Ψ * ˆΩΨ dτ Odotusarvoja: (1) Olkoon Ψ Ω:n ominaisfunktio ja ω sen ominaisarvo. => Ω = Ψ * ˆΩΨ dτ = Ψ *ωψ dτ = ω Ψ * Ψ dτ = ω () Olkoon φ = c 1 Ψ 1 + c Ψ (Ψ i on ominaisfunktio operaattorille Ω). Ω = ( c 1 Ψ 1 + c Ψ )* ˆΩ ( c 1 Ψ 1 + c Ψ )dτ = ( c 1 Ψ 1 + c Ψ )*( c 1 ˆΩΨ1 + c ˆΩΨ )dτ = ( c 1 Ψ 1 + c Ψ )*( c 1 ω 1 Ψ 1 + c ω Ψ )dτ = c 1 *c 1 ω 1 Ψ 1 * Ψ 1 dτ + c *c ω Ψ * Ψ dτ + c *c 1 ω 1 Ψ * Ψ 1 dτ + c 1 *c ω Ψ 1 * Ψ dτ Ω = c 1 ω 1 + c ω
5 Esimerkki Laske perustilassa olevan vety-atomin 1s-elektronin keskimääräinen etäisyys ytimestä. (3) Hiukkasen kineettinen energia yhdessä dimensiossa E k = Ψ * Êk Ψ dx = m Ψ * d Ψ dx dx Suuri kontribuutio kineettiseen energiaan, kun dψ /dx on suuri ja kun ψ on suuri.
6 Heisenbergin epätarkkuusperiaate Lähtökohta: Ψ = e ikx p = k Werner Heisenberg Ψ * Ψ = ( Ae ikx ) * ( Ae ikx ) = (Ae ikx )(Ae ikx ) = A => Hiukkasen liikemäärä tiedetään tarkasti, sijaintia ei lainkaan. Epätarkkuusperiaate: Δx Δy Hiukkasen sijaintia ja liikemäärää ei koskaan voida määrittää tarkasti yhtäaikaa. Epätarkkuusperiatteen tulkinta: Epämääräinen sijainti: - Aaltofunktioiden superpositio. - Konstruktiivinen interferenssi. Tarkka sijainti tunnetaan: - Aaltofunktion arvo suuri yhdessä pisteessä, nolla muualla. - Aaltofunktio koostuu äärettömästä määrästä erilaisia aaltofunktioita, joiden liikemäärä on erisuuri.
7 Esimerkki (a) Luodin, jonka massa on 1,0 g, nopeuden epätarkkuus on 10-6 m s -1. Mikä on epätarkkuus luodin sijainnissa? (b) Jos elektronin nopeus tunnetaan samalla tarkkuudella, miikä on epätarkkuus elektronin sijainnissa? Esimerkki Hiukkasen aaltofunktio on Ψ(x) = a π 1/4 e ax missä a on vakio ja - < x <. Osoita, että tulo ΔpΔx on sopusoinnussa Heisenbergin epätarkkuusperiaatteen kanssa.
