Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä.

Koko: px
Aloita esitys sivulta:

Download "Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä."

Transkriptio

1 Kotitehtävät palautetaan viimeistään keskiviikkona 2.3. ennen luentojen alkua eli klo 14:00 mennessä puiseen kyyhkyslakkaan, jonka numero on 9. Arvostellut kotitehtäväpaperit palautetaan laskutuvassa. Harjoitus 1 Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä. a) normaalivoima ja normaalijännitys b) leikkausvoima ja leikkausjännitys c) Liimasauman pituus a = 20 mm ja liitettävien levyjen leveys b = 30 mm. Voima P on suuruudeltaan 20 kn. Ratkaise liimasauman keskimääräinen leikkausjännitys. a) Normaalivoima ja normaalijännitys Pinnan normaalin suuntaista voimaa N kutsutaan normaalivoimaksi. Normaalivoima on positiivinen silloin, kun se pyrkii kasvattamaan sauvan pituutta. Vastaavasti puristusta aiheuttava normaalivoima on suuruudeltaan negatiivinen. Materiaalin rasituksen suuruutta kuvaava normaalijännitys σ saadaan normaalivoimasta yhteydellä σ = N A missä A on poikkileikkauksen pinta-ala. Suureiden SI-yksiköt ovat [N] = N (newton), [A] = m 2 (neliömetri) ja [σ] = N = P a (pascal). m 2 b) Leikkausvoima ja leikkausjännitys Pinnan suuntaista voimaa Q kutsutaan leikkausvoimaksi. Leikkausvoiman etumerkki riippuu valitusta koordinaatistosta. 1

2 Materiaalin rasituksen suuruutta kuvaava leikkausjännitys τ (tau) saadaan leikkausvoimasta yhteydellä τ = Q A missä A on poikkileikkauksen pinta-ala. Suureiden SI-yksiköt ovat [N] = N (newton), [A] = m 2 (neliömetri) ja [σ] = N = P a (pascal). m 2 c) Yhden liimasauman pinta-ala A = a b = 600 mm 2. Keskimmäisen levyn ylä- ja alapinnalla on liimasauma. Voima P jakautuu kahdelle liimapinnalle. Näin ollen yhtä liimasaumaa kuormittaa voima P/2 (kts. kuva) ja liimasauman keskimääräinen leikkasujännitys voidaan laskea seuraavasti τ kesk = P 2A = N 16, 67 MP a 17 MP a (1) 1200 mm2 Tehtävä 2 a) Kuvan 1 sauvan paksumman osan poikkileikkauksessa vallitsee voiman P aiheuttama normaalijännitys σ = 30MP a. Laske sauvan ohuemmassa osassa vaikuttava normaalijännitys. Sauvan poikkileikkauksessa vaikuttava normaalijännitys σ, normaalivoima F ja poikkipintaalan A liittyvät toisiinsa yhteydellä σ = P A (2) 2

3 Merkitsemällä paksua sauvaa alaindeksillä 1 ja ohutta alaindeksillä 2 voidaan sauvoissa vaikuttaville normaalijännityksille kirjoittaa yhtälöt σ 1 = P A 1 = 30 MP a (3) σ 2 = P A 2 (4) Kaavasta (3) saadaan ratkaistua voimaksi joka kaavaan (4) sijoittamalla antaa P = σ 1 A 1 (5) σ 2 = σ 1 A 1 A 2 = 30 MP a (6) Pyöreän sauvan pinta-ala saadaan kaavalla A = 1 4 πd2, joten kaavasta (6) saadaan ( ) 2 D1 σ 2 = σ 1 = 30 MP a D 2 ( ) 60mm 2 = 120MP a (7) 30mm b) Kaksi levyä on kiinnitetty ruuvilla kuvan 2 mukaisesti. Levyissä vaikuttaa vetovoima P = 10 kn. Laske ruuviin kohdistuva keskimääräinen leikkausjännitys τ. Levyn paksuus t = 10 mm, ja Ruuvin halkaisija d = 12 mm. Symmetrian nojalla levy-ruuvi yhdistelmä voidaan jakaa kahteen osaan (kts. kuva alla), jolloin riittää tarkastella vain toista osaa. Jännityksen laskemiseksi tarvitaan ruuvin poikkipinta-ala. Poikkileikkaukseltaan pyöreän ruuvin pinta-ala saadaan kaavalla A = 1 4 πd2, ja näin saadaan ( ) ( ) τ = Q A = Q 10 kn 1 = 4 πd2 1 4 π122 mm 2 88, 42 MP a 88 MP a (8) 3

