Pullon venymän mittaaminen KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt. Henri Järlström ja Olli Sarainmaa
|
|
- Noora Mattila
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Pullon venymän mittaaminen KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt Henri Järlström ja Olli Sarainmaa
2 Sisällysluettelo 1 Johdanto Teoria Tutkimusmenetelmät Kokeellinen osa Laskennallinen osa Koejärjestely ja mittaussuunnitelma Tarvittavat välineet Koejärjestely Venymäliuskojen liimaus Mittaussuunnitelma Kokeellinen osuus Laskennallinen osuus Aikataulu..4 5 Virhetarkastelu... 5 Turvallisuustarkastelu Lähteet...5 1
3 1. Johdanto Pullo tai muu normaaleissa pakastimen lämpötiloissa jäätyvää nestettä sisältävä astia venyy ja voi jään laajenemisen ja nesteen ominaisuuksien vuoksi jopa räjähtää nesteen jäätyessä. Jäätyneiden nestesastioiden, pääasiassa virvoitusjuomapullojen ja tölkkien, räjähtämisestä on uutisoitukin jonkin verran. Useimmiten räjähdyksistä ei ole seurannut mitään vakavaa, mutta joissain tapauksissa on tarvittu jopa tikkejä [2]. Siksi päätimme tutkia muovista tehdyn normaalin virvotusjuomapullon venymää, pullon kuoreen kohdistuvia jännityksiä ja mahdollisesti aiheutuvan vaaran vakavuutta pullon sisältämän nesteen jäädyttyä. [1] 2. Teoria Pullon venymää lämpötilan muuttuessa mitattaessa on otettava huomioon lämpölaajeneminen sekä pullossa että itse venymäliuskassa. Lämpötilamuutoksen vaikutus venymäliuskaan kiinnitettyihin sähköjohtoihin voidaan olettaa olemattoman pieneksi. Ulostulojännite venymäliuskoista muuttuu lämpötilan muuttuessa ja kun mitataan pelkästään resistanssin muutoksesta johtuvaa jännitteen muutosta, saadaan lämpötilariippuvuudelle venymäliuskan ulostulo- ja syöttöjännitteen välille tietty riippuvuus siten, että pätee U A = φ(t)u E, jossa UA on ulostulojännite ja UE syöttöjännite. [3] Oletetaan pullo ohutseinäiseksi, jolloin tarpeeksi hyvällä tarkkuudella pullossa vallitsee tasojännitystila. Käytämme laskuissa xφ-koordinaatistoa, jossa x-akseli on pullon pituusakselin suuntainen ja φ-akseli pullon vaipan suuntainen sekä kohtisuorassa x-akseliin nähden. [3] = 1,00 kg m 3 ρ jää 916,7 kg Jäätyessään vesi laajenee ja tiheyksiä vertailtaessa saadaan ρ vesi 1,091, jolloin m 3 3 laajeneminen kolmiulotteisessa avaruudessa yhteen ulottuvuuteen on 1,091 1,029, jolloin j jäätymisestä aiheutuva jään venymä on ε jää = L L 1, ,0294. Pullon kuoreen L 1 kohdistuva paine p saadaan äskettäin lasketun venymän ja jään lämpölaajenemisen avulla seuraavan yhtälön p = σ = E pullo ε T = E pullo (ε jää + ε T T jää ε pullo ) mukaisesti, jossa lämpölaajenemisesta aiheutuva venymä ε T = α T, α on jään pituuden lämpötilakerroin eli noin ja E pullo = 3000 Mpa pullon materiaalin ollessa PET-muovia. [3][4][5] j Sijoittamalla tarvittavat muuttujat edellä mainituista yhtälöistä saadaan elastisille venymille x- ja φakselien suunnassa yhtälöt ε e 1 φ = (σ E φ vσ x ) T + ε φ ja ε e 1 x = (σ pullo E x vσ φ ) + ε T x, jossa v on pullon Poissonin pullo luku v 0,4 [6]. Toisaalta venymien avulla saadaan laskettua jännitykset pullon kuoressa, jolloin pätee σ x = E pullo 1 v 2 (ε x e vε φ e ) + E pullo ε x T ja σ φ = E pullo 1 v 2 (ε φ e vε x e ) + E pullo ε φ T. [3] 2
