Tyhjä pallosymmetrinen avaruus
|
|
- Petri Mäkinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tyhjä pallosymmetinen avauus Yleisen suhteellisuusteoian yhtälöitä on helppo käsitellä silloin kun aika-avauus on lähes tasainen, tai eityisen symmetisissä tapauksissa. Tyhjä pallosymmetinen avauus on eäs täkeimpiä eityistapauksia. Symmetian takia voidaan käsitellä voimakkaita kenttiä ja nähdä piiteitä, jotka ovat kaukana newtonilaisesta gavitaatioteoiasta ja suppeasta suhteellisuusteoiasta. 1
2 SCHWARZSCHILDIN METRIIKKA Pallosymmetinen tähti g!" =? pallosymmetia käytetään pallokoodinaatteja 2
3 ALKULÄMMITTELYÄ: EUKLIDINEN AVARUUS x y x = sinθ cosφ! dl 2 = dx 2 + dy 2 + dz 2 = g ij dx i dx j = sinθ sinφ = cosθ = d d! sin 2!d" 2 " d d# 2 3d tasaisen avauuden metiikka 2d metiikka pallon pinnalla 1 0 0! $ # & 2 g = 0 0 x i = ij! 2 2 # & 0 0 sin θ "" % Pallon pinta-ala saadaan integoimalla yli kulmaelementtien metiikan mukaisilla ketoimilla ja sin! : d! ja d" 2π π A = sinθdφdθ dω= dφ sinθdθ = 4π 0 0 3
4 SCHWARZSCHILDIN AIKA-AVARUUS Tasainen aika-avauus: ds 2 = c 2 dt 2! d 2! 2 (d! 2 + sin 2!d" 2 ) Pallosymmetisen tähden ympäillä aika-avauuden pituusväli iippuu vain -koodinaatista (pallosymmetiasta seuaa staattisuus). Takastellaan tyhjää tilaa tähden ulkopuolella. ds 2 = c 2 F() 2 dt 2! B() 2 d 2! 2 (d! 2 + sin 2!d" 2 ) Kun, kaaeva avauus Minkowski Ei gavitaatiovoimaa ääettömän kaukana F () 1, B () 1 kun 4
5 Sijoitetaan oletus Einsteinin yhtälöihin ja atkaistaan tuntemattomat funktiot B ja F: G!" = 0! R!"#$ =... pöly laskeutuu... F() 2 =1! 2G N M c 2 B() 2 =1/ F() 2 = 1 1! 2G NM c 2 M = massa G N = Newtonin vakio Sijoitetaan metiikan lausekkeeseen ds 2 = c 2 F() 2 dt 2! B() 2 d 2! 2 (d! 2 + sin 2!d" 2 ) 5
6 Schwazschildin metiikka (1916) " ds 2 = c 2 1! 2G M N $ # c 2 % 'dt 2! & d 2 1! 2G N M c 2 "! 2 d( 2 ) c 2 1! s $ # % 'dt 2! d2 & 1! s! 2 d( 2 s = 2G N M c 2 > s < s Schwazschildin säde t aika, paikka????? aika ja paikka vaihtaneet ooleja? Kuinka suui on Schwazschildin säde? G= m 3 kg -1 s -2 M Auinko = kg R Auinko = m s (Auinko) = 2953 m << R Sun tavallisten tähtien Schwazschildin säde on paljon pienempi kuin tähden säde atkaisu ei päde tähden sisällä M Maa = kg s (Maa)= 0.89 cm jotta s > R, vaaditaan hyvin tiheää ainetta s > R musta aukko 6
7 Kellojen käynti ja valon kulku Takastellaan ensin tilannetta Schwazschildin säteen ulkopuolella. Vakioetäisyydella sijaitsevan havaitsijan kellon mittaama itseisaika iippuu etäisyydestä. " ds 2 = c 2 1! s $ # % 'dt 2! d2 & 1! s "! 2 d( 2 = c 2 1! s $ # % 'dt 2 ) c 2 d! 2 & * d! = 1! s dt Kellojen käynti hidastuu. Tämä on absoluuttinen efekti, ei suhteellinen! 7
8 1 2 = dt 1 = dt 2 dτ 1 dτ 2 Lähetetään etäisyydeltä valonsäde ja mitataan valon taajuus paikallisessa ajassa!! = 1 f gavitaatiopunasiitymä f 2 f 1 = d! 1 d! 2 = F( 1) F( 2 ) = 1! s 1 1! s 2 ääettömyydessä nähdään punasiitymä Taajuus pienenee, aallonpituus kasvaa f! = 1" s f () 8