4 Tehtävä 3 Kaksi hoikkaa teräspalkin pätkää halutaan liittää yhteen käyttäen kuvan 3 mukaista liimasaumaa. Valmistaja ilmoittaa teräksen vetolujuudeksi 200 MPa, ja palkin mitat ovat: a = 75 ja b = 45. Liiman leikkauslujuus on 20 MP a. Laske kuinka suuri kulman φ on oltava, jotta liimasauma kestää saman voiman kuin eheä palkki. Piirretään vapaakappalekuva palkin puolikkaasta Kuvassa (a) on esitetty liimapinnan suuntainen P y voimakomponentti ja sitä vastaan kohtisuorassa oleva voimakomponentti P x. Näitä voimakomponentteja vastaavat jännityskomponentit on esitetty kuvassa (b). Kuvissa näkyvä kulma θ = 90 o φ. Voimakomponenttien suuruudet saadaan trigonometriasta: N φ = sin(φ) P (9) 4

5 Itse voima P saadaan laskettua vetolujuuden perusteella Sauman pinta-ala voidaan laskea trigonometrian avulla seuraavasti Q φ = cos(φ) P (10) P = σ max a b (11) A s = b sin(φ) a (12) Nyt yhdistämällä kaavat (8) (12) saadaan sauman leikkausjännityksen lausekkeeksi τ φ = Q φ = cos(φ) σ max a b = 1 A a b s 2 sin(2 φ) σ max (13) sin(φ) Ratkaisemalla φ kaavasta (13) ja sijoittamalla teräksen vetolujuus σ max = 200 MP a ja leikkauslujuus τ φ = 20 MP a saadaan tälle arvoksi φ = 1 20 arcsin , 10 rad ( 5, 70o ) (14) Todellisuudessa liimasauma joutuu kantamaan myös normaalijännityksen. Tällaisessa tapauksessa sauman myötötarkastelu joudutaan tekemään käyttäen myötöehtoja (esim. Von Mises tai pääjännitys). 5

Laskuharjoitus 1 Ratkaisut

Laskuharjoitus 1 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 28.2. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 1 Ratkaisut 1.

Lisätiedot

Laskuharjoitus 2 Ratkaisut

Laskuharjoitus 2 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 7.3. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 2 Ratkaisut 1.

Lisätiedot

Harjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Harjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

Ratkaisut 2. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä.

Ratkaisut 2. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

Harjoitus 6. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Harjoitus 6. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 KJR-C001 Kiinteän aineen mekaniikan perusteet, IV/01 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 1:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri

Lisätiedot

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv 2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyvien vakioiden määrittämiseen. Jännitystila on siten

Lisätiedot

A on sauvan akselia vastaan kohtisuoran leikkauspinnan ala.

A on sauvan akselia vastaan kohtisuoran leikkauspinnan ala. Leikkausjännitys Kuvassa on esitetty vetosauvan vinossa leikkauksessa vaikuttavat voimat ja jännitykset. N on vinon tason normaalivoima ja on leikkausvoima. Q Kuvan c perusteella nähdään N Fcos Q Fsin

Lisätiedot

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

Materiaalien mekaniikka

Materiaalien mekaniikka Materiaalien mekaniikka 3. harjoitus jännitys ja tasapainoyhtälöt 1. Onko seuraava jännityskenttä tasapainossa kun tilavuusvoimia ei ole: σ x = σ 0 ( 3x L + 4xy 8y ), σ y = σ 0 ( x L xy + 3y ), τ xy =