4 3. Tutkimusmenetelmät 3.1 Kokeellinen osa Työn tutkimusmenetelmät voidaan jakaa kahteen osaan, kokeelliseen ja laskennalliseen. Kokeellisen tutkimuksen ensimmäisessä vaiheessa selvitämme lämpötilan muutoksen vaikutuksen venymäliuskasta saatavaan ulostulojännitteeseen verrattuna syöttöjännitteeseen. Varsinaisessa pullon venymän mittauksessa tavoitteena on selvittää aluksi, missä lämpötilassa muovinen pullo saavuttaa pienimmät mittansa eli toisin sanoen sen venymä pienin, jolloin venymän arvo on siis negatiivinen. Tämän jälkeen mittauksen edetessä selvitämme, milloin muovipullon mitat nousevat yli alkuperäisten mittojen eli venymä kasvaa positiiviseksi, pullon suurimman venymän sekä lämpötilan kyseisillä ajan hetkillä. Lopuksi mittaamme venymän pulloon muodostuneen jään ja itse pullon saavutettua pienimmän lämpötilansa, joka on normaalisti noin -20 C. 3.2 Laskennallinen osa Laskennallisessa osassa selvitämme kerätyn datan pohjalta pulloon syntyvien jännitysten suuruudet mittauksen eri lämpötiloissa. Lisäksi tutkimme mahdollista pulloon syntyvää plastista venymää sekä pullon kuoren venymän suuruutta verrattuna murtovenymään. 4. Koejärjestely ja mittaussuunnitelma 4.1 Tarvittavat välineet Pakastin Neste (Vesi, Coca-Cola) 0,5l pullo Venymäliuskat (2kpl) 1dl:n mitta Lämpöanturi Mittausjärjestelmä PC:lle Tietokone, jossa LABVIEW- ja Matlab-ohjelmistot Suojahanskat 4.2 Koejärjestely Puolen litran pullo laitetaan pakastimen ylimpään lokeroon vasempaan takakulmaan kiinni, siten että kylki on päätyseinässä kiinni ja korkki sivuseinässä (Kuva 1). Pullo pystyy nesteen jäätyessä liikkumaan vapaasti pakastinlokerossa. Nesteen määrää ei muuteta kokeen aikana vaan se pidetään vakiona. Kokeessa mitataan pullon elastista muodonmuutosta kahdella venymäliuskalla, jotka laitetaan toinen pullon suuntaisesti ja toinen 90 asteen kulmassa suhteessa toiseen liuskaan. Venymäliuskoista Kuva 1. Pullo pakastelokerossa tulee dataa suoraan tietokoneeseen, josta näkee reaaliaikaisesti venymän aiheuttaman jännitteen muutoksen. Lämpöanturin avulla mittaamme samalla pakastimessa olevan pullon lämpötilaa. 3
5 4.2.1 Venymäliuskojen liimaus Pullon pinta pitää puhdistaa huolellisesti ennen liuskojen liimaamista ja tarvittaessa karhentaa. Seuraavaksi levitetään ohut liimakerros pullon pintaan ja painetaan liuska siihen. Varmistetaan, että liuskan alle jää tasavahva kerros liimaa. Liuskan johtimiin tehdään vedonpoisto esimerkiksi kuumaliimatipalla pienen matkan päähän liuskasta. [7] 4.3 Mittaussuunnitelma Kokeellinen osuus Ennen tutkimuksen kokeellisen osuuden mittausten suorittamista venymäliuskat liimataan pikaliimalla kiinni pulloon. Pullon tulevan nesteenmäärä mitataan desilitramitalla. 1. Laitetaan johdot liuskoihin ja lämpöanturiin kiinni 2. Kohdan 4 johdot mittausjärjestelmään kiinni ja mittausjärjestelmä kiinni tietokoneeseen 3. Laitetaan lämpöanturi pakastimeen 4. Mitataan jännitteen muutos venymäliuskassa lämpötilan muutoksen funktiona 5. Liimataan venymäliuskat 6. Täytetään pullo valitulla nesteellä 7. Laitetaan pullo pakastinlokeroon 8. Otetaan LABVIEW-ohjelmistolla tulokset talteen 9. Irrotetaan venymäliuskat 10. Toistetaan kohdat 1-7, kunnes tarpeeksi mittauksia eri ainemäärillä ja laaduilla Laskennallinen osuus Arvioimme aiemmin kerätyn datan, Matlab-ohjelmiston ja teoriaosuudessa esiteltyjen kaavojen avulla pulloon syntyviä jännityksiä ja plastista venymää Aikataulu Viikko Työvaihe 42 Koesuunnitelman palautus 43 Koesuunnitelman vertaisarviointi 44 Mittaukset 45 Mittaukset 46 Mittaukset/tulosten analysointi 47 Tulosten analysointi 48 Tulosten analysointi 49 Tulosten esitykset 50 Tulosten esitykset 4
