1. kotitehtäväsarja - Einsteinin summaussääntö ja jännitystila - malliratkaisut

Koko: px
Aloita esitys sivulta:

Download "1. kotitehtäväsarja - Einsteinin summaussääntö ja jännitystila - malliratkaisut"

Transkriptio

1 . kotitehtäväsarja - Einsteinin summaussääntö ja jännitystila - malliratkaisut Tehtävä. Ovatko seuraavat indeksimuotoiset lausekkeet karteesisessa suorakulmaisessa koordinaatistossa oikein, perustelu? Mikäli ne ovat oikein, kirjoita yhtälöt auki. Indeksit voidaan myös assosioida koordinaatteihin x, y, z seuraavasti: = x, = y ja = z. Alla olevissa lausekkeissa permutaatiotensoria on merkitty symbolilla ɛ ijk. A ik B ki + C ki D jk = E ij. Yhtälön vasemman puolen ensimmäinen termi on skalaari, sillä kummatkin indeksit i ja k ovat mykkiä indeksejä ja vasemman puolen toinen termi on toisen keltaluvun tensori - vapaat indeksit i ja j, mykkä- eli summausindeksi on k. Täten lauseke on väärin. A jk = δ jm δ kn δ jn δ km. Lauseke on väärin, sillä yhtälön vasemmalla ja oikealla puolella on eri määrä vapaita indeksejä. Vasen puoli on toisen keltaluvun tensori ja oikea puoli on neljännen kertaluvun tensori. ε ij ɛ ikr ɛ jmn x k x m Summausindeksejä ovat i, j, k ja m. Vapaita indeksejä ovat r ja n. Lauseke esittää toisen kertaluvun tensoria. Mikäli merkitään saadaan komponenteittain ε ij R rn = ɛ ikr ɛ jmn, x k x m ε ij R = ɛ ik ɛ jm x k x m = ɛ ɛ ε x x + ɛ ɛ ε x x + ɛ ɛ ε x x + ɛ ɛ ε x x = ε x ε + ε, x x x jossa ɛ = ja ɛ =, muut permutatiotensorin alkiot ovat nollia. Tehdään malliksi myös R : ε ij R =ɛ ik ɛ jm x k x m ε ε ε ε =ɛ ɛ + ɛ ɛ + ɛ ɛ x x x x x + ɛ ɛ x x = ε ε x x x + ε + ε. x x x x Vastaavalla tavalla saadaan muut komponentit R = ε x R = ε x ε + ε, x x x ε + ε, x x x R = ε ε x x x + ε + ε, x x x x R = ε ε x x x + ε + ε. x x x x Saatiin siis muodonmuutosten yhteensopivuusehdot kun kirjoitetaan R ij = 0. MEI-060 Materiaalien mekaniikka -. kotitehtehtävä

2 J = (Uδ j σ ij u i, n j da. V Kaava on oikein. Molemmilla puolilla on skalaari. Se voidaan kirjoittaa auki käyttäen summalausetta = V J = V (U δ j n j j= i= j= σ ij u i, n j da (Un σ u, n σ u, n σ u, n σ u, n σ u, n σ u, n σ u, n σ u, n σ u, n da. Kyseessä on ns. J-integraali, joka on merkittävä suure murtumismekaniikassa. w j + ρνɛ ijk + ρb i = ρ dv i x i x k dt Yhtälö oikealla ja vasemmalla puolella yksi merkitsevä indeksi i, joten se on vektoriyhtälö. Indeksit j ja k ovat summausindeksejä eli mykkiä indeksejä. Auki kirjoitettuna yhtälöryhmä on eli ( + ρν x ( x + ρν x + ρν w w ɛ + ɛ x x w w ɛ + ɛ x x ( w w ɛ + ɛ x x ( w + ρν w x x x ( w x + ρν x + ρν w x x ( w w x x + ρb = ρ dv + ρb = ρ dv + ρb = ρ dv + ρb = ρ dv + ρb = ρ dv + ρb = ρ dv dt. Kyseessä on kokoonpuristumattoman virtauksen Navierin-Stokesin (N-S yhtälöt roottorimuodossa esitettynä. Varsinaiseen tehtäväpaperiin oli kirjoitettu w j :n tilalle v j. Nyt tässä olisi, jos yhtälöt viittaavat N-S yhtälöihin niin w = v. x i + (λ + µ x i ( vk x k + µ v i + ρb i = ρ dv i x k x k dt Yhtälö on vektorimuotoinen, kuten edellisessäkin kohdassa. Yhtälön kummallakin puolella merkitsevänä indeksinä on i. Yhtälön vasemmalla puolella summausindeksi k. Auki kirjoitettuna ne ovat. x + (λ + µ x x + (λ + µ x x + (λ + µ x ( v + v + v x x x ( v + v + v x x x ( v + v + v x x x ( v + µ + µ + µ x ( v x ( v x + v x + v x + v x + v x + ρb = ρ dv + v x + v x Yhtälö on kokoonpuristuvan nesteen Navierin-Stokesin yhtälö (yleistetty N-S. + ρb = ρ dv + ρb = ρ dv dt. MEI-060 Materiaalien mekaniikka -. kotitehtehtävä