Lisätiedot

Aksiaalisella tai suoralla leikkauksella kuormitettujen rakenneosien lujuusopillinen analyysi ja suunnittelu

Aksiaalisella tai suoralla leikkauksella kuormitettujen rakenneosien lujuusopillinen analyysi ja suunnittelu TAVOITTEET Statiikan kertausta Kappaleen sisäiset rasitukset Normaali- ja leikkausjännitys Aksiaalisella tai suoralla leikkauksella kuormitettujen rakenneosien lujuusopillinen analyysi ja suunnittelu 1

Lisätiedot

Palkki ja laatta toimivat yhdessä siten, että laatta toimii kenttämomentille palkin puristuspintana ja vetoteräkset sijaitsevat palkin alaosassa.

Palkki ja laatta toimivat yhdessä siten, että laatta toimii kenttämomentille palkin puristuspintana ja vetoteräkset sijaitsevat palkin alaosassa. LAATTAPALKKI Palkki ja laatta toimivat yhdessä siten, että laatta toimii kenttämomentille palkin puristuspintana ja vetoteräkset sijaitsevat palkin alaosassa. Laattapalkissa tukimomentin vaatima raudoitus

Lisätiedot

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ TAVOITTEET Kehitetään menetelmä, jolla selvitetään homogeenisen, prismaattisen suoran sauvan leikkausjännitysjakauma kun materiaali käyttäytyy lineaarielastisesti Menetelmä rajataan määrätyn tyyppisiin

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 8.3.2016 Susanna Hurme Päivän aihe: Normaalivoiman, leikkausvoiman ja taivutusmomentin käsitteet (Kirjan luku 7.1) Osaamistavoitteet: Ymmärtää, millaisia sisäisiä

Lisätiedot

TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat

TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat Lasketaan suurimmat leikkaus- ja taivutusrasitukset Analysoidaan sauvoja, jotka ovat suoria,

Lisätiedot

Harjoitus 7. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Harjoitus 7. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 4: mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

Tasokehät. Kuva. Sauvojen alapuolet merkittyinä.

Tasokehät. Kuva. Sauvojen alapuolet merkittyinä. Tasokehät Tasokehä muodostuu yksinkertaisista palkeista ja ulokepalkeista, joita yhdistetään toisiinsa jäykästi tai nivelkehässä nivelellisesti. Palkit voivat olla tasossa missä kulmassa tahansa. Palkkikannattimessa

Lisätiedot

SUORAN PALKIN TAIVUTUS

SUORAN PALKIN TAIVUTUS SUORAN PALKIN TAIVUTUS KERTAUSTA! Palkin rasituslajit Palkki tasossa: Tasopalkin rasitukset, sisäiset voimat, ovat normaalivoima N, leikkausvoima Q ja taivutusmomentti M t. Ne voidaan isostaattisessa rakenteessa

Lisätiedot

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =

Lisätiedot

RASITUSKUVIOT. Kuvioiden laatimisen tehostamiseksi kannattaa rasitukset poikkileikkauksissa laskea seuraavassa esitetyllä tavalla:

RASITUSKUVIOT. Kuvioiden laatimisen tehostamiseksi kannattaa rasitukset poikkileikkauksissa laskea seuraavassa esitetyllä tavalla: RASITUSKUVIOT Suurimpien rasitusten ja niiden yhdistelmien selvittämiseksi laaditaan niin sanotut rasituskuviot, joissa esitetään kunkin rasituksen arvot kaikissa rakenteen poikkileikkauksissa. Rasituskuvioita

Lisätiedot

PUHDAS, SUORA TAIVUTUS

PUHDAS, SUORA TAIVUTUS PUHDAS, SUORA TAIVUTUS Qx ( ) Nx ( ) 0 (puhdas taivutus) d t 0 eli taivutusmomentti on vakio dx dq eli palkilla oleva kuormitus on nolla 0 dx suora taivutus Taivutusta sanotaan suoraksi, jos kuormitustaso

Lisätiedot

8. Yhdistetyt rasitukset

8. Yhdistetyt rasitukset TAVOITTEET Analysoidaan ohutseinäisten painesäiliöiden jännitystilaa Tehdään yhteenveto edellisissä luennoissa olleille rasitustyypeille eli aksiaalikuormalle, väännölle, taivutukselle ja leikkausvoimalle.