6 5. Virhetarkastelu Tutkimuksessa virheitä syntyy mittalaitteistosta ja mittaajien aiheuttamista virheistä. Pullon täyttämisessä tapahtuu virheitä, kun se täytetään dl mitalla nestettä. Nesteen määrässä tulee väkisinkin mittavirhe, koska mittaus suoritetaan desilitran mitan avulla. Virhe voidaan tässä minimoida käyttämällä vain täyttä desilitran mittaa ja mittaamalla tarkasti ja huolellisesti. Jonkin verran virheitä voi aiheutua myös venymäliuskoista itsestään, niiden kiinnityksestä sekä venymäliuskoissa kiinni olevien sähköjohtojen resistanssin muuttumisesta lämpötilan muuttumisen seurauksena. 6. Turvallisuustarkastelu Itse koe on luonteeltaan turvallinen, eikä vaaratilanteita pitäisi syntyä kokeen aikana. Kuitenkin on hyvä pitää hanskoja kädessä, kun ottaa jäätyneen pullon pois pakastimesta. Sekä pitää varoa, ettei pulloa räjähdä paineen voimasta pakastimeen. Pulloa ei kannata laittaa täyteen nestettä, jotta räjähtämisen todennäköisyys piennee merkittävästi. 7. Lähteet: [1] [2] [3] Santaoja, Kari. Rasitusopin käsikirja lujuusopin lukijoille. Helsinki, S , , ISBN [4] [5] [6] [7] 5
Koesuunnitelma. Tuntemattoman kappaleen materiaalin määritys. Kon c3004 Kone ja rakennustekniikan laboratoriotyöt. Janne Mattila.
Kon c3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma Tuntemattoman kappaleen materiaalin määritys Janne Mattila Teemu Koitto Lari Pelanne Sisällysluettelo 1. Tutkimusongelma ja tutkimuksen
LisätiedotNESTEEN TIHEYDEN MITTAUS
NESTEEN TIHEYDEN MITTAUS AALTO-YLIOPISTO INSINÖÖRITIETEIDEN KORKEAKOULU KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt Emma Unonius, Justus Manner, Tuomas Hykkönen 15.10.2015 Sisällysluettelo Teoria...
LisätiedotKoesuunnitelma Alumiinin lämpölaajenemiskertoimen määrittäminen
KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt Koesuunnitelma Alumiinin lämpölaajenemiskertoimen määrittäminen Ryhmä 3 Henri Palosuo Kaarle Patomäki Heidi Strengell Sheng Tian 1. Johdanto Materiaalin
LisätiedotKone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C
Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004 Koesuunnitelma: Paineen mittaus venymäliuskojen avulla Ryhmä C Aleksi Mäki 350637 Simo Simolin 354691 Mikko Puustinen 354442 1. Tutkimusongelma ja
LisätiedotKoesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt. 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269)
Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269) Sisällysluettelo 1. Johdanto... 2 2. Tutkimusmenetelmät... 2 2.1 Kokeellinen
LisätiedotKON C3004 14.10.2015 H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, 298618. Koesuunnitelma
KON C3004 14.10.2015 H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, 298618 Koesuunnitelma Sisällysluettelo Sisällysluettelo 1 1 Tutkimusongelma ja tutkimuksen tavoit e 2 2 Tutkimusmenetelmät 3 5 2.1 Käytännön
LisätiedotTuulen nopeuden mittaaminen
KON C3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma / ryhmä K Tuulen nopeuden mittaaminen Matias Kidron 429542 Toni Kokkonen 429678 Sakke Juvonen 429270 Kansikuva: http://www.stevennoble.com/main.php?g2_view=core.downloaditem&g2_itemid=12317&g2_serialnumber=2
LisätiedotKoesuunnitelma Kimmokertoimien todentaminen
KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt Koesuunnitelma Kimmokertoimien todentaminen Ryhmä S: Pekka Vartiainen 427971 Jari Villanen 69830F Anssi Petäjä 433978 Sisällysluettelo 1 Johdanto...