8 Komplementaariset havaittavat muuttujat: Muuttujat ovat komplementaarisia, jos seuraava ehto täyttyy: ˆΩ 1 ( ˆΩ Ψ) ˆΩ ˆΩ1 Ψ ( ) Esimerkki Sijainnin ja liikemäärän komplementaarisuus ˆx = x ˆp = i d dx Kommutaattori: ˆΩ 1, ˆΩ = ˆΩ 1 ˆΩ ˆΩ ˆΩ1 ˆxˆpΨ = x i ˆpˆxΨ = i dψ dx d ( xψ) = dx i $ # Ψ + x dψ dx % ' & ˆxˆpΨ ˆpˆxΨ = x i dψ dx i Ψ x dψ dx = i Ψ = i Ψ Relaksaatioaika ja spektriresoluutio Heisenbergin epätarkkuusperiaate: ΔE Δt! ΔνΔt 1 π missä ΔE = epätarkkuus virittyneen tilan energiassa Δν = spektriviivan leveys (resoluutio) Δt = virittyneen tilan elinikä (relaksaatioaika)
9 Esimerkki Elektronispektrit Δt s (lyhyt elinikä) => ΔE 60 kj mol -1 Johtopäätös: - ΔE tilojen välinen energiaero - Vain muutama leveä absorptihuippu spektrissä; ei vähän hienorakennetta Esimerkki NMR - relaksaatioajat yleensä pitkiä - resoluutio yleensä hyvä 1,,3,4,5-Se 5 S :n 77 Se NMR spektri Esimerkki Mikroaaltospektroskopia Relaksaatio riippuu molekyylien keskinäisten törmäyksien välisestä ajasta (~ P) Johtopäätös: - Nesteissä ja liuoksissa ei MWspektriä voi havaita - Molekyylisäteessä parempi resoluutio
10 Schrödingerin aaltoyhtälön ratkaisuja yksinkertaisissa systeemeissä (1) Vapaa elektroni V(x) = 0 d Ψ m dx = EΨ Ψ = Aeikx + Be ikx ;E = k m Ψ*Ψ itsenäinen x- koordinaatista k voi saada minkä tahansa arvon Elektronin sijainti ei ole ennustettavissa Elektronin energia ei ole kvantittunut () Elektroni yksidimensionaalisessa laatikossa 0 < x < L :V(x) = 0; x 0, x L :V(x) = d Ψ m dx = EΨ Ψ = Aeikx + Be ikx ;E = k m => Kaikki ratkaisut eivät ole mahdollisia Reunaehdot: x = 0, Ψ = 0 ja x = L, Ψ = 0 => Ψ = Csinkx + Dcoskx Ψ = Csin nπ x L (n =1,,3,...) Pisteessä x = 0 ja Ψ = 0 => Ψ = C sin kx (C 0, D = 0) Pisteessä x = L ja Ψ = 0 => sin kl = 0 => kl = nπ E n = n π = n h (n =1,,3,...) ml 8mL
11 Normalisointi: Ψ = Csin nπ x L L # C sin nπ x & % (dx = C L $ L ' =1 C = L 0 Aaltofunktion kaarevuus kasvaa ja aallonpituus lyhenee, kun n kasvaa. Samalla energia kasvaa Ψ = # nπ x & sin% ( Energia kvantittunut L $ L ' (n = kvanttiluku) Huom! n > 0 => E 1 = h (nollapistenergia) 8mL - epätarkkuusperiaate - aaltofunktion kaarevuus Peräkkäisten energiatasojen välinen energiaero: ( E n+1 E n = n +1 ) h n h = 8mL ( n +1) 8mL Huom! ΔE pienenee, kun L kasvaa h 8mL Esimerkki Elektroni on lineaarisessa molekyylissä, jonka pituus on 1,0 nm. (a) Mikä on elektronin minimienergia? (b) Mikä on viritysenergia perustilalta 1. viritetylle tilalle?
12 Todennäköisyystiheys: Ψ * Ψ = Ψ = % $ 'sin nπ x % $ ' # L & # L & ψ Kun n kasvaa, todennäköisyys elektronin sijainnille laatikossa 0 < x < L tasoittuu. Vastaavuusperiaate: ψ Kvanttimekaniikka yhdistyy klassiseen mekaniikkaan korkeilla kvanttiluvuilla. Esimerkki Laske todennäköisyys, millä 10.0 nm pitkässä laatikossa perustilassa oleva hiukkanen sijaitsee (a) välillä 4,95 nm < x < 5,05 nm, (b) välillä 1,95 nm < x <,05 nm, (c) välillä 9,90 < x < 10,00 nm, (d) laatikon keskimmäisessä kolmanneksessa.