Lisätiedot

MEI Kontinuumimekaniikka

MEI Kontinuumimekaniikka MEI-55300 Kontinuumimekaniikka 1 MEI-55300 Kontinuumimekaniikka 6. harjoitus jännitysmitat Ratkaisut T 1: Ohuen suoran sauvan pituus referenssitilassa on 0 ja poikkipinta-ala on A 0. Sauvan akselin suuntaisen

Lisätiedot

SUORAN PALKIN RASITUKSET

SUORAN PALKIN RASITUKSET SUORAN PALKIN RASITUKSET Palkilla tarkoitetaan pitkänomaista rakenneosaa, jota voidaan käsitellä yksiulotteisena eli viivamaisena. Palkkia kuormitetaan pääasiassa poikittaisilla kuormituksilla, mutta usein

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

Harjoitus 4. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä.

Harjoitus 4. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

1. kotitehtäväsarja - Einsteinin summaussääntö ja jännitystila - malliratkaisut

1. kotitehtäväsarja - Einsteinin summaussääntö ja jännitystila - malliratkaisut . kotitehtäväsarja - Einsteinin summaussääntö ja jännitystila - malliratkaisut Tehtävä. Ovatko seuraavat indeksimuotoiset lausekkeet karteesisessa suorakulmaisessa koordinaatistossa oikein, perustelu?

Lisätiedot

grada dv = a n da, (3) vol(ω) ε = εdv. (4) (u n +n u)da, (5)

grada dv = a n da, (3) vol(ω) ε = εdv. (4) (u n +n u)da, (5) MEI-55 Mallintamisen perusteet Harjoitus 2 Tehtävä Dyadin a b, jossa a,b R 3 jälki on skalaari jota merkitään tr(a b) ja määritellään pistetulona tr(a b) = a b. (). Mikäli vektorit a ja b on annettu suorakulmaisessa

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät TAVOITTEET Johdetaan htälöt, joilla muutetaan jännitskomponentit koordinaatistosta toiseen Kätetään muunnoshtälöitä suurimpien normaali- ja leikkaus jännitsten laskemiseen pisteessä Määritetään ne tasot,

Lisätiedot

KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit

KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit KJR-C1001: Statiikka L2 Luento 21.2.2018: voiman momentti ja voimasysteemit Apulaisprofessori Konetekniikan laitos Luennon osaamistavoitteet Tämän päiväisen luennon jälkeen opiskelija Pystyy muodostamaan,

Lisätiedot

Kompleksiluvut., 15. kesäkuuta /57

Kompleksiluvut., 15. kesäkuuta /57 Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

sin x cos x cos x = sin x arvoilla x ] π

sin x cos x cos x = sin x arvoilla x ] π Matematiikan johdantokurssi, syksy 08 Harjoitus 0, ratkaisuista. Todenna, että = + tan x. Mutta selvitäppä millä reaaliarvoilla se oikeasti pitää paikkansa! Ratkaisu. Yhtälön molemmat puolet ovat määriteltyjä

Lisätiedot

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on 766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2. 7/ EEMENTTIMENETEMÄN PERSTEET SESSIO 7: Aksiaalinen sauvaelementti, osa. RATKAIS EEMENTIN AEESSA Verkon perusyhtälöstä [ K ]{ } = { F} saatavasta solmusiirtymävektorista { } voidaan poimia minkä tahansa

Lisätiedot

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus TAVOITTEET Määritetään aksiaalisesti kuormitetun sauvan muodonmuutos Esitetään menetelmä, jolla ratkaistaan tukireaktiot tapauksessa, jossa statiikan tasapainoehdot eivät riitä Analysoidaan lämpöjännitysten,

Lisätiedot

Liitos ja mitat. Lisäksi mitoitetaan 4) seinän suuntainen sideraudoitus sekä 6) terästapit vaakasuuntaisille voimille.

