LIITE 1 VIRHEEN ARVIOINNISTA
|
|
- Kirsti Laaksonen
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 LIITE 1 VIRHEEN RVIOINNIST Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista laskettavat suureet eivät koskaan ole absoluuttisen tarkkoja, vaan ne sisältävät aina epätarkkuutta Tämän epätarkkuuden arviointia esimerkiksi matemaattisilla menetelmillä kutsutaan virheen arvioinniksi Virheen arvioinnilla saat sekä arvion tulosten tarkkuudesta että tietoa siitä, mitkä tekijät vaikuttavat eniten mittaustulosten luotettavuuteen Millä tavoin mittaustuloksen epätarkkuus ilmoitetaan? Olkoon havaitsemasi suureen arvo x Sen epätarkkuus voidaan ilmoittaa absoluuttisen virheen x avulla muodossa x x Tämä kertoo, mille välille suureen oikea arvo mittauksesi perusteella sattuu Erityisesti, kun vertaillaan saman suureen erilaisia mittausmenetelmiä tai erisuuruisista suureista tehtyjä mittauksia keskenään, absoluuttisen x virheen sijaan käytetään usein suhteellista virhettä Suhteellinen virhe ilmoitetaan x tavallisesti prosentteina ja se kertoo, miten suuri osuus epätarkkuutta tulokseen sisältyy Esimerkki 1 Mitattaessa pöydän pituutta l metrimitalla tulokseksi saatiin l = 10,8 Metrimitan lukematarkkuus oli l = 0,1 Tulos kertoo, että pöydän oikea pituus on tämän mittauksen perusteella välillä 10,7 10,9 Mittauksen suhteellinen virhe oli 0,1 /10,8 eli n 0,9 % (Huomaa, että laskemme suurinta mahdollista virhettä, jolloin virheet pyöristetään aina ylöspäin) Esimerkki Verrataan edelliseen pituuden mittaukseen lasermenetelmällä tehtyä mittausta, jossa yhden kilometrin matka mitattiin 1 :n tarkkuudella Vaikka absoluuttinen virhe on kymmenkertainen edelliseen mittaukseen verrattuna, tämän mittauksen suhteellinen virhe on selvästi pienempi kuin edellisen, sillä se on 0,01/1000 eli vain 0,0010 %
2 LIITE 1 VIRHEEN RVIOINNIST Miten saat selville mittaustuloksesi virheen? Suoraan mitattavissa olevan suureen virheenä käytät mittalaitteen tarkkuutta, jos mittaat suureen vain kerran Jos mittaat suureen useampaan kertaan ja lasket sen arvon mittaustulostesi keskiarvona, voit käyttää virheenä suurimman ja pienimmän havaintoarvon erotuksen puolikasta, suurinta poikkeamaa keskiarvosta, keskihajontaa tai keskiarvon keskivirhettä Tärkeää: Huomioi aina mittalaitteen tarkkuus Jos valitsemasi virheraja on sitä pienempi, käytä virheenä laitteen lukematarkkuutta Miten saat yksinkertaisella laskulla selville mittaustulostesi perusteella lasketun suureen virheen? Esimerkki 3 Oletetaan, että määrität suorakulmion pinta-alan mittaamalla suorakulmion pituuden l ja leveyden w Saat mittaustuloksiksi l 9,5 ja w 38,0, niin että sekä pituuden että leveyden mittaustarkkuus on 0,5 Suorakulmion pinta-ala on nyt 9,5 38,0 3515,0 0,35150 tiedämme, että todellinen suorakulmion pinta-ala on välillä 9,0 37,5 3450,0 m Mittaustarkkuudesta johtuen 93,0 38,5 3580,5 Voit pitää pinta-alan absoluuttisen virheen ylärajana näiden kahden tuloksen erotusta tai sen puolikasta eli Suhteellinen virhe olisi siten (3580,5 3450,0) 65,5 3515,0 / 65,5 0, % Tällaisella yksinkertaisella tavalla voidaan arvioida virhettä, jos käytettävissä ei ole matemaattisia menetelmiä Millaista matemaattista menetelmää voit käyttää lasketun suureen virheen arviointiin? Mitatuista suureista lasketun suureen virhe voidaan määrittää kokonaisdifferentiaalimenetelmällä Käytämme merkintöjä: f on laskettava suure, joka riippuu mitattavista toisistaan riippumattomista suureista x, yhtälön f f ( x, ) mukaisesti, f on suureen f absoluuttinen virhe,