LisätiedotKJR-C3004 KONE- JA RAKENNUSTEKNIIKAN LABORATORIOTYÖT KOESUUNNITELMA. Hiilikuituisen kajakkimelan varren jännitysprofiilin lineaarisuus
KJR-C3004 KONE- JA RAKENNUSTEKNIIKAN LABORATORIOTYÖT Hiilikuituisen kajakkimelan varren jännitysprofiilin lineaarisuus (ilman kuvia) RYHMÄ N KALLE KEKÄLÄINEN 355836 LAURI LINNONMAA 350103 TUOMO VILSKA
LisätiedotRyhmä T. Koesuunnitelma. Kone- ja rakennustekniikan laboratoriotyöt, KON-C3004
Ryhmä T Koesuunnitelma Kone- ja rakennustekniikan laboratoriotyöt, KON-C3004 Henri Makkonen 430450, Iivari Sassi 311582, Alexander Hopsu 429005 12.10.2015 Sisällys Tutkimusongelma ja tutkimuksen tavoite...
LisätiedotPalkin kimmokertoimen kokeellinen määrittäminen. KON-C3004 Eetu Veikkanen, Aino Salmi, Jarna Verho
Palkin kimmokertoimen kokeellinen määrittäminen KON-C3004 Eetu Veikkanen, Aino Salmi, Jarna Verho Sisällys 1. Johdanto... 3 2. Teoria ja laskennallinen mittaaminen... 3 2.1 Yleistä... 3 2.2. Taipumaviivan
LisätiedotPalkin ominaistaajuuden määrittäminen venymäliuska anturin avulla. Ryhmä O Timo Huuskonen Santeri Koivisto Teemu Tero
Palkin ominaistaajuuden määrittäminen venymäliuska anturin avulla Ryhmä O Timo Huuskonen 297169 Santeri Koivisto 297428 Teemu Tero 294353 Koesuunnitelma: palkin ominaisvärähtelytaajuuden selvittäminen
LisätiedotKuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.
TYÖ 37. OHMIN LAKI Tehtävä Tutkitaan metallijohtimen päiden välille kytketyn jännitteen ja johtimessa kulkevan sähkövirran välistä riippuvuutta. Todennetaan kokeellisesti Ohmin laki. Välineet Tasajännitelähde
LisätiedotRatkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016
Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit
LisätiedotLIITE 1 VIRHEEN ARVIOINNISTA
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 LIITE 1 VIRHEEN RVIOINNIST Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi
LisätiedotRatkaisut 2. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä.
Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit
LisätiedotOpetuskokeilun sisältöjä
Venymäliuska 1 Venymäliuskat yleisivistävässä teknologian opetuksessa Yleissivistävän teknologian opetuksen tulee antaa lapselle valmiuksia ymmärtää rakennettuun ympäristöön keskeisesti liittyviä toiminnan
LisätiedotHarjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä.
Kotitehtävät palautetaan viimeistään keskiviikkona 2.3. ennen luentojen alkua eli klo 14:00 mennessä puiseen kyyhkyslakkaan, jonka numero on 9. Arvostellut kotitehtäväpaperit palautetaan laskutuvassa.
LisätiedotLaskuharjoitus 2 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 7.3. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 2 Ratkaisut 1.
LisätiedotAineopintojen laboratoriotyöt 1. Veden ominaislämpökapasiteetti
Aineopintojen laboratoriotyöt 1 Veden ominaislämpökapasiteetti Aki Kutvonen Op.nmr 013185860 assistentti: Marko Peura työ tehty 19.9.008 palautettu 6.10.008 Sisällysluettelo Tiivistelmä...3 Johdanto...3
LisätiedotInversio-ongelmien laskennallinen peruskurssi Luento 7 8
Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Kevät 2011 1 Iteratiivisista menetelmistä Tähän mennessä on tarkasteltu niin sanottuja suoria menetelmiä, joissa (likimääräinen) ratkaisu saadaan
Lisätiedota P en.pdf KOKEET;
Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten
LisätiedotLIITE 1 VIRHEEN ARVIOINNISTA
1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten
LisätiedotLIITE 1 VIRHEEN ARVIOINNISTA
1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista
LisätiedotSISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa
SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia
Lisätiedot7. Resistanssi ja Ohmin laki
Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi
LisätiedotLuku Ohmin laki
Luku 9 Sähkövirrat Sähkövirta määriteltiin kappaleessa 7.2 ja huomattiin, että magneettikenttä syntyy sähkövirtojen vaikutuksesta. Tässä kappaleessa tarkastellaan muita sähkövirtaan liittyviä seikkoja
LisätiedotLaskuharjoitus 1 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 28.2. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 1 Ratkaisut 1.