Liitos ja mitat. Lisäksi mitoitetaan 4) seinän suuntainen sideraudoitus sekä 6) terästapit vaakasuuntaisille voimille. 25.9.2013 1/5 Liitoksen DO501 laskentaesimerkki Esimerkissä käsitellään tyypillisten elementtien mittojen mukaista liitosta. Oletetaan liitoksen liittyvän tavanomaiseen asuinkerrostaloon. Mitoitustarkastelut

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

P min P,P,P. k k1 k2 k3. c.lim. (t 2 )k

P min P,P,P. k k1 k2 k3. c.lim. (t 2 )k KUMILAAKERIN MUODONMUUTOKSET JA KUORMITETTAVUUS PERUSTUU KUMIMALLIIN, JOKA ESITETÄÄN RAPORTISSA RTL 0105 a 0 P KUORMITETTAVUUSFUNKTIO P k (a 0,b 0,t,g) a 0 = sivumitta rakenteen suunnassa b 0 = sivumitta

Lisätiedot

P min P,P,P. k k1 k2 k3. c.lim. (t 2 )k

P min P,P,P. k k1 k2 k3. c.lim. (t 2 )k KUMILAAKERIN MUODONMUUTOKSET JA KUORMITETTAVUUS PERUSTUU KUMIMALLIIN, JOKA ESITETÄÄN RAPORTISSA RTL 0105 a 0 P KUORMITETTAVUUSFUNKTIO P k (a 0,b 0,t,g) a 0 = sivumitta rakenteen suunnassa b 0 = sivumitta

Lisätiedot

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja TAVOITTEET Tutkitaan väännön vaikutusta suoraan sauvaan Määritetään vääntökuormitetun sauvan jännitysjakauma Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti

Lisätiedot

LUJUUSHYPOTEESIT, YLEISTÄ

LUJUUSHYPOTEESIT, YLEISTÄ LUJUUSHYPOTEESIT, YLEISTÄ Lujuushypoteesin tarkoitus: Vastataan kysymykseen kestääkö materiaali tietyn yleisen jännitystilan ( x, y, z, τxy, τxz, τyz ) vaurioitumatta. Tyypillisiä materiaalivaurioita ovat

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 25.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Tämän päivän luento Aiemmin ollaan johdettu palkin voimatasapainoyhtälöt differentiaaligeometrisella tavalla

Lisätiedot

LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0401 Kandidaatintyö ja seminaari

LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0401 Kandidaatintyö ja seminaari LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0401 Kandidaatintyö ja seminaari VÄÄNTÖRASITETUN RAKENNEOSAN EURONORMIIN PERUSTUVA KESTÄVYYSLASKENTAYHTÄLÖIDEN

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän

Lisätiedot

RASITUSKUVIOT (jatkuu)

RASITUSKUVIOT (jatkuu) RASITUSKUVIOT (jatkuu) Rakenteiden suunnittelussa yksi tärkeimmistä tehtävistä on rakenteen mitoittaminen kestämään ja kantamaan annetut kuormitukset muotonsa riittävässä määrin säilyttäen. Kun on selvitetty

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 3.3.2016 Susanna Hurme Päivän aihe: Ristikon sauvavoimat (Kirjan luvut 6.1-6.4) Osaamistavoitteet: Ymmärtää, mikä on ristikkorakenne Osata soveltaa aiemmin kurssilla

Lisätiedot

10 knm mm 1000 (a) Kuva 1. Tasokehä ja sen elementtiverkko.

10 knm mm 1000 (a) Kuva 1. Tasokehä ja sen elementtiverkko. Elementtimenetelmän perusteet Esimerkki. kn kn/m 5 = 8 E= GPa mm 5 5 mm (a) 5 5 6 Y X (b) Kuva. Tasokehä ja sen elementtiverkko. Tarkastellaan kuvassa (a) olevan tasokehän statiikan ratkaisemista elementtimenetelmällä.