9 Kvanttifysiikka: fotonin enegia on E = hf Fotoni menettää enegiaa kavutessaan gavitaatiopotentiaalista E! ( 1 ) E! ( 2 ) = hf 1 hf 2 = F( 2 ) F( 1 ) = 1! s 2 1! s 1 Ääettömyydessä mitattu enegia fotonille, joka on lähetetty säteeltä : E γ F( ) s ( ) = = 1 Eγ ( ) 0 F( ) kun s Schwazschildin säteeltä kapuamiseen menee kaikki enegia! 9
10 Entäpä kauanko valon matka kestää? Takastellaan liikettä säteen suunnassa: " ds 2 = c 2 1! % s $ 'dt 2! d2 # & 1! = 0 s ( cdt = d 1! = d " = 1+ % s $ 'd s! s #! s & " ( ct = ) d 1+ % s $ ' =! 0 + s ln! s #! s & 0! s 0 ct = 0 + s ln 0 s s 0! s " ln # s 0 # s! ln 1 0 = $ Minkowskin avauuden tulos Schwazschildin säteeltä kapuaminen kestää ääettömän kauan 10
11 Voidaan osoittaa, että sekä valo että massiiviset kappaleet putoavat keskustaan. Massiivisten kappaleiden liikeyhtälö on monimutkaisempi kuin fotonien, mutta suhteellisuusteoia antaa saman lopputuloksen: Kaikki Schwazschildin säteen sisäpuolella oleva aine putoaa keskustaan, vieläpä mukana putoavan kellon mukaan ääellisessä ajassa Keskustassa avauuden kaaevuus on ääetön, siellä on singulaiteetti. MUSTA AUKKO 11
12 = s on tapahtumahoisontti: ulkopuolinen havaitsija ei näe Schwazschildin säteen sisäpuolelle < s on tavallaan leikattu pois avauudesta: sieltä ei tule mitään ulos, ja vaikka sinne voi mennä, putoaminen kestää ulkopuolisen havaitsijan mielestä ääettömän kauan Tapahtumahoisontin ylittäminen tapahtuu ilman damatiikkaa! Tapahtumahoisontti ei ole fyysinen pinta: putoava havaitsija ei näe mitään eityistä sen ohittaessaan. 12
13 Vuoovesi-ilmiö tapahtumahoisontissa F jalat F pää newtonilaisittain:!f = " G N M ( 0 "!) 2 + G N M ( 0 +!) 2 # mg $ 4G N M! 0 3 vastaa m-massaista painoa jaloissa Maan gavitaatiokentässä Oletetaan m pää g 10 m ms Δ 1 m jalat 2 5 kg mg! 4G N M (2G N M / c 2 ) 3 " (# $ m pää ) % m! 4 "1070 kg 3 & =10 10 M au ) ( + M 2 ' M * 2 kg 13
14 MITEN ULKOPUOLINEN HAVAITSIJA NÄKEE PUTOAMISEN? help! help! fotonille d dt = 2 = s cf ( ) c 1 etäisyys R>> s avauus täällä Minkowski, kelloaika = t 14
15 Lasketaan: cdt d = = 1+ s 1 s s d Etäisyydeltä 1 lähetetty viesti tulee peille ajassa t 1 : ct R s = d = R + s ln s 1 R 1 s s Etäisyydeltä 2 ja etäisyydeltä 1 lähetettyjen viestien aikaeo ääettömyydessä on c!t = c(t 2 " t 1 ) = 2 " 1 + s ln 1 " s # $ kun 2 s 2 " s tapahtumahoisontin läpi putoaminen näyttää ulkopuolelta katsoen vievän ääettömän kauan! 15
16 Yksinketaista Kaikki mustaan aukkoon putoava tavaa jäätyy tapahtumahoisontin lähelle (näkymättömiin punasiityneenä). Black holes have no hai : havaittavat ominaisuudet vain Massa M Impulssimomentti L Sähkövaaus Q Impulssimomentti L ja sähkövaaus Q Schwazschild 1916 Ke 1963 Reissne-Nodstöm Ke-Newman 1965 Todelliset mustat aukot pyöivät. 16
17 Kein musta aukko kaksi hoisonttia singulaiteetti on engas! kaksi fotosfääiä (ulompi counteotating, sisempi cootating ) egosphee = alue, jonka sisällä ei voi olla paikoillaan (mutta ei välttämättä joudu singulaiteettiin) Pyöiminen vetää avauutta mukaansa: fame dagging 17