3 Tehtävä Erään suuren moottrilohkon tuen tukireaktioksi on mitattu voimavektori F = (5F, F, 0F T. Kuva alla. Laakerituen mitat ovat a a h. Lisäksi tiedetään, että moottorilohkon x akselin suuntainen normaalijännitys on σ = 6σ 0, jossa on merkitty σ 0 = F/a.. Määritä näistä tiedoista mahdollisimman moni jännitysmatriisin alkio (x, x, x -koordinaatistossa. Mitä matriisialkioita ei edellisen tiedon perusteella voi määrittää?. Mikäli näille tuntemattomiksi jääville komponenteille oletetaan nolla-arvo, määritä pääjännitykset ja suurinta pääjännitystä vastaavan tason normaalin suunta. Mikä on suurin leikkausjännitys?. Määritä jännitysdeviaattorimatriisi s = σ tr(σi ja sen toinen invarantti J = tr(s (HUOM: tehtäväpaperissa painovirhe sekä von Misesin tehollinen jännitys σ e = J. 4. Mikäli nyt nolliksi oletetut jännityskomponentit voisivat vaihdella välillä ( σ 0, σ 0, missä rajoissa von Misesin tehollinen jännitys vaihtelee? h x x x x F a a Ratkaisu. Traktiovektori t on nyt t = a F = F a 5 0 = σ Koska t = σ T n ja nyt n = (0, 0,, saadaan 5 t = σ 0 0 = σ zx σ zy σ zz tai käyttäen von Karmanin notaatiota τ zx = σ zx, τ zy = σ zy, σ z = σ zz jne., saadaan Jännitysmatriisista tunnetaan siten, τ zx = 5σ 0, τ zy = σ 0, σ z = 0σ 0. σ = σ 0 6 x 5 x x 5 0 jossa tuntematomiksi jääviä komponentteja on merkitty x:llä. Jos ne oletetaan nolliksi saadaan σ = σ , MEI-060 Materiaalien mekaniikka -. kotitehtehtävä