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

Johdatus materiaalimalleihin

Johdatus materiaalimalleihin Johdatus materiaalimalleihin 2 kotitehtäväsarja - kimmoisat materiaalimallit Tehtävä Erään epälineaarisen kimmoisen isotrooppisen aineen konstitutiivinen yhtälö on σ = f(i ε )I + Ge () jossa venymätensorin

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan

Lisätiedot

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2 Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................

Lisätiedot

KJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti

KJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti KJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti Apulaisprofessori Konetekniikan laitos Statiikan välikoe 12.3.2018 Ajankohta ma 12.3.2018 klo 14:00 17:00 Salijako

Lisätiedot

ESIMERKKI 3: Märkätilan välipohjapalkki

ESIMERKKI 3: Märkätilan välipohjapalkki ESIMERKKI 3: Märkätilan välipohjapalkki Perustietoja - Välipohjapalkki P103 tukeutuu ulkoseiniin sekä väliseiniin ja väliseinien aukkojen ylityspalkkeihin. - Välipohjan omapaino on huomattavasti suurempi

Lisätiedot

2 LUJUUSOPIN PERUSKÄSITTEET Suoran sauvan veto tai puristus Jännityksen ja venymän välinen yhteys

2 LUJUUSOPIN PERUSKÄSITTEET Suoran sauvan veto tai puristus Jännityksen ja venymän välinen yhteys SISÄLLYSLUETTELO Kirjallisuusluettelo 12 1 JOHDANTO 13 1.1 Lujuusopin sisältö ja tavoitteet 13 1.2 Lujuusopin jako 15 1.3 Mekaniikan mallin muodostaminen 16 1.4 Lujuusopillinen suunnittelu 18 1.5 Lujuusopin

Lisätiedot

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan

Lisätiedot

10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat

10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat TAVOITTEET Esitetään vastaavalla tavalla kuin jännitystilan yhteydessä venymätilan muunnosyhtälöt Kehitetään materiaaliparametrien yhteyksiä; yleistetty Hooken laki Esitetään vaurioteoriat, joilla normaali-

Lisätiedot

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.

Lisätiedot

Laskuharjoitus 3 Ratkaisut

Laskuharjoitus 3 Ratkaisut Vastaukset palautetaan yhtenä PDF-tieostona MyCourses:iin 14.3. klo 14.00 mennessä. Maholliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 3 Ratkaisut 1. Kuvien

Lisätiedot

Hämeenkylän koulun voimistelusalin vesikaton liimapuupalkkien kantavuustarkastelu

Hämeenkylän koulun voimistelusalin vesikaton liimapuupalkkien kantavuustarkastelu TUTKIMUSSELOSTUS Nro VTT S 01835 10 4.3.010 Hämeenkylän koulun voimistelusalin vesikaton liimapuupalkkien kantavuustarkastelu Tilaaja: Vantaan Tilakeskus, Hankintapalvelut, Rakennuttaminen TUTKIMUSSELOSTUS

Lisätiedot

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu. Tehtävä 1 Tarkastellaan paineen ajamaa Poisseuille-virtausta kahden yhdensuuntaisen levyn välissä Levyjen välinen etäisyys on 2h Nopeusjakauma raossa on tällöin u(y) = 1 dp ( y 2 h 2), missä y = 0 on raon

Lisätiedot

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

LAATTATEORIAA. Yleistä. Kuva 1.

LAATTATEORIAA. Yleistä. Kuva 1. LAATTATEORIAA Yleistä Kuva 1. Laatta on kahden pinnan rajoittama rakenneosa, jonka paksuus on pieni muihin mittoihin verrattuna. Pintojen puolivälissä oleva keskipinta on taso ennen laatan kuormittamista.