LisätiedotSEISOVA AALTOLIIKE 1. TEORIAA
1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus
LisätiedotKäyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on
766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua
LisätiedotVoima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!
6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata
LisätiedotKIINTEÄN AINEEN JA NESTEEN TILANYHTÄLÖT
KIINTEÄN AINEEN JA NESTEEN TILANYHTÄLÖT Lämpölaajeneminen Pituuden lämpölaajeneminen: l = αl o t lo l l = l o + l = l o + αl o t l l = l o (1 + α t) α = pituuden lämpötilakerroin esim. teräs: α = 12 10
LisätiedotKON- C3004 Kone- ja rakennustekniikan laboratoriotyöt. Koesuunnitelma. Jääkiekkomailan taipumisen vaikutus laukauksen nopeuteen.
KON- C3004 Kone- ja rakennustekniikan laboratoriotyöt Koesuunnitelma Jääkiekkomailan taipumisen vaikutus laukauksen nopeuteen Ryhmä M Toni Makkonen Jan- Kristian Pyrhönen Lauri Toivonen 0 Sisällysluettelo
LisätiedotHarjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016
Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit
LisätiedotPYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS
1 PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittausprojekti Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen
LisätiedotPHYS-A3121 Termodynamiikka (ENG1) (5 op)
PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset
LisätiedotMateriaali on lineaarinen, jos konstitutiiviset yhtälöt ovat jännitys- ja muodonmuutostilan suureiden välisiä lineaarisia yhtälöitä.
JÄNNITYS-JAMUODONMUUTOSTILANYHTYS Materiaalimalleista Jännitys- ja muodonmuutostila ovat kytkennässä toisiinsa ja kytkennän antavia yhtälöitä sanotaan materiaaliyhtälöiksi eli konstitutiivisiksi yhtälöiksi.
LisätiedotSovelletun fysiikan pääsykoe
Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille
LisätiedotDiplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
LisätiedotKon-41.4005 Kokeelliset menetelmät. Koesuunnitelma. 3D-tulostetun muovin materiaaliominaisuuksien mittaus. Janica Aula. Qiongge Tai.
Kon-41.4005 Kokeelliset menetelmät Koesuunnitelma 3D-tulostetun muovin materiaaliominaisuuksien mittaus Janica Aula Qiongge Tai Hans Koskinen Tuomas Isomaa Aleksi Kinnunen Sisällysluettelo 1 Tutkimusongelma
Lisätiedot33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ
TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien
Lisätiedot10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat
TAVOITTEET Esitetään vastaavalla tavalla kuin jännitystilan yhteydessä venymätilan muunnosyhtälöt Kehitetään materiaaliparametrien yhteyksiä; yleistetty Hooken laki Esitetään vaurioteoriat, joilla normaali-
LisätiedotCHEM-A1410 Materiaalitieteen perusteet
CHEM-A1410 Materiaalitieteen perusteet Laskuharjoitus 18.9.2017, Materiaalien ominaisuudet Tämä harjoitus ei ole arvioitava, mutta tämän tyyppisiä tehtäviä saattaa olla tentissä. Tehtävät perustuvat kurssikirjaan.
LisätiedotLEGO EV3 Datalogging mittauksia
LEGO EV3 Datalogging mittauksia Tehtäväkortit 19.2017 Energiamittari/ Tehtäväkortti / 2017Innokas 1 Ledin palamisajan määrittäminen Generaattorin kytkeminen Kytke generaattori energiamittarin sisääntuloon
LisätiedotKertaustehtävien ratkaisut
Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0
LisätiedotKojemeteorologia (53695) Laskuharjoitus 1
Kojemeteorologia (53695) Laskuharjoitus 1 Risto Taipale 20.9.2013 1 Tehtävä 1 Erään lämpömittarin vertailu kalibrointistandardiin antoi keskimääräiseksi eroksi standardista 0,98 C ja eron keskihajonnaksi
Lisätiedot(b) Tunnista a-kohdassa saadusta riippuvuudesta virtausmekaniikassa yleisesti käytössä olevat dimensiottomat parametrit.