4 Pääjännitykset σ i = λσ 0 saadaan ominaisarvotehtävästä 6 + λ 0 5 σ 0 0 λ λ josta saadaan karakteristinen yhtälö (6 + λ λ 0 + λ λ 5 = 0, joka sievennettynä on n n n λ + 6λ + 84λ 6 = 0. = 0, ( Ratkaisu on λ =, 4, λ =, 7, λ = 0, 6 Täten suurin pääjännitys on σ I = 0, 6σ 0 keskimmäinen σ II =, 7σ 0 ja pienin σ III =, 4σ 0, sillä σ 0 > 0. Suurinta pääjännitystä vastaava suunta saadaan sijoitamalla ominaisarvo yhtälöön (, jolloin σ 0 6, , 6 5 0, 6 n n n = 0, josta saadaan valitsemalla n = arvot n = 5/6.6 = 0.8 ja n = /0, 6 = 6, Koska kysyttiin vain suuntaa vektoria n ei tarvitse normeerata. Suurin leikkausjännitys on τ max = (σ I σ III = 6, 8σ 0. Jännitysmatriisin jälki on trσ = 6σ 0, joten jännitysdeviaattori on s = σ trσ I = 6 + 6/ / / σ 0. Lasketaan nyt deviaattorin toinen invariantti J = trs (HUOM: tehtäväpaperissa oli virhe tuossa kertoimessa. Symmetrian nojalla J = s ijs ji = s ijs ij = [( 0, 667 +( 5 +5, + +( 5 + +( ]σ 0 = 50, 8σ 0. Tästä saadaan teholliseksi jännitykseksi Jos nyt σ = σ 0 ja merkitään τ xy = ξσ 0 sekä σ y = ησ 0, eli σ e = J =, σ 0. σ = σ 0 6 τ xy /σ 0 5 τ xy /σ 0 σ y /σ ξ 5 ξ η 5 0 Nyt trσ = (η 6σ 0 ja jännitysdeviaattori on s = σ trσ I = η ξ 5 ξ 5 + η σ η Lasketaan tehollinen jännitys σ e = J = [( η + (5 + η + ( 4 η + ξ + 5]. Nyt η, ξ. On helppo havaita, että tehollisen jännityksen ääriarvot saadaan ξ:n ja η:n raja-arvoilla ±.., MEI-060 Materiaalien mekaniikka -. kotitehtehtävä 4

5 Tehtävä. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyvien vakioiden määrittämiseen. Jännitystila on siten kuormien suuntaan määritetyssä koordinaatistossa σ σ = 0 ασ 0 0, jossa α on dimensioton parametri, joka kokeesta riippuen voi vaihdella välillä (,. Määritä parametrin α funktiona:. keskimääräinen jännitys σ m,. tehollinen jännitys σ e = J,. Loden kulma θ (katso määritelmä luentomonisteesta, 4. maksimileikkausjännitys τ max, 5. ja maksimileikkausjännitystason normaalin suunta. Millaista jännitystilaa kuvaa tapaus α =? Ratkaisu. Keskimääräinen jännitys on Jännitysdeviaattori on s = σ trσ I = = Tästä tehollinen jännitys σ e = J = σ e = J = σ m = trσ = ( + ασ 0. σ 0 ( + ασ ασ 0 ( + ασ ( + ασ 0 ( ασ ( α σ ( + ασ 0 trs on 9 [( α + (α + ( + α ] σ 0 = α α + σ 0 Loden kulma θ saadaan kaavasta ( θ = arccos J J /. Lasketaan J = det s J = 9 ( α(α ( + ασ 0. Maksimileikkausjännitys on τ max = (σ I σ III. Jos oletetaan että σ 0 on positiivinen, niin tällöin σ III :n on pienempi luvuista 0, ασ 0. Maksimileikkauksen esiintymistaso puolittaa pääjännitystasojen välisen kulman. Täten mikäli α > 0 esiintyy tasossa, joka muodostaa 45 asteen kulman (x, x ja (x, x -tasojen kanssa. Tällöin siis nolla on pienin pääjännitys ja τ max = σ 0. Täten mikäli α < 0 esiintyy tasossa, joka muodostaa 45 asteen kulman (x, x ja (x, x -tasojen kanssa. Tällöin siis ασ 0 on pienin pääjännitys ja τ max = ( ασ 0. Tapaus α = kuvaa puhdasta leikkausta.. MEI-060 Materiaalien mekaniikka -. kotitehtehtävä 5