13 Ortogonaalisuus: Ψ n' * Ψ n dτ = 0 Esimerkki n = 1 Ψ 1 = L sin π x % $ ' # L & n = 3 Ψ 3 = 3π x % sin$ ' L # L & L 0 Ψ 1 * Ψ 3 dτ = % $ ' # L & L 0 sin π x % $ 'sin 3π x % $ 'dx = 0 # L & # L & (3) Elektroni kaksidimensionaalisessa laatikossa V(x, y) = 0 $ Ψ & m % x + Ψ y ' ) = EΨ ( Muuttujien erottaminen: Ψ = X(x)Y (y) d X m dx = E xx d Y m dy = E yy E = E x + E y
14 ! X n1 = sin n 1π x $ # & L 1 L 1 %! Y n = sin n π y $ # & L % Ψ n1.n = X n1 Y n L Ψ n1,n = sin n 1π x % $ 'sin n π y % $ ' 0 x L 1 ;0 y L L 1 L # & # & L 1 E n1,n = n 1 L + n % $ ' h # 1 L & 8m L ( ) Esimerkki Hiukkanen kaksi-dimensionaalisella pinnalla n 1 = n = n 1 = n = 1 n 1 = 1 n = (3) Elektroni kolmidimensionaalisessa laatikossa 8 % Ψ n1,n,n (x, y, z) = $ ' # L 1 L L 3 & 1/ sin n 1π x % $ 'sin n π y % $ 'sin n3π z % $ ' # & # L & # L3 & E n1,n,n 3 = n 1 L + n 1 L + n % 3 $ ' h # L 3 & 8m (0 x L ;0 y L ;0 z L ) 1 3 L 1 n 1 = 1 n = 1 (3) Degeneraatio Kaksiulotteinen tapaus, jossa L 1 = L = L Ψ n1,n = sin n 1π x sin n π y L L L ( ) E n1,n = n 1 + n h 8mL Esimerkki Tapaus 1: n 1 = 1, n = Ψ 1, = % $ 'sin π x % $ 'sin π y % $ ' # L & # L & # L & E 1, = 5h 8mL Tapaus : n 1 =, n = 1 Ψ 1, = % $ 'sin π x % $ 'sin π y % $ ' # L & # L & # L & E 1, = 5h 8mL
15 Tunneli-ilmiö Tunneli-ilmiöllä ymmärretään hiukkasen läpäisyä klassisen mekaniikan mukaista kiellettyä aluetta joko kokonaan tai osittain. Läpäisyn todennäköisyys: x < 0 : Ψ = Ae ikx + Be ikx k = me k 0 x L : m Ψ = Ce κ x + De κ x κ = d Ψ +VΨ = EΨ (E < V ) dx m( V E) 0 L L > x : Ψ=A'e ikx + B'e ikx (Olkoon B' = 0) ( ) % ' T= 1+ eκl e κl & 16ε ( 1 ε (' ) ) ' * +' 1 0 L Scanning tunneling microscope: Pt, Rh, W e - Sähkövirta riippuu neulan kärjen ja tarkasteltavan pinnan välisestä etäisyydestä: - Sähkövirta-moodi - Vakioetäisyys-moodi Cs-atomeja seostettu GaAs:n pinnalle
16 Esimerkki Vetysidokset 8-hydroxyquiliinissa (8-hq) Science 013 DOI:10.116/science.14603
Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa
Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,
LisätiedotKvanttimekaniikan perusteet
Kvanttimekaniikan perusteet Schrödingerin yhtälö Sironta potentiaaliaskeleesta Elektronitilat potentiaalikuopassa Harmoninen oskillaattori Tilatiheys lisää sirontailmiöistä Aineaaltokenttä ja todennäköisyystiheys
LisätiedotAikariippuva Schrödingerin yhtälö
Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin
Lisätiedot5.10. HIUKKANEN POTENTIAALIKUOPASSA
5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista
LisätiedotAineaaltodynamiikkaa
Aineaaltodynamiikkaa Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit = kuinka hiukkasen fysikaaliset
LisätiedotVapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,
LisätiedotSidotut tilat. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 5. Mikro- ja nanotekniikan laitos
Sidotut tilat Harris luku 5 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Tähän asti tutkittu aineaaltojen ominaisuuksia Seuraavaksi ryhdytään käyttämään aineaaltoja
LisätiedotKorkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk6o voidaan derivoida uudelleen. d! df(x) $ dx " # dx % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-
LisätiedotLuku 8: Kvanttimekaniikan soveltaminen eri liiketyyppeihin:
Luku 8: Kvanttimekaniikan soveltaminen eri liiketyyppeihin: Translaatioliike (hiukkanen laatikossa) Vibraatio eli värähdysliike Rotaatio eli pyörimisliike 1 Vapaan hiukkasen (V =0) Schrödingerin yhtälön
