DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi

Koko: px
Aloita esitys sivulta:

Download "DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi"

Transkriptio

1 DEE-4000 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen ratkaisuiksi Yleistä asiaa lämmönjohtumisen yleiseen osittaisdifferentiaaliyhtälöön liittyen Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälön koordinaatistosta riippumaton muoto on T Ñ l( T) Ñ T + Q Cp t Yhtälön vasemman puolen ensimmäisen termin, joka edustaa johtumalla siirtyvää lämpötehoa tilavuusyksikköä kohti, yksiköksi saadaan W K W éëñ l( T) Ñ Tù 3 m mk m m Yhtälön vasemman puolen toinen termi, Q, edustaa generoituvaa lämpötehoa tilavuusyksikköä kohti (W/m 3 ), ja yhtälön oikean puolen termi on ominaislämpöön varastoituva lämpöteho tilavuusyksikköä kohti Myös ominaislämpökapasitti C p on annettava tilavuusyksikköä kohti, eli yksiköltään J/(m 3 K), koska tällöin yhtälön oikean puolen yksiköksi saadaan é T ù J K J/s W êcp t ú ë m K s m m Useissa taulukkokirjoissa ominaislämpökapasiteetti ilmaistaan massayksikköä kohti, C pm Tällöin suureen yksikkö on J/(kgK) Jotta ominaislämpökapasiteetti saadaan lämmönjohtumisen yleisen osittaisdifferentiaaliyhtälön kannalta oikeaan yksikköön, C pm on kerrottava tarkasteltavan aineen tiheydellä r t : J kg J éc r ù kgk m m K ë pm t 3 3 Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälö, karteesinen koordinaatisto Tehtävänä on ratkaista kuvan mukaisen tilanteen maksimivirta I max siten, ettei lämpötila ylitä missään kohdassa kuparikiskoa arvoa o C Kuva Malli tarkasteltavasta tilanteesta

2 Tehtävän ratkaisussa tehdään seuraavat oletukset: Tilannetta tarkastellaan yhdessä dimensiossa, mikä tarkoittaa kuvan perusteella sitä, että lämpöä johtuu vain x-suunnassa Haetaan sitä virran maksimiarvoa, johon kuparikiskon lämpötilajakauma tasaantuu Tällöin kyseessä on jatkuvuustilan tarkastelu, mikä tarkoittaa sitä, että lämpötila ei muutu ajan suhteen Kuparikiskon virrantiheysjakauma on homogeeninen Tällöin virrantiheys saadaan, kun kiskoon syötettävä virta jaetaan kiskon poikkipinta-alalla Lämmönjohtavuus ei riipu lämpötilasta Lämmönjohtumisen osittaisdifferentiaaliyhtälö on karteesisessa koordinaatistossa muotoa æ ö é æ T T T öù T ç i+ j+ k êl( T) ç i+ j+ k ú+ Q Cp è x y z ø ë è x y z ø t Edellä lueteltujen oletusten perusteella se voidaan kirjoittaa muodossa æ ö æ T ö lç i+ j+ k ç i+ j+ k + è x y z ø è x ø J C dt Û l - rj dx 0 0 r p 0 Kyseessä on toisen kertaluokan differentiaaliyhtälö, joka saadaan ratkaistua integroimalla: d T r J dt rj - ò Û - x + C ò dx l dx l rj Û T( x) - x + Cx+ C l Vakioiden C ja C ratkaisemiseen tarvitaan kaksi reunaehtoa, jotka saadaan tunnetuista lämpötiloista kohdissa x 0 ja x 03 m: ( ) ì T x 0 C í 76 0 ( I ( 96 0 )) T( x ) - + C + î ì C 94 Û -8 - í ( I ( 96 0 )) C î Koska kiskon molemmat päät ovat samassa lämpötilassa, lämpötilan maksimi löytyy kiskon keskeltä, eli kohdasta x 0 m Kun nyt haetaan se virran arvo, jolla lämpötila on kiskon keskellä o C, saadaan