6 Tehtävä 4. Mitoita oheisen kaksiaukkoisen palkin korkeus h siten, että palkin materiaalin tehollinen jännitys σ e = J on pienempi kuin 55 MPa (teräs S 55 kun palkin tulee kestää 00 kn pystykuorma mielivaltaisessa kohdassa. Palkin poikkileikkaukseksi voit otaksua I-proilin, jonka mittasuhteet ovat h = b, t f = t w ja t w = 50h. Palkin jänneväli on L = 6 m. Tukilaakerin pituus keskituella on b/ (reunatuilla puolet tästä ja leveys palkin leveys. Voit analysoida palkkia idealisoituna I-proilina, jossa taivutusmomentti M kannetaan laipoilla ja uuma ottaa kaiken leikkausrasituksen. Lisäksi taivutusjännitykset voi olettaa vakioiksi laipan paksuuden suhteen. Missä on vaarallisin kuorman paikka? F t f t w h L L b Ratkaisu. Olkoon pistekuorman etäisyys vasemmalta tuelta ξl (tai vastaavasti oikealta tuelta. Tällöin keskituen taivutusmomentin ja tukireaktion arvoiksi saadaan M = 4 F Lξ( ξ, T = 4 F ξ( + ξ. Kuorman vaarallisin paikka on todennäköisesti kohta, joka antaa keskituen taivutusmomentin itseisarvolle maksimiarvon. Tämä on kohdassa ξ = /. Tällöin keskituen taivutusmomentille ja tukireaktiolle saadaan arvot M = F L 6, T = 5 6 F. Olettamalla, että taivutusmomentti otetaan vastaan pelkästää laippojen normaalijännityksillä, saadaan M = σ x t f bh, josta σ x = M t f bh. Valitaan nyt yhteiseksi pituusmitaksi ratkaistava suure h, tällöin b = h, t w = 50 h, t f = t w = 00 h. Rakenteen vaarallisin kohta on keskituen kohdalla, jossa uuman alaosassa vaikuttaa suuret puristavat normaalivoimat σ x ja σ y sekä leikkausjännitys τ xy, joille pätee σ x 00 9 F L h = α F L h, σ x 5 6 Jännitysmatriisi on nyt τ xy 5 h σ = F 50 h h = 500 F h = α F h, F 50 h = 5 6 F h = α F h. σ x τ xy 0 τ xy σ y Hydrostaattinen jännitys on σ m = trσ = (σ x + σ y, ja deviatorinen jännitysmatriisi on σ x σ y τ xy 0 s = τ xy σ y σ x (σ x + σ y. MEI-060 Materiaalien mekaniikka -. kotitehtehtävä 6

7 Tehollinen jännitys on σ e = J = [( σ x σ y + ( σ y σ x + ( σ x + σ y + τxy] = σx + σy σ x σ y + τ xy. Sijoitetaan nyt jännitysten lausekkeet tehollisen jännityksen lausekkeeseen, ja asettamalla se yhtäsuureksi materiaalin myötörajan R e kanssa, niin saadaan α (L/h + α α α + α F h = R e. Kerrotaan puolittain L :lla ja järjestellään, jolloin saadaan epälineaarinen yhtälö α (L/h + α α α + α (L/h R e L /F = 0. ( Tästä voidaan suhde L/h ratkaista. Nopea ratkaisu (alkuarvo saadaan kun otetaan vain huomioon taivutuksen aiheuttamat normaalijännitykset σ x, tällöin vaadittavaksi korkeudeksi saadaan ( 00F L / h 9, R e Sijoittamalla lukuarvot saadaan h 0, m. Yhtälön ( ratkaisu on L/h 5, 9 josta saadaan h = 0, m. Täten σ y :n ja τ xy :n vaikutus on minimaalinen (mikäli laskin oikein. Kuorma on aika pieni, mikäli F = 00 kn, on ero suurempi, 0, m vs. 0,5 m, ja jos F = 500 kn niin tällöin vastaavat lukemat ovat 0,8 m ja 0,4 m. MEI-060 Materiaalien mekaniikka -. kotitehtehtävä 7