LisätiedotLuku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin:
Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin: Translaatioliike (hiukkanen laatikossa) Rotaatio eli pyörimisliike Vibraatio eli värähdysliike 1 Vapaan hiukkasen (V =0) Schrödingerin yhtälön
LisätiedotOsallistumislomakkeen viimeinen palautuspäivä on maanantai
Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:
LisätiedotTilat ja observaabelit
Tilat ja observaabelit Maksimaalinen informaatio systeemistä tietyllä ajanhetkellä sisältyy tilaan ψ (ket). Tila = vektori Hilbertin avaruudessa sisätulo ψ ψ C ψ c 1 ψ 1 + c 2 ψ 2 = c 1 ψ ψ 1 + c 2 ψ ψ
Lisätiedot1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =
S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio
LisätiedotKorkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d df(x) dx dx = d2 f(x) dx 2 = f''(x) = f 2 (x) Yleisemmin merkitään: d n f(x) dx n = f n (x) Esimerkki: 2 atominen molekyyli
LisätiedotKvanttifysiikan perusteet, harjoitus 5
Kvanttifysiikan perusteet, harjoitus 5 February 4, 07 Tehtävä Oletetaan energian ominaisfunktiot φ n ortonormitetuiksi, dxφ nφ m = δ nm, jossa δ nm on Kroneckerin delta. Määritetään ensin superpositiotilan
Lisätiedotψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)
76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa
Lisätiedot780392A/782631S Fysikaalinen kemia II, 5 op / 4 op
78392A/782631S Fysikaalinen kemia II, 5 op / 4 op Luennot: 5.9.-15.11.216 Ma klo 8-1 PR12 Ti klo 12-14 PR12 Risto Laitinen (22.2.-14.3.) Epäorgaanisen kemian tutkimusyksikkö (KE 313) PL 3 914 Oulun yliopisto
LisätiedotKorkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d dx! " # df(x) dx $ % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-
LisätiedotNyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot
S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan
Lisätiedot1 Aaltofunktio, todennäköisyystulkinta ja normitus
KEMA5 syksy 16 Kertausta keskeisistä asioista 1 Aaltofunktio, todennäköisyystulkinta ja normitus Kvanttimekaniikassa tarkasteltavaa systeemiä kuvaa aaltofunktio ψ. Aaltofunktio on puhtaan matemaattinen
LisätiedotFysikaalinen kemia 2 (KEMA225, 4 op) syksy 2011
Fysikaalinen kemia 2 (KEMA225, 4 op) syksy 2011 Luennot: Henrik Kunttu, Nanoscience Center, huone YN213; puh: 050-5996134; henrik.m.kunttu@jyu.fi Laskuharjoitukset: Lauri Nykänen; lauri.j.a.nykanen@.jyu.fi
Lisätiedot1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori
FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa
Lisätiedot766326A Atomifysiikka 1 - Syksy 2013
766326A Atomifysiikka 1 - Syksy 2013 Luennot n. 46 tuntia Torstaisin 8-10 sali IT116 Perjantaisin 8-10 sali L6 Poikkeuksia: to 19.9. luento vain 8-9 to 17.10. luento vain 8-9 to 14.11. luento vain 8-9
LisätiedotFysikaalinen kemia 2 (KEMA225, 4 op) syksy 2016
Fysikaalinen kemia 2 (KEMA225, 4 op) syksy 2016 Luennot: Henrik Kunttu, Nanoscience Center, huone YN213; puh: 050-5996134; henrik.m.kunttu@jyu.fi Vastaanotto torstaisin klo 13-15 Laskuharjoitukset: FM
Lisätiedot1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus
S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä
LisätiedotS Fysiikka III (EST) Tentti ja välikoeuusinta
S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,
LisätiedotJ 2 = J 2 x + J 2 y + J 2 z.
FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,
LisätiedotKVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA
KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka KVANTTITEORIA Metso Tampere 13.11.2005 MODERNI
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 7 Harjoitus 3: ratkaisut Tehtävä Tarkastellaan äärettömän syvässä laatikossa (väli [, L) olevaa hiukkasta. Kirjoita energiatiloja E n vastaavat aaltofunktiot muodossa ψ n (x,
LisätiedotS Fysiikka III (EST) (6 op) 1. välikoe
S-114.1327 Fysiikka III (EST) (6 op) 1. välikoe 1.3.21 Ilkka Tittonen 1. Vastaa seuraaviin kysymyksiin perustellusti, mutta ytimekkäästi (esim. 5-1 lausetta) (2p per kohta). a) Mikä on sidottu tila? Anna
Lisätiedotpääkiertoakseli #$%%ä 2C 2 C 2!"
Tehtävä 1 Määritä seuraavien molekyylien pisteryhmät: (a) H 3 N H 3 N l o l NH 3 + NH 3 urataan lohkokaaviota: lineaari!"!" suuri symmetria 2s v #$%%ä 2v!" pääkiertoakseli #$%%ä 2 2 2!" s h Vastaavasti:
Lisätiedot(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme
S-446 Fysiikka IV (Sf) Tentti 3934 Oletetaan, että φ ja φ ovat ajasta riippumattoman Scrödingerin yhtälön samaan ominaisarvoon E liittyviä ominaisfunktioita Nämä funktiot ovat normitettuja, mutta eivät
LisätiedotEsimerkki: 2- atominen molekyyli. Korkeammat derivaatat 1/24/13. Jo kerran derivoitu funk6o voidaan derivoida uudelleen. Yleisemmin merkitään:
Korkeammat erivaatat Jo kerran erivoitu funk6o voiaan erivoia uuelleen.! f(x) x " # x % & = 2 f(x) = f''(x) = f (2) (x) x 2 Yleisemmin merkitään: n f(x) = f (n) (x) x n erkki: 2- atominen molekyyli Värähtelevän
LisätiedotKvanttimekaniikan perusteet
Kvanttimekaniikan perusteet Schrödingerin yhtälö Sironta potentiaaliaskeleesta Elektronitilat potentiaalikuopassa Harmoninen oskillaattori Tilatiheys lisää sirontailmiöistä Aaltofunktio ja todennäköisyystiheys
LisätiedotCh7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.
Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu
LisätiedotFYSA2031 Potentiaalikuoppa
FYSA2031 Potentiaalikuoppa Työselostus Laura Laulumaa JYFL YK216 laura.e.laulumaa@student.jyu.fi 16.10-2.11. 2017 Ohjaus Työn ja ohjelman esittely ( 30 min) Harjoitellaan ohjelman käyttöä Harmoninen potentiaali
Lisätiedotja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA
ja KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka WYP2005 ja KVANTTITEORIA 24.1.2006 WYP 2005
LisätiedotFYSA234 Potentiaalikuoppa, selkkarityö
FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 16. lokakuuta 2013 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan
LisätiedotFYSA234 Potentiaalikuoppa, selkkarityö
FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 13. lokakuuta 2014 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan
LisätiedotKVANTTIMEKANIIKAN PERUSTEET...57
KVANTTIMEKANIIKAN PERUSTEET...57.1 Johdanto... 57. Aaltofunktio ja todennäköisyystiheys... 58.3 Schrödingerin yhtälö... 61.3.1 Vapaan hiukkasen aaltofunktio... 6.4 Hiukkasen sironta potentiaaliaskeleesta...