3 Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 3 f f on suureen f suhteellinen virhe, x, ovat mitattujen suureiden x, absoluuttiset virheet, jotka on saatu selville esimerkiksi mittojen lukematarkkuuksista tai suurimpina poikkeamina keskiarvoista, x x, y z ovat mitattujen suureiden suhteelliset virheet, jotka on saatu selville jakamalla em suureen absoluuttinen virhe suureen havaintoarvolla, a, b, c, ovat vakioita, jotka voidaan tässä tarkastelussa olettaa virheettömiksi Suureen f f ( x, ) absoluuttisen virheen ylärajan määrittäminen perustuu funktion f kokonaisdifferentiaalin df laskemiseen Kokonaisdifferentiaali df tarkoittaa suuretta f f f df dx dy dz (L11) x y z Virheen arvioinnissa on tärkeää kokonaisdifferentiaalin sovellutuksena saatava tulos, jonka mukaan suureen f absoluuttisen virheen f suurin mahdollinen arvo saadaan yhtälöstä f f f f x y z (L1) x y z Kannattaa huomata, että yhtälössä (L1) tarkastelemme pahinta mahdollista tilannetta Ottamalla yhteenlaskussa käyttöön itseisarvot ajattelemme, että kaikki virheet vaikuttavat samaan suuntaan Tällä menetelmällä saamme siis selville suureen f absoluuttisen virheen ylärajan Esimerkki 4 Edellisessä pinta-alamittauksessa laskettu suure oli lw Sen absoluuttisen virheen ylärajan laskemiseksi on laskettava funktion osittaisderivaatat muuttujien l ja w suhteen eli suureet l ja w Osittaisderivaatoiksi saadaan l d dl w d ja l, w dw jolloin absoluuttisen virheen ylärajalle saadaan lauseke l w wl lw l w Sijoittamalla numeroarvot saamme ylärajaksi
4 4 LIITE 1 VIRHEEN RVIOINNIST 38,0 0,5 9,5 0,5 65,5, joka on aivan sama kuin edellä yksinkertaisella päättelyllä saamamme tulos Virheen lausekkeessa esiintyvien tekijöiden merkitystä havainnollistaa alla oleva kuva, josta myös huomataan, että virheen lauseke ei ole aivan tarkka Suorakaiteen yhteen kulmaan jää nimittäin katkoviivoin merkitty pieni suorakaide lw, jota ei yllä olevassa laskussa oteta huomioon Tämä toisen kertaluvun termi on kuitenkin pieni (esimerkissä 0,5 ), joten sen vaikutus peittyy suurempien termien alle w= lw w = lw w l=wl l l Millaista matemaattista menetelmää voit käyttää lasketun suureen suhteellisen virheen arviointiin? Lasketun suureen f f ( x, ) suhteellisen virheen f f yläraja saadaan selville jakamalla absoluuttisen virheen f yläraja suureen arvolla f Esimerkiksi edellisen esimerkin tilanteessa suhteellisen virheen ylärajaksi saataisiin siis 65,5 3515,0 0, % Tilanteissa, joissa suure f riippuu mitattavista suureista siten, että sen yhtälössä esiintyy vain tuloja, osamääriä ja/tai potenssiin korotuksia, voidaan suhteellisen virheen yläraja määrittää myös ns logaritmista kokonaisdifferentiaalia käyttäen Tässä menetelmässä lasketaan ensin suureen f luonnollinen logaritmi ln f ja muodostetaan tämän kokonaisdifferentiaali Kokonaisdifferentiaalin määritelmästä saadaan (ln f ) (ln f ) (ln f ) d(ln f ) dx dy dz (L13) x y z Koska tiedämme, että d(ln f ) df f, saamme suhteellisen virheen ylärajaksi f (ln f ) (ln f ) (ln f ) x y z f x y z (L14)