8 Tehtävä 5. Alla olevan kuvan mukaisen päistään suljetun ympyräsylinterin muotoisen paineistettuun putkeen vaikuttaa myös sylinterin akselin suuntainen vääntömomentti M = αp 0 td, jossa D on sylinterin halkaisija, t seinämän paksuus ja p 0 on sylinterissä vaikuttava paine. Sylinterin seinämä on pieni suhteessa halkaisijaan, eli t/d. Piirrä sylinterin seinämän jännitystilan kuvaaja deviatorisella tasolla dimensiottoman parametrin α > 0 funktiona. Ratkaisu. Otaksutaan tasojännitystila, sillä sylinterin seinämän vahvuus suhteessa halkaisisijaan on pieni: t/d. Jännitystila on siten σ x = p 0D/t, σ y = 4 p 0D/t, τ xy = M x /W v = αp 0 td /( 4 πd t = (4α/πp 0. Jännitysmatriisi on siten σ = D/t 4α/π 0 4α/π 4 D/t p 0 = β 0 β p 0 D/t, jossa on merkitty β = 4αD/(πt. Lasketaan deviatorinen jännitysmatriisi, jota varten tarvitaan keskimääräinen jännitys σ m = trσ = (/4p 0D/t, joten s = 4 β 0 β p 0 D/t. Jotta kyseinen jännitystila voidaan kuvata deviatorisella tasolla lasketaan invariantit J = s ijs ji ja J = det s: J = ( 6 + β p 0D /t = ( 6 + β p 0D /t, J = det s = 4 β (p 0 D/t. Deviatorinen säde on ρ = J = 8 + β p 0 D/t, ja Loden kulmalle saadaan lauseke cos θ = J J / = 8 β ( 6 + β /. Nyt jännityspisteen asema deviatorisella tasolla voidaan napakoordinaattien ρ ja θ avulla piirtää β:n funktiona, joka on suoraan verrannollinen parametriin α. MEI-060 Materiaalien mekaniikka -. kotitehtehtävä 8

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv 2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyvien vakioiden määrittämiseen. Jännitystila on siten

Lisätiedot

Materiaalien mekaniikka

Materiaalien mekaniikka Materiaalien mekaniikka 3. harjoitus jännitys ja tasapainoyhtälöt 1. Onko seuraava jännityskenttä tasapainossa kun tilavuusvoimia ei ole: σ x = σ 0 ( 3x L + 4xy 8y ), σ y = σ 0 ( x L xy + 3y ), τ xy =

Lisätiedot

Johdatus materiaalimalleihin

Johdatus materiaalimalleihin Johdatus materiaalimalleihin 2 kotitehtäväsarja - kimmoisat materiaalimallit Tehtävä Erään epälineaarisen kimmoisen isotrooppisen aineen konstitutiivinen yhtälö on σ = f(i ε )I + Ge () jossa venymätensorin

Lisätiedot

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä.

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkona 2.3. ennen luentojen alkua eli klo 14:00 mennessä puiseen kyyhkyslakkaan, jonka numero on 9. Arvostellut kotitehtäväpaperit palautetaan laskutuvassa.

Lisätiedot

Laskuharjoitus 2 Ratkaisut

Laskuharjoitus 2 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 7.3. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 2 Ratkaisut 1.

Lisätiedot

Harjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Harjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

Harjoitus 6. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Harjoitus 6. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 KJR-C001 Kiinteän aineen mekaniikan perusteet, IV/01 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 1:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri

Lisätiedot

grada dv = a n da, (3) vol(ω) ε = εdv. (4) (u n +n u)da, (5)

grada dv = a n da, (3) vol(ω) ε = εdv. (4) (u n +n u)da, (5) MEI-55 Mallintamisen perusteet Harjoitus 2 Tehtävä Dyadin a b, jossa a,b R 3 jälki on skalaari jota merkitään tr(a b) ja määritellään pistetulona tr(a b) = a b. (). Mikäli vektorit a ja b on annettu suorakulmaisessa

Lisätiedot

Ratkaisut 2. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä.

Ratkaisut 2. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

MEI Kontinuumimekaniikka

MEI Kontinuumimekaniikka MEI-55300 Kontinuumimekaniikka 1 MEI-55300 Kontinuumimekaniikka 6. harjoitus jännitysmitat Ratkaisut T 1: Ohuen suoran sauvan pituus referenssitilassa on 0 ja poikkipinta-ala on A 0. Sauvan akselin suuntaisen

Lisätiedot

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon

Lisätiedot

Mitoitetaan MäkeläAlu Oy:n materiaalivaraston kaksiaukkoinen hyllypalkki.