LisätiedotTodennäköisyys ja epämääräisyysperiaate
Todennäköisyys ja epämääräisyysperiaate Luento 7 Hiukkas-aaltodualismi vaatii uudenlaisen kielenkäytön omaksumista kuvaamaan iukkasten liikettä ja paikkaa. Newtonin mekaniikassa iukkanen on aina jossain
Lisätiedot3. MATERIALISTISTEN HIUKKASTEN AALTOLUONNE
3. MATERIALISTISTEN HIUKKASTEN AALTOLUONNE 3.1. DE BROGLIE AALLOT 1905: Aaltojen hiukkasominaisuudet 1924: Hiukkasten aalto-ominaisuudet: de Broglien hypoteesi Liikkuvat hiukkaset käyttäytyvät aaltojen
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
Lisätiedotkolminkertaisesti tehtäviä tavallisiin harjoituksiin verrattuna, voi sen kokonaan tekemällä saada suunnilleen kolmen tavallisen harjoituksen edestä
Matematiikkaa kemisteille, kevät 2013 Ylimääräisiä laskuharjoituksia Tällä laskuharjoituksella voi korottaa laskuharjoituspisteitään, mikäli niitä ei ole riittävästi kurssin läpäisemiseen, tai vaihtoehtoisesti
LisätiedotVapaat tilat. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 6. Mikro- ja nanotekniikan laitos
Vapaat tilat Harris luku 6 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Potentiaaliaskel Potentiaalivalli ja tunneloituminen Aaltopaketti ja aineaallon eteneminen Potentiaaliaskel
LisätiedotJohdantoa. 0.1 Mustan kappaleen säteily. Musta kappale (black body): Kvanttimekaniikka. Wienin siirtymälaki jakautuman maksimille on
MNQT, sl 2015 1 MNQT, sl 2015 2 Johdantoa Kvanttimekaniikka tarvittiin selittämään uusia kokeellisia havaintoja korvaa Newtonin yhtälön Schrödingerin yhtälöllä, joka on tavallaan pienten hiukkasten "liikeyhtälö"
LisätiedotAineen aaltoluonne. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 4. Mikro- ja nanotekniikan laitos
Aineen aaltoluonne Harris luku 4 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Aineaallot Heisenbergin epätarkkuusperiaate Fourier-muunnos ja epätarkkuusperiaate Aineaaltojen
LisätiedotKvanttimekaniikka: Luento 2. Mar$kainen Jani- Petri
Kvanttimekaniikka: Luento 2 Mar$kainen Jani- Petri Assarointimainos Fyssa tarvitsee assareita Noin 30 euroa tun$+ lisiä tyypillises$ n. 4h/viikko, muba voi olla enemmän/vähemmän Opintosuoritukset+ lyhyt
LisätiedotTfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
Lisätiedot1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria
Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.
LisätiedotShrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
LisätiedotKvanttimekaniikkaa yhdessä ulottuvuudessa
Kvanttimekaniikkaa yhdessä ulottuvuudessa Kvanttiefektit ovat tärkeitä nanoskaalassa. Tässä on ksenon-atomeilla tehtyjä kirjaimia metallipinnalla. Luennon tavoite: Ymmärtää kvanttimekaniikan perusperiaatteet
Lisätiedot766334A Ydin- ja hiukkasfysiikka
1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää
LisätiedotMatematiikkaa kemisteille, kevät 2012 Ylimääräinen laskuharjoitus Palautus 7.5. klo (suositellaan kuitenkin tekemään ennen välikoetta 30.4!
Matematiikkaa kemisteille, kevät 2012 Ylimääräinen laskuharjoitus Palautus 7.5. klo 16.00 (suositellaan kuitenkin tekemään ennen välikoetta 30.4! Tämä laskuharjoitus ei ole pakollinen, eikä sen pisteitä
LisätiedotLuku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi
Luku 13: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien
LisätiedotKvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi
Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)
LisätiedotOsittaisdifferentiaaliyhtälöt
Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,
Lisätiedot3.6 Feynman s formulation of quantum mechanics
3.6 Feynman s formulation of quantum mechanics Course MAT-66000: Quantum mechanics and the particles of nature Ilkka Kylänpää Tampere University of Technology 14.10.2010 Sisältö Johdattelua Klassinen action
LisätiedotKvanttimekaniikka kolmessa ulottuvuudessa Case vetyatomi
Kvanttimekaniikka kolmessa ulottuvuudessa Case vetyatomi Harris luku 7 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Yleistetään viidennen luvun sidottujen tilojen
LisätiedotT R Hψ = H(r + R)ψ(r + R) = H(r)ψ(r + R) Kahden peräkkäisen translaation vaikutus ei riipu
Elektronit periodisessa potentiaalissa Tarkastellaan täydellistä Bravais n hilan kuvaamaa kidettä. Vaikka todelliset kiinteät aineet eivät esiinnykään täydellisinä hiloina, voidaan poikkeamat periodisuudesta
LisätiedotFysikaalinen kemia II kaavakokoelma, osa 1
Fysikaalinen kemia II kaavakokoelma, osa 1 Wienin siirtymälaki: T λ max = 0.2898 cm K (1) Stefan Boltzmanin laki: M = σt 4 σ = 5.67 10 8 W m 2 K 4 (2) Planckin jakauma ρ = 8πkT λ 4 ( 1 ) e hc/λkt 1 (3)
Lisätiedot.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek
S-446, FYSIIKKA IV (Sf) Kevät 5, HSf Rtkisut HSf- Kvnttimekninen hrmoninen värähtelijä on perustillln (mss m) Värähtelyn mplitudi on A () ske p (Värähtelijä sijitsee välillä A ) (b) Vert p :tä vstv kineettistä
LisätiedotELEC-A3110 Mekaniikka (5 op)
ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia
LisätiedotKlassisen fysiikan ja kvanttimekaniikan yhteys
Klassise fysiika ja kvattimekaiika yhteys Scrödigeri yhtälö ei statioäärisistä tiloista muodostuvie aaltopakettie aikakäyttäytymie oudattaa Newtoi lakeja. Newtoi mekaiikka voidaa johtaa Schrödigeri yhtälöstä.