5 Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 5 Esimerkki 5 Suorakaiteen pinta-alan suhteellisen virheen ylärajan laskemiseksi muodostetaan ensin pinta-alan lw luonnollisen logaritmin lauseke ln ln lw ln l ln w ja derivoidaan sitä muuttujien l ja w suhteen, jolloin saadaan ( ln ) 1 ( ln ) 1 ja l l w w Suhteellisen virheen ylärajaksi tulee nyt (ln ) l l 0,5 9,5 0,5 38,0 (ln ) l w w l w w 0, ,8564 % bsoluuttisen virheen ylärajaksi saadaan siten 0, ,0 65,5 Miten lopputulokset ilmoitetaan virherajojen avulla? Laskiessasi suureen arvoa mittaustulostesi avulla tee kaikki pyöristykset vasta lopputuloksiin, koska et vielä tiedä, mikä on tuloksesi lopullinen tarkkuus Kun olet laskenut suureen absoluuttisen virheen ylärajan, voit ilmoittaa sen muodossa f f Oikean ilmoitustarkkuuden saat selville seuraavasti: 1) Muuta ensin lopputulos f ja virhe f samanmuotoisiksi Jos toinen on esitetty kymmenen potenssin tai etuliitteen avulla ja toinen esimerkiksi desimaalilukuna tai erilaisen etuliitteen avulla, mieti kumpi esitystapa sopii tähän tilanteeseen paremmin ja ilmoita kummatkin samalla tavoin Ilmoita aina lopputulos ja virhe käyttäen samaa desimaalista tarkkuutta Esimerkki 6 Punnittaessa kappale sen massaksi saatiin m = 7,5 g ja massan virherajaksi määritettiin m = 0 mg Tässä tilanteessa massan yksikkönä voidaan hyvin käyttää grammaa (g), joten ilmoitetaan virhe muodossa m = 0,00 g Lopputulos voitaisiin siten ilmoittaa muodossa m = (7,5 ± 0,00) g Tämän lisäksi on vielä tutkittava, toteutuuko seuraavassa käsiteltävä ns 15 yksikön sääntö ) Kun olet saanut lopputuloksen ja virheen ilmoitetuksi samalla desimaalisella tarkkuudella, käytä 15 yksikön sääntöä määrittäessäsi, kuinka monta numeroa otat mukaan lopputulokseen ja virheeseen Lopputulos on esitettävä siten, että mukaan ote-
6 6 LIITE 1 VIRHEEN RVIOINNIST taan vain merkitsevät numerot 15 yksikön säännön mukaan merkitsevinä numeroina pidetään niitä, joiden epätarkkuus on korkeintaan 15 yksikköä Muista, että virhe pyöristetään ylöspäin ja lopputulos tavallisten pyöristyssääntöjen mukaan 15 yksikön säännön mukaan virhe voi siis olla enintään 0,015, 0,15, 1,5 jne Heti, jos virheeksi saadaan esimerkiksi 0,16 täytyy sekä lopputuloksesta että virheestä pudottaa yksi numero pois, jolloin virhe tulisi olemaan 0, Esimerkki 7 Tutkitaan, miten edellä tarkasteltu suorakaiteen pinta-ala ilmoitetaan oikein Pinta-alaksi saatiin 0,35150 m ja sen absoluuttisen virheen ylärajaksi määritettiin 65,5 Tuloksen yksikkönä käytetty m on tässä sopiva, joten ilmoitetaan ensin sekä pinta-ala että sen virhe käyttäen samaa desimaalista tarkkuutta näissä yksiköissä, jolloin saadaan ( 0, ,00653) m Määritetään vielä oikea ilmoitustapa 15 yksikön säännön avulla Edellä annetussa tuloksessa viimeisessä mukana olevassa lopputuloksen numerossa 0 olisi virhettä peräti 653 yksikköä Jos pudotamme yhden numeron pois sekä tuloksesta että virheestä, saamme ( 0,3515 0,0066) m Tästäkin täytyy vielä pudottaa numeroita pois, koska viimeisessä tuloksen numerossa 5 on edelleen 66 yksikköä virhettä Seuraava ehdotuksemme ( 0,35 0,007) m toteuttaa 15 yksikön säännön ja on siten tässä oikea ilmoitustapa 3) Tarkastele suhteelliseen virheeseen mukaan otettavien numeroiden määrä aina erikseen saman 15 yksikön säännön mukaan Myös suhteellisen virheen tapauksessa on muistettava, että se voi olla enintään 0,15 %, 1,5 %, 15 % jne Jos suhteelliseksi virheeksi saadaan esimerkiksi 1,6 %, se pyöristyy muotoon % Esimerkiksi pintaalan tapauksessa suhteelliseksi virheeksi saatiin 1,856 %, joka pyöristyy muotoon % Suorakulmion pinta-ala on siten (0,35 0,007) m 0,35 m %