Mitoitetaan MäkeläAlu Oy:n materiaalivaraston kaksiaukkoinen hyllypalkki. YLEISTÄ Mitoitetaan MäkeläAlu Oy:n materiaalivaraston kaksiaukkoinen hyllypalkki. Kaksi 57 mm päässä toisistaan olevaa U70x80x alumiiniprofiilia muodostaa varastohyllypalkkiparin, joiden ylälaippojen päälle

Lisätiedot

10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat

10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat TAVOITTEET Esitetään vastaavalla tavalla kuin jännitystilan yhteydessä venymätilan muunnosyhtälöt Kehitetään materiaaliparametrien yhteyksiä; yleistetty Hooken laki Esitetään vaurioteoriat, joilla normaali-

Lisätiedot

Ratkaisuehdotukset LH 8 / vko 47

Ratkaisuehdotukset LH 8 / vko 47 Ratkaisuehdotukset LH 8 / vko 47 Tehtävä 1: Olkoot A R n n matriisi, jonka singulaariarvohajotelma on A [ ] [ ] Σ U 1 U r 0 [V1 ] T 2 V 0 0 2 Jossa Σ r on kääntyvä matriisi, [ U 1 U 2 ] ja [ V1 V 2 ] ovat

Lisätiedot

Palkki ja laatta toimivat yhdessä siten, että laatta toimii kenttämomentille palkin puristuspintana ja vetoteräkset sijaitsevat palkin alaosassa.

Palkki ja laatta toimivat yhdessä siten, että laatta toimii kenttämomentille palkin puristuspintana ja vetoteräkset sijaitsevat palkin alaosassa. LAATTAPALKKI Palkki ja laatta toimivat yhdessä siten, että laatta toimii kenttämomentille palkin puristuspintana ja vetoteräkset sijaitsevat palkin alaosassa. Laattapalkissa tukimomentin vaatima raudoitus

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle / MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

MEI Kontinuumimekaniikka

MEI Kontinuumimekaniikka MEI-55300 Kontinuumimekaniikka 1 MEI-55300 Kontinuumimekaniikka 3. harjoitus matemaattiset peruskäsitteet, kinematiikkaa Ratkaisut T 1: Olkoon x 1, x 2, x 3 (tai x, y, z) suorakulmainen karteesinen koordinaatisto

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 K. a) b) c) d) 6 6 a a a, a > 0 6 6 a a a a, a > 0 5 5 55 5 5 5 5 5 5 5 5 5 5 a a a a a ( a ) a a a, a > 0 K.

Lisätiedot

MITOITUSTEHTÄVÄ: I Rakennemallin muodostaminen 1/16

MITOITUSTEHTÄVÄ: I Rakennemallin muodostaminen 1/16 1/16 MITOITUSTEHTÄVÄ: I Rakennemallin muodostaminen Mitoitettava hitsattu palkki on rakenneosa sellaisessa rakennuksessa, joka kuuluu seuraamusluokkaan CC. Palkki on katoksen pääkannattaja. Hyötykuorma

Lisätiedot

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti! A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim

Lisätiedot

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ YLIOPPILSTUTKINTO- LUTKUNT..7 MTEMTIIKN KOE PITKÄ OPPIMÄÄRÄ -osa Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän alla olevaan ruudukkoon.

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,

Lisätiedot

PUHDAS, SUORA TAIVUTUS

PUHDAS, SUORA TAIVUTUS PUHDAS, SUORA TAIVUTUS Qx ( ) Nx ( ) 0 (puhdas taivutus) d t 0 eli taivutusmomentti on vakio dx dq eli palkilla oleva kuormitus on nolla 0 dx suora taivutus Taivutusta sanotaan suoraksi, jos kuormitustaso

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

r > y x z x = z y + y x z y + y x = r y x + y x = r

r > y x z x = z y + y x z y + y x = r y x + y x = r HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.