Tehtävä 1 Oletetaan, että ruiskutussuuttimen nestepisaroiden halkaisija d riippuu suuttimen halkaisijasta D, suihkun nopeudesta V sekä nesteen tiheydestä ρ, viskositeetista µ ja pintajännityksestä σ. (a)
LisätiedotFysiikan laboratoriotyöt 3 Sähkömotorinen voima
Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Työn suorittaja: Antti Pekkala (1988723) Mittaukset suoritettu 8.10.2014 Selostus palautettu 16.10.2014 Valvonut assistentti Martti Kiviharju 1 Annettu tehtävä
LisätiedotCHEM-A1400 Tulevaisuuden materiaalit (5 op) LABORATORIOTYÖN RAPORTTI
CHEM-A1400 Tulevaisuuden materiaalit (5 op) LABORATORIOTYÖN RAPORTTI TYÖ Litiumioniakku Ryhmä Ryhmän johtaja työ tehty palautus pvm Vastaa raportissa alla esitettyihin kysymyksiin. Tee raportista kuitenkin
LisätiedotPYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS
1 PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen osat Lämpötilan
Lisätiedot= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]
766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan
Lisätiedot2. Sähköisiä perusmittauksia. Yleismittari.
TURUN AMMATTKORKEAKOULU TYÖOHJE 1 TEKNKKA FYSKAN LABORATORO 2.0 2. Sähköisiä perusmittauksia. Yleismittari. 1. Työn tavoite Tutustutaan tärkeimpään sähköiseen perusmittavälineeseen, yleismittariin, suorittamalla
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille
LisätiedotMittaustekniikka (3 op)
530143 (3 op) Yleistä Luennoitsija: Ilkka Lassila Ilkka.lassila@helsinki.fi, huone C319 Assistentti: Ville Kananen Ville.kananen@helsinki.fi Luennot: ti 9-10, pe 12-14 sali E207 30.10.-14.12.2006 (21 tuntia)
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien
Lisätiedot10B16A. LÄMPÖLAAJENEMINEN JA ILMAN SUHTEELLINEN KOSTEUS
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 1B16A. LÄMPÖLAAJENEMINEN JA ILMAN SUHTEELLINEN KOSTEUS A. LÄMPÖLAAJENEMINEN Pituuden lämpötilakertoimen määrittäminen vesihauteen avulla 1. Työn tavoite Tutkitaan aineen
LisätiedotLineaarialgebra MATH.1040 / voima
Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.
LisätiedotLuvun 12 laskuesimerkit
Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine
LisätiedotPerusopintojen Laboratoriotöiden Työselostus 1
Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa
LisätiedotEksimeerin muodostuminen
Fysikaalisen kemian Syventävät-laboratoriotyöt Eksimeerin muodostuminen 02-2010 Työn suoritus Valmista pyreenistä C 16 H 10 (molekyylimassa M = 202,25 g/mol) 1*10-2 M liuos metyylisykloheksaaniin.
LisätiedotOletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen
Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä
LisätiedotElastisuus: Siirtymä
Elastisuus: Siirtymä x Elastisuus: Siirtymä ja jännitys x σ(x) σ(x) u(x) ℓ0 u(x) x ℓ0 x Elastisuus: Lämpövenymä ja -jännitys Jos päät kiinnitetty eli ε = 0 Jos pää vapaa eli σ = 0 Elastisuus: Venymätyypit
LisätiedotTyö 4B8B S4h. AINEEN PITUUDEN MUUTOKSISTA
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 4B8B S4h. AINEEN PITUUDEN MUUTOKSISTA TYÖN TAVOITE Tavoitteena on ymmärtää aineen kimmoisuuteen liittyviä käsitteitä sekä aineen lämpölaajenemista. Sovelluksena
LisätiedotKeskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)
Mat-.3 Koesuunnittelu ja tilastolliset mallit kevät Keskipisteen lisääminen k -faktorikokeeseen (ks. Montgomery 9-6) Esim (Montg. ex. 9-, 6-): Tutkitaan kemiallisen prosessin saannon Y riippuvuutta faktoreista
Lisätiedoton radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).
H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika
LisätiedotCh 12-4&5 Elastisuudesta ja lujuudesta
Ch 12-4&5 Elastisuudesta ja lujuudesta Jännitys ja venymä Hooken laki F = k l Δl = 1 k F Jousivakio k riippuu langan dimensioista Saadaan malli Δl = l o EA F k = E A l o Lisäksi tarvitaan materiaalia kuvaava
Lisätiedot2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv
2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyvien vakioiden määrittämiseen. Jännitystila on siten
LisätiedotFYSA220/1 (FYS222/1) HALLIN ILMIÖ
FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys
LisätiedotKeski-Suomen fysiikkakilpailu
Keski-Suomen fysiikkakilpailu 28.1.2016 Kilpailussa on kolme kirjallista tehtävää ja yksi kokeellinen tehtävä. Kokeellisen tehtävän ohjeistus on laatikossa mittausvälineiden kanssa. Jokainen tehtävä tulee
LisätiedotLämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.
Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole
LisätiedotLAATTATEORIAA. Yleistä. Kuva 1.
LAATTATEORIAA Yleistä Kuva 1. Laatta on kahden pinnan rajoittama rakenneosa, jonka paksuus on pieni muihin mittoihin verrattuna. Pintojen puolivälissä oleva keskipinta on taso ennen laatan kuormittamista.
LisätiedotMuodonmuutostila hum 30.8.13
Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan
LisätiedotFYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ
FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ MIKKO LAINE 2. kesäkuuta 2015 1. Johdanto Tässä työssä määritämme Maan magneettikentän komponentit, laskemme totaalikentän voimakkuuden ja monitoroimme magnetometrin
LisätiedotVarausta poistavien lattioiden mittausohje. 1. Tarkoitus. 2. Soveltamisalue. 3. Mittausmenetelmät MITTAUSOHJE 1.6.2001 1 (5)
1.6.2001 1 (5) Varausta poistavien lattioiden mittausohje 1. Tarkoitus Tämän ohjeen tarkoituksena on yhdenmukaistaa ja selkeyttää varausta poistavien lattioiden mittaamista ja mittaustulosten dokumentointia
Lisätiedot1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T.
S-35, Fysiikka III (ES) välikoe Laske ideaalikaasun tilavuuden lämpötilakerroin (/V)(dV/d) p ja isoterminen kokoonpuristuvuus (/V)(dV/dp) ehtävän pisteyttäneen assarin kommentit: Ensimmäisen pisteen sai
LisätiedotELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2.
7/ EEMENTTIMENETEMÄN PERSTEET SESSIO 7: Aksiaalinen sauvaelementti, osa. RATKAIS EEMENTIN AEESSA Verkon perusyhtälöstä [ K ]{ } = { F} saatavasta solmusiirtymävektorista { } voidaan poimia minkä tahansa
Lisätiedotja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on
FYSA210 / K1 HITAUSMOMENTTI Työn tavoitteena on opetella määrittämään kappaleen hitausmomentti kappaletta pyörittämällä ja samalla havainnollistaa kitkan vaikutusta. Massapisteinä toimivat keskipisteestään
LisätiedotFYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
LisätiedotPinnoitteen vaikutus jäähdytystehoon
Pinnoitteen vaikutus jäähdytystehoon Jesse Viitanen Esko Lätti 11I100A 16.4.2013 2 SISÄLLYS 1TEHTÄVÄN MÄÄRITTELY... 3 2TEORIA... 3 2.1Jäähdytysteho... 3 2.2Pinnoite... 4 2.3Jäähdytin... 5 3MITTAUSMENETELMÄT...
Lisätiedot1. Elektronin ominaisvarauksen määritystyö Sähkömagnetismi IIZF1031
1. Elektronin ominaisvarauksen määritystyö Sähkömagnetismi IIZF1 Juha Jokinen (Selostuksesta vastaava Janne Kivimäki Antti Lahti Teemu Kuivamäki Mittauspäivä: 19..009 Laboratoriotyön selostus 15..009 Electron
LisätiedotRadiaanit. Kun kulman α suuruus nyt mitataan tämän kaaren pituutena, saadaan kulmaan arvo radiaaneissa.
Radiaanit Kulmia mitataan matematiikassa paitsi asteissa, myös radiaaneissa. Radiaanien taustaideana on, että kun kulmaa α asetetaan yksikköympyrään, kulmien kylkien välille muodostuu ympyrän kehälle kaari
LisätiedotKIINTEÄN AINEEN MEKANIIKAN PERUSTEET
KIINTÄN AINN MKANIIKAN PRUSTT YHTÄLÖKOKOLMA Kari Santao 3..06 Pitkä versio Opiskelin nimi opiskelinumero Voisitteko ystävällisesti ilmoittaa tässä yhtälökokoelmassa havaitsemistanne virheistä puutteista.