LIITE 1 VIRHEEN ARVIOINNISTA
1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten
LisätiedotLIITE 1 VIRHEEN ARVIOINNISTA
1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista
LisätiedotLIITE 1 VIRHEEN ARVIOINNISTA
Oulun yliopisto Fysiikan opetuslaboratorio Fysikaalisen kemian laboratorioharjoitukset I 1 Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja
LisätiedotPERUSMITTAUKSIA. 1 Työn tavoitteet
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 PERUSMITTAUKSIA 1 Työn tavoitteet Tässä työssä määrität tutkittavaksesi annetun metallikappaleen tiheyden laskemalla sen suoraan
Lisätiedot0.3 LOPPUTULOKSEN ESITTÄMISTARKKUUS
18 0. LOPPUTULOKSEN ESITTÄMISTARKKUUS Fysikaalisen mittauksen ja virheenarvioinnin seurauksena määritettävän suureen arvolle saadaan likiarvo ja virhe (epätarkkuus). Lopputulokseen ei ole tarpeen sisällyttää
Lisätiedot761121P-01 FYSIIKAN LABORATORIOTYÖT 1. Oulun yliopisto Fysiikan tutkinto-ohjelma Kevät 2016
1 76111P-01 FYSIIKAN LABORATORIOTYÖT 1 Oulun yliopisto Fysiikan tutkinto-ohjelma Kevät 016 JOHDANTO Fysiikassa pyritään löytämään luonnosta lainalaisuuksia, joita voidaan mitata kokeellisesti ja kuvata
LisätiedotPERUSMITTAUKSIA. 1. Työn tavoitteet. 1.1 Mittausten tarkoitus
Oulun yliopisto Fysiikan opetuslaboratorio 1 PERUSMITTAUKSIA 1. Työn tavoitteet 1.1 Mittausten tarkoitus Tässä työssä määrität tutkittavaksesi annetun metallikappaleen tiheyden laskemalla sen suoraan tiheyden
LisätiedotPERUSMITTAUKSIA. 1. Työn tavoitteet. 1.1 Mittausten tarkoitus
1 PERUSMITTAUKSIA 1. Työn tavoitteet 1.1 Mittausten tarkoitus Tässä työssä määrität tutkittavaksesi annetun metallikappaleen tiheyden laskemalla sen suoraan tiheyden määritelmästä eli kappaleen massan
LisätiedotFysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä
Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä: 04.02.2013 Työn
LisätiedotVirhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.
Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita
LisätiedotDifferentiaali- ja integraalilaskenta
Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona
LisätiedotOn määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).
TYÖ 5b LIUKUKITKAKERTOIMEN MÄÄRITTÄMINEN Tehtävä Välineet Taustatietoja On määritettävä puupalikan ja lattian välinen liukukitkakerroin Sekuntikello, metrimitta ja puupalikka (tai jääkiekko) Kitkavoima
LisätiedotMuutoksen arviointi differentiaalin avulla
Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin
LisätiedotVirheen arviointia
16.4.014 Vireen arviointia NUMEERISIA JA ALGEBRAL- LISIA MENETELMIÄ, MAA1 Virettä, tai oikeammin vireen suuruutta, voidaan arvioida seuraavilla tavoilla: 1. Maksimi-minimikeino (-menettely), nopea ja yksinkertainen,
LisätiedotOHJEITA TYÖSELOSTUKSEN LAATIMISEEN
OHJEITA TYÖSELOSTUKSEN LAATIMISEEN Raportointi kuuluu tärkeänä osana jokaisen fyysikon työhön riippumatta siitä työskenteleekö hän tutkijana yliopistossa, opettajana koulussa vai teollisuuden palveluksessa.