3 rj T( x ) - + C + C l Û ( I ( )) ( I ( )) é -8-8 ù Û I ê - ú 00 ê - - ( 96 0 ) ( 96 0 ) ú ë Û I» 7378 Û I» 7 Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälö, sylinterikoordinaatisto Tehtävänä on ratkaista kuvan mukaisen sähkövastuksen keskustan lämpötila Kuva Malli tarkasteltavasta tilanteesta Tämän tehtävän ratkaisussa tehdään seuraavat oletukset: Tilannetta tarkastellaan yhdessä dimensiossa, mikä tarkoittaa kuvan perusteella sitä, että lämpöä johtuu vain r-suunnassa Vastuksen lämpötilan oletetaan siis olevan vakio sekä z- että f-suunnassa, joista jälkimmäinen tarkoittaa kulmaa, jolla r kiertyy vastuksen pituusakselin ympäri Tarkastellaan jatkuvuustilaa Lasketaan siis se vastuksen lämpötilajakauma, johon tilanne tasaantuu ajan kuluessa Täten lämpötila ei muutu ajan suhteen Vastuksen tehojakauma on homogeeninen Lämmönjohtumisen yleisessä differentiaaliyhtälössä esiintyvä muuttuja Q siis saadaan, kun vastuksen teho jaetaan vastuksen tilavuudella Lämmönjohtavuus ei riipu lämpötilasta Tehtävä voitaisiin ratkaista karteesisessa koordinaatistossa Jos oletetaan, että x ja y ovat koordinaatit vastuksen poikkipinta-alalla, tällöin z olisi vastuksen pituusakselin suuntainen koordinaatti Seuraus olisi, että tehtävästä tulisi kaksidimensioinen, eli toisin sanoen lämpötila riippuisi vastuksen poikkipinnalla sekä x- että y-suunnasta 3

4 Tällöin tehtävän ratkaisu olisi kynällä ja paperilla kovin hankalaa, ellei jopa mahdotonta Ongelmasta päästään eroon, kun tarkastelu tehdään sylinterikoordinaatistossa Kyse on siitä, että vastuksen poikkipinnan koordinaatit ovat jo edellä mainitut r ja f, joista jälkimmäinen tarkoittaa vastuksen pituusakselia kiertävää kulmaa Kuvaa katsomalla on havaittavissa, että tarkastelu voidaan tehdä nyt yhdessä dimensiossa, sillä voidaan hyvällä tarkkuudella olettaa, ettei lämpötila muutu f:n suhteen Sylinterikoordinaatistossa lämmönjohtumisen yleinen differentiaaliyhtälö on é T T T T ( T) r ( T) ( T) Q Cp r r l ù é r r f l ù é f z l ù ê ê ú ë ú ê z ú ë ë t Edellä mainittujen oletusten perusteella yhtälö sievenee nyt muotoon é T ù lr + [ l 0] + [ l 0] + Q Cp 0 r r ê ë r ú r f z Û d é r dt ù l Q r dr ê - ë dr ú Kerrotaan yhtälö puolittain r:llä ja integroidaan: d é dt ù lr Qr dr ê - ë dr ú ò dr Û dt Q Û r dr l lr dr dt Q dr T r - Q r ln l r + B l r - r + : ( lr ) ò Û ( ) ( ) Vakioiden ja B ratkaisemiseen tarvitaan kaksi reunaehtoa Toinen saadaan vastuksen pintalämpötilasta, joka tunnetaan Toisaalta tiedetään myös, että vastus on kuumimmillaan kohdassa r 0 Toisin sanoen lämpötilan derivaatta r:n suhteen on nolla vastuksen keskellä: ì Q T( r 000) ln ( 000) + B 378 l í dt Q Q Ql - r+ 0 Û r Û r îdr r 0 l lr lr l l Jälkimmäisesta ehdosta saadaan, että menee nollaksi, kun r saa arvon nolla Nyt voidaan ratkaista vakio B: Q 0 T( r 000) ln ( 000) B l ( p 000 0) Û B »