Lisätiedot

Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7

Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7 MS-C14, Fourier-analyysi, I/19- Fourier-analyysi, I/19-, Mallivastaukset, Laskuharjoitus 7 Harjoitustehtävä 7.1. Hetkellä t R olkoon s(t) 1 + cos(4πt) + sin(6πt). Laske tämän 1-periodisen signaalin s Fourier-kertoimet

Lisätiedot

LUJUUSHYPOTEESIT, YLEISTÄ

LUJUUSHYPOTEESIT, YLEISTÄ LUJUUSHYPOTEESIT, YLEISTÄ Lujuushypoteesin tarkoitus: Vastataan kysymykseen kestääkö materiaali tietyn yleisen jännitystilan ( x, y, z, τxy, τxz, τyz ) vaurioitumatta. Tyypillisiä materiaalivaurioita ovat

Lisätiedot

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet Mikkola/Ärölä 4. harjoituksen ratkaisut Teht. 1 Jacobin determinantin J det F materiaalisen aikaderivaatan laskemiseksi lasketaan

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1

Lisätiedot

Laskuharjoitus 1 Ratkaisut

Laskuharjoitus 1 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 28.2. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 1 Ratkaisut 1.

Lisätiedot

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt 6. Suorien tasojen geometriaa 6.1. Suorien tasojen yhtälöt 55. Osoita, että yhtälöt x = 3 + τ y = 1 3τ esittävät samaa tason suoraa. Yhteinen piste 1,5) suunta i 3j. x = 1 6τ y = 5 + 9τ 56. Määritä suoran

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

a) Lasketaan sähkökenttä pallon ulkopuolella

a) Lasketaan sähkökenttä pallon ulkopuolella Jakso 2. Gaussin laki simerkki 2.1: Positiivinen varaus Q on jakautunut tasaisesti R-säteiseen palloon. Laske sähkökenttä pallon a) ulkopuolella ja b) sisäpuolella etäisyydellä r pallon keskipisteestä.

Lisätiedot

Jatkoa lineaarialgebrasta

Jatkoa lineaarialgebrasta Jatkoa lineaarialgebrasta 16. tammikuuta 2006 Sisältö 1 Singulaariarvohajotelma 1 2 Tensorit ja lineaarikuvausten komponentit 2 2.1 Karteesiset tensorit........................ 3 2.2 Determinantti, osa

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, tentti

KJR-C2002 Kontinuumimekaniikan perusteet, tentti KJR-C2002 Kontinuumimekaniikan perusteet, tentti 13.12.2017 1. Jos r θ on paikkavektori, niin mitä ovat r θ, esitksiä r θ ja r θ? Kätä Karteesisen koordinaatiston T θ θ r < j < j zθ θ k k z ja / θ < j

Lisätiedot

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan

Lisätiedot

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on 766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua

Lisätiedot

5 Differentiaaliyhtälöryhmät

5 Differentiaaliyhtälöryhmät 5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

Suhteellinen puristuskapasiteetti arvioida likimääräisesti kaavalla 1 + Kyseisissä lausekkeissa esiintyvillä suureilla on seuraavat merkitykset:

Suhteellinen puristuskapasiteetti arvioida likimääräisesti kaavalla 1 + Kyseisissä lausekkeissa esiintyvillä suureilla on seuraavat merkitykset: RAUDOITTAMATTOMAN SUORAKAIDEPOIKKILEIKKAUKSISEN SAUVAN PURISTUSKAPASITEETTI Critical Compression Load of Unreinforced Concrete Member with Rectangular Cross-Section Pentti Ruotsala Vaasa 04 TIIVISTELMÄ

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 26..208 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit

KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit KJR-C1001: Statiikka L2 Luento 21.2.2018: voiman momentti ja voimasysteemit Apulaisprofessori Konetekniikan laitos Luennon osaamistavoitteet Tämän päiväisen luennon jälkeen opiskelija Pystyy muodostamaan,

Lisätiedot

Tampere University of Technology

Tampere University of Technology Tampere University of Technology EDE- Introduction to Finite Element Method. Exercise 3 Autumn 3.. Solve the deflection curve v(x) exactly for the beam shown y,v q v = q z, xxxx x E I z Integroidaan yhtälö