LisätiedotMittaustarkkuus ja likiarvolaskennan säännöt
Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustulokset ovat aina likiarvoja, joilla on tietty tarkkuus Kokeellisissa luonnontieteissä käsitellään usein mittaustuloksia. Mittaustulokset ovat aina
LisätiedotDifferentiaalilaskennan tehtäviä
Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1
Lisätiedot13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle
13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien
Lisätiedot1 Tieteellinen esitystapa, yksiköt ja dimensiot
1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen
LisätiedotPHYS-A1110 Laboratoriotyöosuus. Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A)
PHYS-A1110 Laboratoriotyöosuus Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A) Kurssin järjestelyt Miksi? Fysiikka on havaintoja ja niiden selittämistä / ennustamista
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x
Lisätiedotjakokulmassa x 4 x 8 x 3x
Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:
LisätiedotSekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä
Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja
LisätiedotTorsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473
Torsioheiluri IIT3S Selostuksen laatija: Eerik Kuoppala Ryhmä B3: Eerik Kuoppala G904 Petteri Viitanen G8473 Mittauspäivämäärä:..4 Selostuksen jättöpäivä: 4.3.4 Torsioheilurin mitatuilla neljän jakson
LisätiedotTee kokeen yläreunaan pisteytysruudukko. Valitse kuusi tehtävää seuraavista kahdeksasta. Perustele vastauksesi!
MAA Loppukoe 70 Jussi Tyni Tee pisteytysruudukko konseptin yläreunaan! Vastauksiin välivaiheet, jotka perustelevat vastauksesi! Lue ohjeet huolellisesti! Tee kokeen yläreunaan pisteytysruudukko Valitse
LisätiedotMittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014
Mittaustuloksen esittäminen Virhetarkastelua Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 SI järjestelmä Kansainvälinen mittayksikköjärjestelmä Perussuureet ja perusyksiköt Suure Tunnus Yksikkö
Lisätiedot5. Numeerisesta derivoinnista
Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan
LisätiedotFysiikan laboratoriotyöt 3 Sähkömotorinen voima
Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Työn suorittaja: Antti Pekkala (1988723) Mittaukset suoritettu 8.10.2014 Selostus palautettu 16.10.2014 Valvonut assistentti Martti Kiviharju 1 Annettu tehtävä
LisätiedotDiplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
LisätiedotDerivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
Lisätiedot1 Komparatiivinen statiikka ja implisiittifunktiolause
Taloustieteen matemaattiset menetelmät 27 materiaali 4 Komparatiivinen statiikka ja implisiittifunktiolause. Johdanto Jo opiskeltu antaa nyt valmiu tutkia taloudellisia malleja Kiinnostava malli voi olla
LisätiedotJatkuvat satunnaismuuttujat
Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään
LisätiedotFysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi
Fysiikan perusteet SI-järjestelmä Antti Haarto 21.05.2012 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
Lisätiedot3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =
BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot
LisätiedotMittaustekniikka (3 op)
530143 (3 op) Yleistä Luennoitsija: Ilkka Lassila Ilkka.lassila@helsinki.fi, huone C319 Assistentti: Ville Kananen Ville.kananen@helsinki.fi Luennot: ti 9-10, pe 12-14 sali E207 30.10.-14.12.2006 (21 tuntia)
LisätiedotKuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.
TYÖ 37. OHMIN LAKI Tehtävä Tutkitaan metallijohtimen päiden välille kytketyn jännitteen ja johtimessa kulkevan sähkövirran välistä riippuvuutta. Todennetaan kokeellisesti Ohmin laki. Välineet Tasajännitelähde
LisätiedotB. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?
Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,
LisätiedotOPTIIKAN TYÖ. Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti:
Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti: OPTIIKAN TYÖ Vastaa ensin seuraaviin ennakkotietoja mittaaviin kysymyksiin. 1. Mitä tarkoittavat
LisätiedotNumeerinen analyysi Harjoitus 1 / Kevät 2017
Numeerinen analyysi Harjoitus 1 / Kevät 2017 Palautus viimeistään perjantaina 3.3. Tehtävä 1: Oheinen MATLAB-funktio toteuttaa eksponenttifunktion evaluoinnin. 1 function y = seriesexp ( x ) 2 oldsum =
Lisätiedot763101P FYSIIKAN MATEMATIIKKAA Seppo Alanko Oulun yliopisto Fysiikan laitos Syksy 2012
763101P FYSIIKAN MATEMATIIKKAA Seppo Alanko Oulun yliopisto Fysiikan laitos Syksy 01 1 Sisältö: 1 Differentiaalilaskentaa Integraalilaskentaa 3 Vektorit 4 Potenssisarjoja 5 Kompleksiluvut 6 Differentiaaliyhtälöistä
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1
LisätiedotMatemaattisen analyysin tukikurssi
Matemaattisen analyysin tukikurssi 11. Kurssikerta Petrus Mikkola 29.11.2016 Tämän kerran asiat Eksponenttifunktio Eksponenttifunktion määritelmä Eksponenttifunktion ominaisuuksia Luonnolinen logaritmi
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14
LisätiedotHarjoitustehtävien ratkaisut
Johdatus numeerisiin menetelmiin Harjoitustehtäviä. Esitä luvun 7 8 a) tarkka arvo desimaalilukuna b) kolmidesimaalinen likiarvo c) nolladesimaalinen likiarvo d) Likiarvo kahden merkitsevän numeron tarkkuudella
LisätiedotMS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)
MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle
Lisätiedot4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3
. Taylorin polynomi; funktion ääriarvot.1. Taylorin polynomi 94. Kehitä funktio f (x,y) = x 2 y Taylorin polynomiksi kehityskeskuksena piste ( 1,2) a) laskemalla osittaisderivaatat, b) kirjoittamalla muuttujat
Lisätiedot2 Raja-arvo ja jatkuvuus
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.6 Raja-arvo ja jatkuvuus. a) Kun suorakulmion kärki on kohdassa =, on suorakulmion kannan pituus. Suorakulmion korkeus on käyrän y-koordinaatti
Lisätiedotinfoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1
infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.
LisätiedotTASAVIRTAPIIRI - VASTAUSLOMAKE
TASAVIRTAPIIRI - VASTAUSLOMAKE Ryhmä Tekijä 1 Pari Tekijä 2 Päiväys Assistentti Täytä mittauslomake lyijykynällä. Muista erityisesti virhearviot ja suureiden yksiköt! 4 Esitehtävät 1. Mitä tarkoitetaan
Lisätiedoty = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
LisätiedotNumeeriset menetelmät TIEA381. Luento 11. Kirsi Valjus. Jyväskylän yliopisto. Luento 11 () Numeeriset menetelmät / 37
Numeeriset menetelmät TIEA381 Luento 11 Kirsi Valjus Jyväskylän yliopisto Luento 11 () Numeeriset menetelmät 24.4.2013 1 / 37 Luennon 11 sisältö Numeerisesta integroinnista ja derivoinnista Adaptiiviset
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 7 1 Useamman muuttujan funktion raja-arvo Palautetaan aluksi mieliin yhden muuttujan funktion g(x) raja-arvo g(x). x a Tämä raja-arvo kertoo, mitä arvoa funktio g(x)
LisätiedotFYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA
FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi
LisätiedotTyössä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.
TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja
Lisätiedot1 Tieteellinen esitystapa, yksiköt ja dimensiot
1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen
LisätiedotMaksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta
Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti
Lisätiedot1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa.
1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. Vuodessa Maahan satava massa on 3.7 10 7 kg. Maan massoina tämä on
LisätiedotJuuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.5.08 Kertaus K. a) Polynomi P() = + 8 on jaollinen polynomilla Q() =, jos = on polynomin P nollakohta, eli P() = 0. P() = + 8 = 54 08 +
LisätiedotLukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot
Lukujonon raja-arvo 1/7 Sisältö Esimerkki lukujonon raja-arvosta Lukujonossa a 1,a 2,a 3,... (jossa on äärettömän monta termiä) voivat luvut lähestyä jotakin arvoa, kun jonossa edetään yhä pidemmälle.
LisätiedotHelsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 14 R. Kangaslampi matriisiteoriaa Matriisinormi
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /
MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
Lisätiedota) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on
Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)
LisätiedotAnna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa
Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden
Lisätiedot1.4 Funktion jatkuvuus
1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,
LisätiedotKertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0
Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a
LisätiedotKUITUPUUN PINO- MITTAUS
KUITUPUUN PINO- MITTAUS Ohje KUITUPUUN PINOMITTAUS Ohje perustuu maa- ja metsätalousministeriön 16.6.1997 vahvistamaan pinomittausmenetelmän mittausohjeeseen. Ohjeessa esitettyä menetelmää sovelletaan
LisätiedotTyö 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä
Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät
LisätiedotJohdantoa. Jokaisen matemaatikon olisi syytä osata edes alkeet jostakin perusohjelmistosta, Java MAPLE. Pascal MathCad
Johdantoa ALGORITMIT MATEMA- TIIKASSA, MAA Vanhan vitsin mukaan matemaatikko tietää, kuinka matemaattinen ongelma ratkaistaan, mutta ei osaa tehdä niin. Vitsi on ajalta, jolloin käytännön laskut eli ongelman
Lisätiedot4 LUKUJONOT JA SUMMAT
Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 0.7.08 4 LUKUJONOT JA SUMMAT ALOITA PERUSTEISTA 45A. Määritetään lukujonon (a n ) kolme ensimmäistä jäsentä ja sadas jäsen a 00 sijoittamalla
LisätiedotBM20A0900, Matematiikka KoTiB3
BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt
LisätiedotTalousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto
Talousmatematiikan perusteet: Luento 7 Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Viime luennolla Funktion Derivaatta f (x) kuvaa funktion
Lisätiedot4. laskuharjoituskierros, vko 7, ratkaisut
4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.