LisätiedotAINEAALTODYNAMIIKKA...105
AINEAALTODYNAMIIKKA...105 3.1 Aikariippuva Schrödingerin yhtälö... 105 3.1.1 Stationääriset tilat... 108 3.1.. Ei-stationääriset tilat... 109 3.1.3 Aaltofunktioon liittyvä todennäköisyysvirta... 113 3.1.4
LisätiedotVoima ja potentiaalienergia II Energian kvantittuminen
Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)
LisätiedotAnalyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.
Analyysi Harjoituksia lukuihin 3 / Syksy 204. Osoita täsmällisesti perustellen, että joukko { 2x A = x ]4, [. x 4 ei ole ylhäältä rajoitettu. 2. Anna jokin ylä- ja alaraja joukoille { x( x) A = x ], [,
Lisätiedot1 Tieteellinen esitystapa, yksiköt ja dimensiot
1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen
LisätiedotJakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina
Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.
LisätiedotKahden suoran leikkauspiste ja välinen kulma (suoraparvia)
Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole
LisätiedotJukka Tulkki 8. Laskuharjoitus (ratkaisut) Palautus torstaihin 3.4 klo 12:00 mennessä. x 2
S 437 Fysiikka III Kevät 8 Jukka Tulkki 8 askuharjoitus (ratkaisut) Palautus torstaihin 34 klo : mennessä Assistentit: Jaakko Timonen Ville Pale Pyry Kivisaari auri Salmia (jaakkotimonen@tkkfi) (villepale@tkkfi)
LisätiedotNumeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28
Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä
LisätiedotPakotettu vaimennettu harmoninen värähtelijä Resonanssi
Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian
LisätiedotDemo: Kahden elektronin spintilojen muodostaminen
Demo: Kahden elektronin spintilojen muodostaminen Tämän demonstraation tarkoituksena on havainnollistaa kvanttimekaniikan operaattoriformalismin soveltamista kahden elektronin systeemin spintilojen muodostamiseen.
LisätiedotVoima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!
6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata
LisätiedotLuento Atomin rakenne
Luento 10 5. Atomin rakenne Vetatomi Ulkoisten kenttien aiheuttama energiatasojen hajoaminen Zeemanin ilmiö Elektronin spin Monen elektronin atomit Röntgensäteiln spektri 1 Schrödingerin htälö kolmessa
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,
Lisätiedot8. MONIELEKTRONISET ATOMIT
8. MONIELEKTRONISET ATOMIT 8.1. ELEKTRONIN SPIN Epärelativistinen kvanttimekaniikka selittää vetyatomin rakenteen melko tarkasti, mutta edelleen kokeellisissa atomien energioiden mittauksissa oli selittämättömiä
LisätiedotKvanttidynamiikka Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin.