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

SISÄLTÖ 1. Veto-puristuskoe 2. Jännitys-venymäpiirros 3. Sitkeitten ja hauraitten materiaalien jännitysvenymäkäyttäytyminen

SISÄLTÖ 1. Veto-puristuskoe 2. Jännitys-venymäpiirros 3. Sitkeitten ja hauraitten materiaalien jännitysvenymäkäyttäytyminen TAVOITTEET Jännitysten ja venymien yhteys kokeellisin menetelmin: jännitysvenymäpiirros Teknisten materiaalien jännitys-venymäpiirros 1 SISÄLTÖ 1. Veto-puristuskoe 2. Jännitys-venymäpiirros 3. Sitkeitten

Lisätiedot

y z = (x, y) Kuva 1: Euklidinen taso R 2

y z = (x, y) Kuva 1: Euklidinen taso R 2 Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 05: FEM-analyysista saatavat tulokset ja niiden käyttö.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 05: FEM-analyysista saatavat tulokset ja niiden käyttö. 05/1 ELEMENTTIMENETELMÄN PERUSTEET SESSIO 05: FEM-analyysista saatavat tulokset ja niiden käyttö. YLEISTÄ Laskentamallin luonnin ja varsinaisen laskennan lisäksi FEM-analyysi sisältää myös tulosten tarkastelun

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 11.1 Sigge-serkku tasapainoilee sahapukkien varaan asetetulla tasapaksulla puomilla, jonka pituus L = 6.0 m ja massa M = 90 kg. Sahapukkien huippujen välimatka D = 1.5

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

KIINTEÄN AINEEN MEKANIIKAN PERUSTEET

KIINTEÄN AINEEN MEKANIIKAN PERUSTEET KIINTÄN AINN MKANIIKAN PRUSTT YHTÄLÖKOKOLMA Kari Santao 3..06 Pitkä versio Opiskelin nimi opiskelinumero Voisitteko ystävällisesti ilmoittaa tässä yhtälökokoelmassa havaitsemistanne virheistä puutteista.

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 1 / vko 44

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 1 / vko 44 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko Tehtävä (L): Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske

Lisätiedot

Hitsattavien teräsrakenteiden muotoilu

Hitsattavien teräsrakenteiden muotoilu Hitsattavien teräsrakenteiden muotoilu Kohtisuoraan tasoaan vasten levy ei kanna minkäänlaista kuormaa. Tässä suunnassa se on myös äärettömän joustava verrattuna jäykkyyteen tasonsa suunnassa. Levyn taivutus

Lisätiedot

Ovi. Ovi TP101. Perustietoja: - Hallin 1 päätyseinän tuulipilarit TP101 ovat liimapuurakenteisia. Halli 1

Ovi. Ovi TP101. Perustietoja: - Hallin 1 päätyseinän tuulipilarit TP101 ovat liimapuurakenteisia. Halli 1 Esimerkki 4: Tuulipilari Perustietoja: - Hallin 1 päätyseinän tuulipilarit TP101 ovat liimapuurakenteisia. - Tuulipilarin yläpää on nivelellisesti ja alapää jäykästi tuettu. Halli 1 6000 TP101 4 4 - Tuulipilaria

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 30.3.2016 Susanna Hurme Yleisen tasoliikkeen kinetiikka (Kirjan luku 17.5) Osaamistavoitteet Osata ratkaista voimia ja niiden aiheuttamia kiihtyvyyksiä tasoliikkeessä

Lisätiedot

Tukilaitteet

Tukilaitteet Tukilaitteet Tukemattomalla kappaleella on tasossa 3 liikemahdollisuutta, vapausastetta. Kun halutaan, että kappale on tasapainossa, on nämä liikemahdollisuudet poistettava kättämällä tukilaitteita. Tuet

Lisätiedot

OSIITAIN JA YKKIEN LIITOSTEN V AIKUTUS PORTAALIKEHAN VOI MASUUREISIIN. Rakenteiden Mekaniikka, Vol.27 No.3, 1994, s. 35-43

OSIITAIN JA YKKIEN LIITOSTEN V AIKUTUS PORTAALIKEHAN VOI MASUUREISIIN. Rakenteiden Mekaniikka, Vol.27 No.3, 1994, s. 35-43 OSIITAIN JA YKKIEN LIITOSTEN V AIKUTUS PORTAALIKEHAN VOI MASUUREISIIN Esa Makkonen Rakenteiden Mekaniikka, Vol.27 No.3, 1994, s. 35-43 Tiivistelmii: Artikkelissa kehitetaan laskumenetelma, jonka avulla