5 Täten vastuksen lämpötila noudattaa r:n funktiona lauseketta Q , ( ) r T r joten kohdassa r 0 lämpötilaksi saadaan o T( r 0) 399 K» 6 C Lämpöresistanssi Lämpöresistansseja voidaan käyttää, kun: tilanne voidaan mallintaa yksidimensioisena, lämmönjohtumista vastaan kohtisuorien pintojen on oltava vakiolämpötilassa, lämpötila ei riipu ajasta Kun yllä mainitut oletukset ovat voimassa kuvan 3 mukaiselle tilanteelle, tarkastelu voidaan tehdä lämpövastusten avulla Kuva 3 Periaatekuva tehtävässä tarkasteltavasta tilanteesta Jos uunista huoneilmaan siirtyvä kokonaislämpövirta olisi tarpeen mallintaa lämpövastuksilla, tällöin syntyisi neljän vastuksen sarjaankytkentä Sarjaankytketyt vastukset vasemmalta oikealle edustaisivat: konvektiivista lämmönsiirtoa uunista muoviin B, lämmönjohtumista muovissa B, lämmönjohtumista muovissa, konvektiivista lämmönsiirtoa muovista huoneilmaan Lähtökohta on, että lämpötilaero DT synnyttää lämpövirran q, joten lämpöresistanssille R voidaan kirjoittaa D T Rq Û DT R, q jossa yksiköt ovat: [DT] K, [q] W ja [R] K/W Huomaa analogia sähkötekniikkaan: resistanssi R U/I DV/I eli jännite U (potentiaaliero DV) synnyttää resistanssiin R sähkövirran I

6 Lämmönjohtumiseen liittyväksi lämpöresistanssiksi R j saadaan DT DT L R, j q DT l l L jossa L on kappaleen pituus, poikkipinta-ala ja l lämmönjohtavuus Jälleen on havaittavissa sähkötekniikka-analogia: resistanssi saadaan lausekkeesta R rl/, jossa r on resistiivisyys, eli sähkönjohtavuuden käänteisluku Vastaavasti lämpökonvektioon liittyväksi lämpöresistanssiksi R k saadaan R k DT DT, q hdt h jossa h on konvektiivinen lämmönsiirtokerroin Tässä tapauksessa konvektiiviseen lämmönsiirtoon liittyviä vastuksia ei kuitenkaan tarvita, sillä komposiitti-ikkunan reunojen lämpötilat tunnetaan Täten tarkasteltava tilanne on yksinkertaisesti mallinnettavissa kuvan 4 mukaisesti kahden vastuksen sarjaankytkennällä Kuva 4 Uunin komposiitti-ikkunan lämmönjohtavuuksia mallintava vastusverkko Kuvan 4 mukaiselle tilanteella voidaan kirjoittaa æ L L ö Rtotq DT Û ( RB + R) q T-T Û ç B + q T-T èlb lø Lq Lq Û B T T l - - l Û Lq ( T-T B ) l-lq l l Û B B é( T-T) l-lqù ë Û lb l l Lq B B W Û l B mk llq T-T -Lq ( ) B l 6

2.2 Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W tot saadaan lausekkeesta ( )

2.2 Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W tot saadaan lausekkeesta ( ) DEE- Piirianalyysi, kesäkurssi, harjoitus (3) Tehtävien ratkaisuehdotukset. Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W saadaan lausekkeesta t t () ()()

Lisätiedot

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u. DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla

Lisätiedot

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1 Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!

Lisätiedot

SMG-4250 Suprajohtavuus sähköverkossa

SMG-4250 Suprajohtavuus sähköverkossa SMG-450 Suprajohtavuus sähköverkossa Laskuharjoitukset: Suprajohdemagneetin suunnittelu Harjoitus 3(5): Kryostaatti Ehdotukset harjoitustehtävien ratkaisuiksi 1. Yleisesti ottaen lämpö siirtyy kolmella

Lisätiedot

Jos olet käynyt kurssin aikaisemmin, merkitse vuosi jolloin kävit kurssin nimen alle.

Jos olet käynyt kurssin aikaisemmin, merkitse vuosi jolloin kävit kurssin nimen alle. 1(4) Lappeenrannan teknillinen yliopisto School of Energy Systems LUT Energia Nimi, op.nro: BH20A0450 LÄMMÖNSIIRTO Tentti 13.9.2016 Osa 1 (4 tehtävää, maksimi 40 pistettä) Vastaa seuraaviin kysymyksiin

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi SMG-4 Sähkömagneettisten jäjestelmien lämmönsiito Ehdotukset hajoituksen 3 atkaisuiksi 1. Voidaan kohtuullisella takkuudella olettaa, että pallonmuotoisessa säiliössä lämpötila muuttuu vain pallon säteen

Lisätiedot

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8, TKK, Matematiikan laitos Gripenberg/Harhanen Mat-1.432 Matematiikan peruskurssi K2 Harjoitus 4, (A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä ) 12 16.2.2007, viikko

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t.

Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t. DEE- Piirianalyysi Harjoitus / viikko 4 Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä jännitteen ja virran arvot ovat t Kun t, v te t 5t 8 V, i te t 5t 5 A, a) Määritä

Lisätiedot

Kryogeniikka ja lämmönsiirto. DEE-54030 Kryogeniikka Risto Mikkonen

Kryogeniikka ja lämmönsiirto. DEE-54030 Kryogeniikka Risto Mikkonen DEE-54030 Kyogeniikka Kyogeniikka ja lämmönsiito 1 DEE-54030 Kyogeniikka Risto Mikkonen 5.5.015 Lämmönsiion mekanismit '' q x ( ) x q '' h( s ) q '' 4 4 ( s su ) DEE-54030 Kyogeniikka Risto Mikkonen 5.5.015

Lisätiedot

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

SATE2180 Kenttäteorian perusteet syksy / 5 Laskuharjoitus 5 / Laplacen yhtälö ja Ampèren laki

SATE2180 Kenttäteorian perusteet syksy / 5 Laskuharjoitus 5 / Laplacen yhtälö ja Ampèren laki STE80 Kenttäteorian perusteet syksy 08 / 5 Tehtävä. Karteesisessa koordinaatistossa potentiaalin nollareferenssitaso on y = 4,5 cm. Määritä johteelle (y = 0) potentiaali ja varaustiheys, kun E = 6,67 0

Lisätiedot

Tampere University of Technology

Tampere University of Technology Tampere University of Technology EDE- Introduction to Finite Element Method. Exercise 3 Autumn 3.. Solve the deflection curve v(x) exactly for the beam shown y,v q v = q z, xxxx x E I z Integroidaan yhtälö

Lisätiedot

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre. 2. Viikko Keskeiset asiat ja tavoitteet: 1. Peruskäsitteet: kertaluku, lineaarisuus, homogeenisuus. 2. Separoituvan diff. yhtälön ratkaisu, 3. Lineaarisen 1. kl yhtälön ratkaisu, CDH: luvut 19.1.-19.4.

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Passiiviset piirikomponentit Luennon keskeinen termistö ja tavoitteet vastus käämi kondensaattori puolijohdekomponentit Tarkoitus on esitellä piiriteorian

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C Tehtävä a) sähkövirta = varausta per sekunti, I = dq dt =, 5 0 3 =, 5 0 3 C s protonin varaus on, 6 0 9 C Jaetaan koko virta yksittäisille varauksille:, 5 0 3 C s kpl = 9 05, 6 0 9 s b) di = Jd = J2πrdr,

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

Ruiskuvalumuotin jäähdytys, simulointiesimerkki

Ruiskuvalumuotin jäähdytys, simulointiesimerkki Ruiskuvalumuotin jäähdytys, simuloiesimerkki School of Technology and Management, Polytechnic Institute of Leiria Käännös: Tuula Höök - Tampereen Teknillinen Yliopisto Mallinnustyökalut Jäähdytysjärjestelmän

Lisätiedot

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),

Lisätiedot

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM) MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla

1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla Fy3: Sähkö 1. Tasavirta Virtapiirin komponenttien piirrosmerkit Virtapiiriä havainnollistetaan kytkentäkaaviolla Sähkövirta I Sähkövirran suunta on valittu jännitelähteen plusnavasta miinusnapaan (elektronit

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli

x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus, Syksy 015 1. a) Funktio f ) = 1) vaihtaa merkkinsä pisteissä = 1, = 0 ja = 1. Lisäksi se on pariton funktio joten voimme laskea vain pinta-alan

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 4 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 4 ratkaisuiksi SMG-400 Sähkömaneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 4 ratkaisuiksi Jatkuvuustilan D-lämpötilajakauma: differenssimenetelmä Differenssimenetelmän käyttämen lämpötehtävien ratkaisemiseen