LisätiedotInversio-ongelmien laskennallinen peruskurssi Luento 4
Inversio-ongelmien laskennallinen peruskurssi Luento 4 Kevät 20 Regularisointi Eräs keino yrittää ratkaista (likimääräisesti) huonosti asetettuja ongelmia on regularisaatio. Regularisoinnissa ongelmaa
LisätiedotLämpötila Lämpölaajeneminen Ideaalikaasu. Luku 17
Lämpötila Lämpölaajeneminen Ideaalikaasu Luku 17 Ch 17-1 3 Termodynaaminen tasapaino Termodynaaminen tasapaino: Tuotaessa kaksi systeemiä lämpökontaktiin niiden termodynaaminen tasapaino on saavutettu,
LisätiedotDEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi
DEE-4000 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen ratkaisuiksi Yleistä asiaa lämmönjohtumisen yleiseen osittaisdifferentiaaliyhtälöön liittyen Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälön
LisätiedotReikien vaikutus palkin jäykkyyteen
Reikien vaikutus palkin jäykkyyteen Kon-41.4005 Kokeelliset menetelmät koesuunnitelma Sami Lahtinen, Petteri Peltonen, Perttu Hettula, Olli-Ville Laukkanen & Teemu Seppänen 2/16/2014 Sisällysluettelo 1
LisätiedotMATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Lisätiedotnormaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät
TAVOITTEET Johdetaan htälöt, joilla muutetaan jännitskomponentit koordinaatistosta toiseen Kätetään muunnoshtälöitä suurimpien normaali- ja leikkaus jännitsten laskemiseen pisteessä Määritetään ne tasot,
LisätiedotInversio-ongelmien laskennallinen peruskurssi Luento 2
Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +
LisätiedotT F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3
76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15
LisätiedotTyö 3: Veden höyrystymislämmön määritys
Työ 3: Veden höyrystymislämmön määritys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä vettä höyrystetään uppokuumentimella ja mitataan jäljellä olevan veden painoa sekä höyrystymiseen
LisätiedotLuku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan
Luku 6 Sähköstatiikan reunaehtoproleemat 6.1 Laplacen ja Poissonin yhtälöt Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan ( φ) = ρ ε 0, (6.1) josta 2 φ = ρ ε 0. (6.2) Tämä tulos on nimeltään
LisätiedotFluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla
Tehtävä 1 Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla ( πy ) u(y) = U sin, kun 0 < y < δ. 2δ Tässä U on nopeus kaukana
LisätiedotTyö 16A49 S4h. ENERGIAN SIIRTYMINEN
TUUN AMMATTIKOKEAKOULU TYÖOHJE 1/5 Työ 16A49 S4h ENEGIAN SIITYMINEN TYÖN TAVOITE Työssä perehdytään energian siirtymiseen vaikuttaviin tekijöihin sekä lämpöenergian johtumisen että sähköenergian siirtymisen
LisätiedotTorsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473
Torsioheiluri IIT3S Selostuksen laatija: Eerik Kuoppala Ryhmä B3: Eerik Kuoppala G904 Petteri Viitanen G8473 Mittauspäivämäärä:..4 Selostuksen jättöpäivä: 4.3.4 Torsioheilurin mitatuilla neljän jakson
LisätiedotVastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi
Sivu 1/10 Fysiikan laboratoriotyöt 1 Työ numero 3 Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Työn suorittaja: Antero Lehto 1724356 Työ tehty: 24.2.2005 Uudet mittaus tulokset: 11.4.2011
LisätiedotKäyttöohje DENVER PBA-12000BLACK
Käyttöohje DENVER PBA-12000BLACK Tulo (Micro USB) (Lataa PBA-12000BLACK) Lähtö Lähtö 1. Lataa DENVER PBA-12000BLACK verkkolaitteella (verkkolaite ei mukana). 2. Lataa DENVER PBA-12000BLACK liittämällä
LisätiedotTeddy 1. harjoituksen malliratkaisu kevät 2011
Teddy 1. harjoituksen malliratkaisu kevät 2011 1. Dipolimomentti voidaan määritellä pistevarauksille seuraavan vektoriyhtälön avulla: µ = q i r i, (1) i missä q i on i:nnen varauksen suuruus ja r i = (x
LisätiedotKON-C3004 Kone- ja rakennustekniikan laboratoriotyöt. 2.10.2015 Koesuunnittelu Panu Kiviluoma
KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt 2.10.2015 Koesuunnittelu Panu Kiviluoma Kokeellisen tutkimuksen vaiheet 1. Tutkimusongelman määrittäminen 2. Kokeiden suunnittelu 3. Koejärjestelyn
LisätiedotKuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa
8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti
Lisätiedot