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

15. Suorakulmaisen kolmion geometria

15. Suorakulmaisen kolmion geometria 15. Suorakulmaisen kolmion geometria 15.1 Yleistä kolmioista - kolmion kulmien summa on 180⁰ α α + β + γ = 180⁰ β γ 5.1.1 Tasasivuinen kolmio - jos kaikki kolmion sivut ovat yhtä pitkät, on kolmio tasasivuinen

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 2.3.2016 Susanna Hurme äivän aihe: Staattisesti määrätyn rakenteen tukireaktiot (Kirjan luvut 5.7 ja 6.6) Osaamistavoitteet: Ymmärtää, mitä tarkoittaa staattisesti

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 6.3.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

STATIIKKA. TF00BN89 5op

STATIIKKA. TF00BN89 5op STATIIKKA TF00BN89 5op Sisältö: Statiikan peruslait Voiman resultantti ja jako komponentteihin Voiman momentti ja voimapari Partikkelin ja jäykän kappaleen tasapainoyhtälöt Tukivoimat Ristikot, palkit

Lisätiedot

Teddy 1. harjoituksen malliratkaisu kevät 2011

Teddy 1. harjoituksen malliratkaisu kevät 2011 Teddy 1. harjoituksen malliratkaisu kevät 2011 1. Dipolimomentti voidaan määritellä pistevarauksille seuraavan vektoriyhtälön avulla: µ = q i r i, (1) i missä q i on i:nnen varauksen suuruus ja r i = (x

Lisätiedot

MITOITUSTEHTÄVÄ: I Rakennemallin muodostaminen 1/6

MITOITUSTEHTÄVÄ: I Rakennemallin muodostaminen 1/6 1/6 MITOITUSTEHTÄVÄ: I Rakennemallin muodostaminen Mitoitetaan kuvan mukaisen kaksileikkeisen ruuviliitoksen kestävyys Rd. Ruuvit ovat lujuusluokan A-50 ruostumattomia M16 osakierteisiä ruuveja. Liitettävät

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43

Lisätiedot

Trigonometriaa ja solve-komento GeoGebralla

Trigonometriaa ja solve-komento GeoGebralla Trigonometriaa ja solve-komento GeoGebralla Valitse yläreunasta Näytä-valikosta CAS ja Piirtoalue. CAS-on laskinohjelma, piirtoalueen avulla saat kuviot näkyville tarvittaessa. Harjoitellaan ensiksi CAS-ikkunan

Lisätiedot

PROMATECT -200 Teräsrakenteiden palosuojaus

PROMATECT -200 Teräsrakenteiden palosuojaus PROMATECT -00 Teräsrakenteiden palosuojaus Vers. 0-06 PROMATECT -00 PROMATECT -00 on palamaton levy teräsrakenteiden suojaukseen kuivassa tilassa. PROMATECT -00 on valmistettu kasiumsilikaatin ja kipsimassan

Lisätiedot

Laskuharjoitus 7 Ratkaisut

Laskuharjoitus 7 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin 25.4. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 7 Ratkaisut 1. Kuvan

Lisätiedot

ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA

ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jussi Sievänen, n86640 Tuomas Yli-Rahnasto, n85769 Markku Taikina-aho, n85766 SATE.2010 Dynaaminen Kenttäteoria ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA

Lisätiedot

Mitoitetaan MäkeläAlu Oy:n materiaalivaraston kaksiaukkoinen hyllypalkki.

Mitoitetaan MäkeläAlu Oy:n materiaalivaraston kaksiaukkoinen hyllypalkki. YLEISTÄ Mitoitetaan MäkeläAlu Oy:n materiaalivaraston kaksiaukkoinen hyllypalkki. Kaksi 57 mm päässä toisistaan olevaa U70x80x alumiiniprofiilia muodostaa varastohyllypalkkiparin, joiden ylälaippojen päälle

Lisätiedot