Lisätiedot

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot

Lisätiedot

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka

Lisätiedot

9. Pyörivän sähkökoneen jäähdytys

9. Pyörivän sähkökoneen jäähdytys 81 9. Pyörivän sähkökoneen jäähdytys Sähkökoneen lämmönsiirron suunnittelu on yhtä tärkeää kuin koneen sähkömagneettinenkin suunnittelu, koska koneen lämpenemä määrittää sen tehon. Lämmön- ja aineensiirto

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

KJR-C2001 KIINTEÄN AINEEN MEKANIIKAN PERUSTEET, KEVÄT 2018

KJR-C2001 KIINTEÄN AINEEN MEKANIIKAN PERUSTEET, KEVÄT 2018 Vastaukset palautetaan htenä PDF-tiedostona Courses:iin 1.3. klo 1 mennessä. ahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. askuharjoitus 1. Selitä seuraavat käsitteet:

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-: SÄHKÖTEKNIIKKA Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan näiden

Lisätiedot

Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2

Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2 MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain

Lisätiedot

1 Eksergia ja termodynaamiset potentiaalit

1 Eksergia ja termodynaamiset potentiaalit 1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian

Lisätiedot

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on Suoran htälöt Suoran ratkaistu ja leinen muoto: Suoran htälö ratkaistussa, eli eksplisiittisessä muodossa, on ANALYYTTINEN GEOMETRIA MAA5 = k + b, tai = a missä vakiotermi b ilmoittaa suoran ja -akselin

Lisätiedot

ELEC-E8419 syksy 2016 Jännitteensäätö

ELEC-E8419 syksy 2016 Jännitteensäätö ELEC-E849 syksy 06 Jännitteensäätö. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0,3 ohm/km (3 ohmia/johto). Kunkin johdon virta on

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-0: SÄHKÖTEKNIIKAN PEUSTEET Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan

Lisätiedot

DEE Sähkömagneettisten järjestelmien lämmönsiirto

DEE Sähkömagneettisten järjestelmien lämmönsiirto DEE-54000 Sähkömagneettisten järjestelmien lämmönsiirto II periodi Luennot Risto Mikkonen, SH 311 Harjoitukset ke 10-12 SE 201 to 10-12 SE 100 J to 8-10 SE 201 Suoritusvaatimukset Tentti + hyväksytty harjoitustyö

Lisätiedot

( ) ( ) ( ) ( ) SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset

( ) ( ) ( ) ( ) SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset SMG-11 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset. Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W saadaan lausekkeesta t1 t1,

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila

Lisätiedot

Kanta ja Kannan-vaihto

Kanta ja Kannan-vaihto ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

Liite F: laskuesimerkkejä

Liite F: laskuesimerkkejä Liite F: laskuesimerkkejä 1 Lämpövirta astiasta Astiasta ympäristöön siirtyvää lämpövirtaa ei voida arvioida vain astian seinämien lämmönjohtavuuksilla sillä ilma seinämä ja maali seinämä -rajapinnoilla

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

3 TOISEN ASTEEN POLYNOMIFUNKTIO

3 TOISEN ASTEEN POLYNOMIFUNKTIO 3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n

Lisätiedot

MEI Kontinuumimekaniikka

MEI Kontinuumimekaniikka MEI-55300 Kontinuumimekaniikka 1 MEI-55300 Kontinuumimekaniikka 3. harjoitus matemaattiset peruskäsitteet, kinematiikkaa Ratkaisut T 1: Olkoon x 1, x 2, x 3 (tai x, y, z) suorakulmainen karteesinen koordinaatisto

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 K. a) b) c) d) 6 6 a a a, a > 0 6 6 a a a a, a > 0 5 5 55 5 5 5 5 5 5 5 5 5 5 a a a a a ( a ) a a a, a > 0 K.