Kvanttidynamiikka 30.10.2010 0.1 Bra- ja Ket-merkinnöistä Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin. Oletetaan, että ket ψ ja bra φ ovat alkioita, jotka liittyvät
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
LisätiedotEnergian säilymislain perusteella elektronin rekyylienergia on fotnien energioiden erotus: (1)
S-11446 Fysiikka IV (Sf), I Väliko 544 1 Osoita, ttä Comptonin sironnassa lktronin suurin mahdollinn rkyylinrgia voidaan sittää muodossa E Kin hf 1 + mc /hf Enrgian säilymislain prustlla lktronin rkyylinrgia
LisätiedotLuento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic
LisätiedotMonissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta
8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin
Lisätiedot6. Kompleksiluvut. Kompleksilukuja esiintyy usein polynomiyhtälöiden ratkaisuina. Esim:
6. Kompleksiluvut Yhtälöllä x = 1 ei ole reaalilukuratkaisua: tarvitaan uusia lukuja. Kompleksiluku on kahden reaaliluvun järjesteby "pari" (x,y): Z = x +iy Missä i on imaginääriyksikkö, jolla on ominaisuus
Lisätiedotdx = d dψ dx ) + eikx (ik du u + 2ike e ikx u i ike ikx u + e udx
763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 5 Kevät 2014 1. Tehtävä: Johda luetomateriaali kaavat d 2 u i k du 2 m + Uxu = E k 2 u p = k + u x i d ux. Ratkaisu: Oletetaa, että ψx = e ikx ux, missä ux +
LisätiedotZ 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2
766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.
LisätiedotMEI Kontinuumimekaniikka
MEI-55300 Kontinuumimekaniikka 1 MEI-55300 Kontinuumimekaniikka 3. harjoitus matemaattiset peruskäsitteet, kinematiikkaa Ratkaisut T 1: Olkoon x 1, x 2, x 3 (tai x, y, z) suorakulmainen karteesinen koordinaatisto
LisätiedotLuento 10: Työ, energia ja teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin
LisätiedotAatofunktiot ja epätarkkuus
Aatofunktiot ja epätarkkuus Aaltofunktio sisältää tiedon siitä, millä todennäköisyydellä hiukkanen on missäkin avaruuden pisteessä. Tämä tunnelointimikroskoopilla grafiitista otettu kuva näyttää elektronin
Lisätiedotkertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma
infoa kertausta Boltzmannin jakauma Huomenna itsenäisyyspäivänä laitos on kiinni, ei luentoa, ei laskareita. Torstaina laboratoriossa assistentit neuvovat myös laskareissa. Ensi viikolla tiistaina vielä
LisätiedotKULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta
LisätiedotFysiikka 8. Aine ja säteily
Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015
Lisätiedot6. Toisen ja korkeamman kertaluvun lineaariset
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia
LisätiedotAineaaltodynamiikka. Aikariippuva Schrödingerin yhtälö. Stationääriset tilat. Ei-stationääriset tilat
Aieaaltodyamiikka Aikariiuva Scrödigeri ytälö Aieaaltoketä aikariiuvuude määrää ytälö Aieaaltokettie riiuvuus ajasta aikariiuva Scrödigeri ytälö Statioääriset ja ei-statioääriset tilat Aaltoaketit Kvattimekaiika
Lisätiedot, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,
S-114.6, Fysiikka IV (EST),. VK 4.5.005, Ratkaisut 1. Selitä lyhyesti mutta mahdollisimman täsmällisesti: a) Keskimääräisen kentän malli ja itsenäisten elektronien approksimaatio. b) Monen fermionin aaltofunktion
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN
LisätiedotJatko-opintoseminaari Kevyttä johdattelua kvanttimekaniikkaan: Tila-avaruus. Petteri Laakkonen
Jatko-opintoseminaari 21-211 Kevyttä johdattelua kvanttimekaniikkaan: Tila-avaruus Petteri Laakkonen 23.9.21 Tämä teksti on tiivistelmä kirjan [1] luvun 2 tekstistä. Pyrkimyksenä on esittää perustellusti
LisätiedotUseita oskillaattoreita yleinen tarkastelu
Useita oskillaattoreita yleinen tarkastelu Useita riippumattomia vapausasteita q i, i =,..., n ja potentiaali vastaavasti U(q, q 2,..., q n). Tasapainoasema {q 0, q0 2,..., q0 n} q 0 Käytetään merkintää
Lisätiedotm h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,
76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti
Lisätiedot