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila

Lisätiedot

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2. 7/ EEMENTTIMENETEMÄN PERSTEET SESSIO 7: Aksiaalinen sauvaelementti, osa. RATKAIS EEMENTIN AEESSA Verkon perusyhtälöstä [ K ]{ } = { F} saatavasta solmusiirtymävektorista { } voidaan poimia minkä tahansa

Lisätiedot

Laskuharjoitus 7 Ratkaisut

Laskuharjoitus 7 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin 25.4. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 7 Ratkaisut 1. Kuvan

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

8. Yhdistetyt rasitukset

8. Yhdistetyt rasitukset TAVOITTEET Analysoidaan ohutseinäisten painesäiliöiden jännitystilaa Tehdään yhteenveto edellisissä luennoissa olleille rasitustyypeille eli aksiaalikuormalle, väännölle, taivutukselle ja leikkausvoimalle.

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu. Tehtävä 1 Tarkastellaan paineen ajamaa Poisseuille-virtausta kahden yhdensuuntaisen levyn välissä Levyjen välinen etäisyys on 2h Nopeusjakauma raossa on tällöin u(y) = 1 dp ( y 2 h 2), missä y = 0 on raon

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä? BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

MUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011

MUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011 Aalto yliopisto Insinööritieteiden korkeakoulu Virtausmekaniikka / Sovelletun mekaniikan laitos MUISTIO No CFD/MECHA-17-2012 pvm 22. kesäkuuta 2011 OTSIKKO Hilatiheyden määrittäminen ennen simulointia

Lisätiedot

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Laskuharjoitus 3 Ratkaisut

Laskuharjoitus 3 Ratkaisut Vastaukset palautetaan yhtenä PDF-tieostona MyCourses:iin 14.3. klo 14.00 mennessä. Maholliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 3 Ratkaisut 1. Kuvien

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Projektin arvon aleneminen

Projektin arvon aleneminen Projektin arvon aleneminen sivut 99-07 Optimointiopin seminaari - Syksy 000 / Arvon aleneminen Jatketaan projektin arvon tutkimista. Nyt huomioidaan arvon aleneminen. Syitä esimerkiksi: kaluston vanheneminen

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa 8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti

Lisätiedot

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) = BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot

Lisätiedot

MEI Murtumismekaniikka

MEI Murtumismekaniikka MEI-32 Murtumismekaniikka - 3 kotitehtäväsarja, päivitys 2326 MEI-32 Murtumismekaniikka 3 kotitehtäväsarja Tehtävä Alla olevan kuvan mukaista DCB-koekappaletta kuormitetaan kuormalla P = 5 kn Kappaleen

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ 76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 5.2 BCH-koodin dekoodaus Tarkastellaan t virhettä korjaavaa n-pituista BCH-koodia. Olkoon α primitiivinen n:s ykkösen juuri, c = c(x)

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.

1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus. Matematiikan kurssikoe, Maa4 Vektorit RATKAISUT Sievin lukio Keskiviikko 12.4.2017 VASTAA YHTEENSÄ VIITEEN TEHTÄVÄÄN! MAOL JA LASKIN/LAS- KINOHJELMAT OVAT SALLITTUJA! 1. Olkoot vektorit a, b ja c seuraavasti

Lisätiedot

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.

Lisätiedot

(a) Järjestellään yhtälöitä siten, että vasemmalle puolelle jää vain y i ja oikealle puolelle muut

(a) Järjestellään yhtälöitä siten, että vasemmalle puolelle jää vain y i ja oikealle puolelle muut BM0A5830 Differentiaalihtälöiden peruskurssi Harjoitus 7, Kevät 07 Päivitksiä: Tehtävän b tehtävänantoa korjattu, tehtävän 5 vastaus korjattu. b tehtävänantoa sujuvoitettu. Vastauksia lisätt.. Monasti

Lisätiedot

Oheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)!

Oheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)! LUT-Kone Timo Björk BK80A2202 Teräsrakenteet I: 17.12.2015 Oheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)!

Lisätiedot

Determinantti 1 / 30

Determinantti 1 / 30 1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen

Lisätiedot