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V. TYÖ 37. OHMIN LAKI Tehtävä Tutkitaan metallijohtimen päiden välille kytketyn jännitteen ja johtimessa kulkevan sähkövirran välistä riippuvuutta. Todennetaan kokeellisesti Ohmin laki. Välineet Tasajännitelähde

Lisätiedot

JAKSO 2 KANTA JA KOORDINAATIT

JAKSO 2 KANTA JA KOORDINAATIT JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-00: PIIIANAYYSI I Passiiviset piirikomponentit vastus kondensaattori käämi Kirja: luku. (vastus), luku 6. (käämi), luku 6. (kondensaattori) uentomoniste: luvut 3., 3. ja 3.3 VASTUS ja ESISTANSSI (Ohm,

Lisätiedot

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole

Lisätiedot

DEE Sähkömagneettisten järjestelmien lämmönsiirto

DEE Sähkömagneettisten järjestelmien lämmönsiirto DEE-54000 Sähkömagneettisten järjestelmien lämmönsiirto II periodi Luennot Risto Mikkonen, SH 311 Harjoitukset ke 10-12 SE 100 J to 10-12 SE 100 J to 8-10 SE 100 J Suoritusvaatimukset Tentti + hyväksytty

Lisätiedot

SATE2180 Kenttäteorian perusteet Induktanssi ja magneettipiirit Sähkötekniikka/MV

SATE2180 Kenttäteorian perusteet Induktanssi ja magneettipiirit Sähkötekniikka/MV SATE2180 Kenttäteorian perusteet nduktanssi ja magneettipiirit Sähkötekniikka/MV nduktanssin määrittäminen Virta kulkee johtimessa, jonka poikkipinta on S a J S a d S A H F S b Virta aiheuttaa magneettikentän

Lisätiedot

y + 4y = 0 (1) λ = 0

y + 4y = 0 (1) λ = 0 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 6 mallit Kevät 2019 Tehtävä 1. Ratkaise yhtälöt a) y + 4y = x 2, b) y + 4y = 3e x. Ratkaisu: a) Differentiaaliyhtälön yleinen

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 7 harjoitus 1 Määritä seuraavien potenssisarjojen suppenemissäteet a) k k x 5)k b) k=1 k x 5)k = k k 1) k ) 1) Suppenemissäteen R käänteisarvo

Lisätiedot

Luento 2: Liikkeen kuvausta

Luento 2: Liikkeen kuvausta Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x

Lisätiedot

[xk r k ] T Q[x k r k ] + u T k Ru k. }.

[xk r k ] T Q[x k r k ] + u T k Ru k. }. Mat-2.48 Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 3. Johdetaan lineaarisen aikainvariantin seurantatehtävän yleinen ratkaisu neliöllisellä kustannuksella. Systeemi: x k+

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.103 SÄHKÖTKNKK 21.12.2000 Kimmo Silvonen Tentti: tehtävät 1,3,4,8,9 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät,7,8,9,10 Oletko jo ehtinyt vastata palautekyselyyn Voit täyttää lomakkeen nyt.

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

lnx x 1 = = lim x = = lim lim 10 = x x0

lnx x 1 = = lim x = = lim lim 10 = x x0 BM0A580 - Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 05. (a) (b) ln = sin(t π ) t π t π = = 0 = = cos(t π = ) = 0 t π (c) e [ = ] = = e e 3 = e = 0 = 0 (d) (e) 3 3 + 6 + 8 + 6 5 + 4 4 + 4

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Elektroniikan ja nanotekniikan laitos (ELE) Syksy 2017 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾. 24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 25.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Tämän päivän luento Aiemmin ollaan johdettu palkin voimatasapainoyhtälöt differentiaaligeometrisella tavalla

Lisätiedot

Luku Ohmin laki

Luku Ohmin laki Luku 9 Sähkövirrat Sähkövirta määriteltiin kappaleessa 7.2 ja huomattiin, että magneettikenttä syntyy sähkövirtojen vaikutuksesta. Tässä kappaleessa tarkastellaan muita sähkövirtaan liittyviä seikkoja

Lisätiedot

DEE Suprajohtavuus Laskuharjoitukset: Suprajohdemagneetin suunnittelu Harjoitus 4(6): Kryostaatti Ehdotukset harjoitustehtävien ratkaisuiksi