Lisätiedotx 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
Lisätiedot2.2 Neliöjuuri ja sitä koskevat laskusäännöt
. Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri
Lisätiedotn. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.
MAA 12 kertaus Funktion kuvaaja n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. Funktion nollakohta on piste, jossa f () = 0, eli kuvaaja leikkaa -akselin. Kuvaajan avulla
LisätiedotMatematiikan perusteet taloustieteilij oille I
Matematiikan perusteet taloustieteilijöille I Harjoitukset syksy 2006 1. Laskeskele ja sieventele a) 3 27 b) 27 2 3 c) 27 1 3 d) x 2 4 (x 8 3 ) 3 y 8 e) (x 3) 2 f) (x 3)(x +3) g) 3 3 (2x i + 1) kun, x
Lisätiedot¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.
10.11.2006 1. Pituushyppääjä on edellisenä vuonna hypännyt keskimäärin tuloksen. Valmentaja poimii tämän vuoden harjoitusten yhteydessä tehdyistä muistiinpanoista satunnaisesti kymmenen harjoitushypyn
LisätiedotTyössä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.
TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja
LisätiedotSovelletun fysiikan pääsykoe
Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille
LisätiedotSchildtin lukio
MAA1.9.15 Scildtin lukio LIKIARVO MUISTA: tavallisesti matematiikassa pyritään aina tarkkoiin arvoiin! Kuitenkin esim. mittaustulokset ovat aina likiarvoja. o Luvun katkaiseminen: näin tekevät mm. jotkut
LisätiedotMATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ ESITYS pisteitykseksi
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.9.05 ESITYS pisteitykseksi Yleisohje tarkkuuksista: Ellei tehtävässä vaadittu tiettyä tarkkuutta, kelpaa numeerisissa vastauksissa ohjeen vastauksen lisäksi yksi merkitsevä
LisätiedotHelsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13
Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3
LisätiedotMatematiikan peruskurssi 2
Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat
Lisätiedotk-kantaisen eksponenttifunktion ominaisuuksia
3.1.1. k-kantaisen eksponenttifunktion ominaisuuksia f() = k (k > 0, k 1) Määrittely- ja arvojoukko M f = R, A f = R + Jatkuvuus Funktio f on jatkuva Monotonisuus Funktio f aidosti kasvava, kun k > 1 Funktio
LisätiedotKALTEVA TASO. 1. Työn tavoitteet. 2. Teoria
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.
LisätiedotInsinöörimatematiikka A
Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,
Lisätiedot2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Sarjakehitelmiä Palautetaan mieliin, että potenssisarja on sarja joka on muotoa a n (x x 0 ) n = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 +. n=0 Kyseinen
LisätiedotTämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R }
7 Kompleksiluvut Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. 7.1 Kompleksilukujen määritelmä Määritelmä 7.1.1. Kompleksilukujen joukko
Lisätiedot7. laskuharjoituskierros, vko 10, ratkaisut
7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,
LisätiedotMatematiikka B1 - avoin yliopisto
28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan
Lisätiedot2. Sähköisiä perusmittauksia. Yleismittari.
TURUN AMMATTKORKEAKOULU TYÖOHJE 1 TEKNKKA FYSKAN LABORATORO 2.0 2. Sähköisiä perusmittauksia. Yleismittari. 1. Työn tavoite Tutustutaan tärkeimpään sähköiseen perusmittavälineeseen, yleismittariin, suorittamalla
Lisätiedot