DEE Suprajohtavuus Laskuharjoitukset: Suprajohdemagneetin suunnittelu Harjoitus 4(6): Kryostaatti Ehdotukset harjoitustehtävien ratkaisuiksi DEE-540 Suprajohtavuus Laskuharjoitukset: Suprajohdemagneetin suunnittelu Harjoitus 4(6): Kryostaatti Ehdotukset harjoitustehtävien ratkaisuiksi. Yleisesti ottaen lämpö siirtyy kolmella tavalla: johtumalla,

Lisätiedot

LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015

LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015 PREPPAUSTA 05.nb LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 05 MURTOLUVUT. Laske murtolukujen 3 ja 5 6 summa, tulo ja osamäärä. Summa 3 5 6 4 3 5 6 8 6 5 6 3 6 6. Laske

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 26. syyskuuta 2016 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali Dipolin potentiaali

Lisätiedot

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti! A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim

Lisätiedot

(s 2 + 9)(s 2 + 2s + 5) ] + s + 1. s 2 + 2s + 5. Tästä saadaan tehtävälle ratkaisu käänteismuuntamalla takaisin aikatasoon:

(s 2 + 9)(s 2 + 2s + 5) ] + s + 1. s 2 + 2s + 5. Tästä saadaan tehtävälle ratkaisu käänteismuuntamalla takaisin aikatasoon: TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2429 Systeemien Identifiointi 2 harjoituksen ratkaisut Yhtälö voitaisiin ratkaista suoraankin, mutta käytetään Laplace-muunnosta tehtävän ratkaisemisessa

Lisätiedot

a(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50

a(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50 BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus 1, Syksy 015 1. (a) Kiihtyvyys on nopeuden derivaatta, eli a(t) v (t) 3 t 1 + 1 Nyt on siis selvitettävä, milloin kiihtyvyys kasvaa itseisarvoltaan

Lisätiedot

Kuljetusilmiöt. Diffuusio Lämmönjohtuminen Viskoosin nesteen virtaus Produktio ja absorptio

Kuljetusilmiöt. Diffuusio Lämmönjohtuminen Viskoosin nesteen virtaus Produktio ja absorptio Kuljetusilmiöt Diffuusio Lämmönjohtuminen Viskoosin nesteen virtaus Produktio ja absorptio Johdanto Kuljetusilmiöt on yhteinen nimitys prosesseille, joissa aineen molekyylien liike aiheuttaa energian,

Lisätiedot

12. Differentiaaliyhtälöt

12. Differentiaaliyhtälöt 1. Differentiaaliyhtälöt 1.1 Johdanto Differentiaaliyhtälöitä voidaan käyttää monilla alueilla esimerkiksi tarkasteltaessa jonkin kohteen lämpötilan vaihtelua, eksponentiaalista kasvua, sähkölatauksen

Lisätiedot

Laskuharjoitus 7 Ratkaisut

Laskuharjoitus 7 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin 25.4. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 7 Ratkaisut 1. Kuvan

Lisätiedot

RESISTANSSIMITTAUKSIA

RESISTANSSIMITTAUKSIA Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 ESSTNSSMTTUKS 1 Työn tavoitteet Tässä työssä tutustut sähköisiin perusmittauksiin. Harjoittelet digitaalisen yleismittarin käyttöä

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v +

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v + 9. 0. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ö Ø ÙØ 009 È ÖÙ Ö P. Olkoon vadelmien hinta v e, herukoiden h e ja mustikoiden m e rasialta. Oletukset voidaan tällöin kirjoittaa yhtälöryhmäksi v + h + m = 8 v +

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Virtaukset & Reaktorit

Virtaukset & Reaktorit Virtaukset & Reaktorit Lämmönsiirron perusteet Oppimistavoite tälle kerralle Lämmönsiirron perusmekanismit Lämmönjohtumisongelmien mallitus ja ratkaisu Säteilylämmönsiirto Konvektio ja lämmönsiirtokerroin

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia. HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y ) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu. Tehtävä 1 Tarkastellaan paineen ajamaa Poisseuille-virtausta kahden yhdensuuntaisen levyn välissä Levyjen välinen etäisyys on 2h Nopeusjakauma raossa on tällöin u(y) = 1 dp ( y 2 h 2), missä y = 0 on raon

Lisätiedot