18 Tähden omahtaminen gavitaatio vetää säteilypaine työntää hydostaattinen tasapaino Alue jossa ydineaktiot tapahtuvat: Auingolle ~ 10 5 km, R au ~10 6 km ydineaktiot loppuvat säteilypaine ei enää kompensoi gavitaatiota tähti omahtaa Auinko valkoinen kääpiö tähti, jonka massa M > n. 1.4 M au neutonitähti tähti, jonka massa M > n. 3 M au musta aukko 18
19 MUSTIEN AUKKOJEN HAVAITSEMINEN Kaasun pudotessa mustaan aukkoon se kasaantuu ketymäkiekoksi, jonka sähkömagneettiset kentät kiihdyttävät hiukkasia: kaasu kuumenee voidaan nähdä Tähtien atoja voidaan seuata Galaksien keskustoissa uskotaan olevan miljoonien Auingon massojen painoisia mustia aukkoja. 19
20 Kvanttifysiikka musta aukko höyystyy Hawkingin säteily Vituaalisia hiukkaspaeja Mustaan aukkoon kumppaninsa menettänyt pain jäsen nähdään säteilynä hc 3 musta aukko säteilee, lämpötila T = T H = 16! 2 G N M säteilyteho = vakio säteilevän pinnan ala T 4! A BH = 4! 2 s = 4! 2G NM $ tapahtumahoisontin pinta-ala # & " % säteilyteho P BH =! de dt =! d dt (Mc2 ) = vakio "! A T 4 BH! H K = 3.56 "10 32 Wkg 2 c 2 2!M 2!M!4 = KM!2 20
21 mustan aukon massa muuttuu ajassa kuten dm dt =! K M 2 c 2 0 dm M 2 =! K c dt " # dm M 2 =! K # dt, M 2 c 2 0 $ M (t = 0) M 0 mustan aukon elinikä on! 0! = 1 3 c 2 K M " 3 0 = 2!10 67 M $ 0 # M au % ' & 3 vuotta 21
22 MUSTAT AUKOT FAQ Kuinka gavitaatio pääsee ulos tapahtumahoisontista? Ei se pääsekään. Schwazschildin atkaisu on staattinen. Tähti on kaaeuttanut avauuden jo ennen omahtamistaan mustaksi aukoksi. Ulkopuolinen havaitsija ei edes näe omahtamista loppuun saakka. Nieleekö musta aukko kaiken ympäöivän aineen? Mustan aukon ulkopuolella gavitaatiokenttä on samanlainen kuin samanmassaisen tähden. Hyvin pitkien aikojen kuluessa läheistä ainetta kyllä päätyy mustaan aukkoon. Miksi sähkömagneettinen kenttä pääsee ulos mustasta aukosta? Mustaan aukkoon pudonneen elektonin sähkökenttä ei katoa, vaan ulottuu yhä kauas mustasta aukosta. Elektonin kadottua mustaan aukkoon efektiivisesti mustalla aukolla itsellään on sähkövaaus. Ulkopuolisen havaitsijan mielestä sähkövaaus on hyvin lähellä tapahtumahoisonttia. 22
23 Schwazschildin atkaisun käytännön sovellus: GPS Suppea suhteellisuusteoia: liikkuva kello jätättää -7 µs/pvä Yleinen suhteellisuusteoia: heikommassa gavitaatiokentässä oleva kello edistää +45 µs/pvä Yhteensä +38 µs/pvä GPS:n takkuus on noin 10 ns. Päivässä ketyvä vihe suhteellisuusteoeettisen kojauksen pois jättämisestä: 38!10 "6 s#3!10 8 m s $ 11 km 23
24 Suhteellisuusteoian kokeellinen status Suppea suhteellisuusteoia + kvanttimekaniikka = kvanttikenttäteoia ääimmäisen takkoja kuvauksia hiukkasmaailman ilmiöistä, suppea suhteellisuusteoia oleellinen, testattu miljadisosan takkuudella Yleinen suhteellisuusteoia Testattu auinkokunnassa ja pulsaeista takkuudella GPS - kappaleiden liikkeet - gavitaatiolinssit Kosmologiassa suhteellisuusteoia on välttämätön ja testattu, toisaalta eäiden kosmologisten havaintojen tulkinnaksi on esitetty yleisen suhteellisuusteoian ikkoutumista. 24
Valo kulkee pitkin geodeettia eli siten, että 4-ulotteinen pituus 2 on minimissään:
MITEN VALO KULKEE? Minkowkin avauu: x t d dx dy dz Valo kulkee pitkin geodeettia eli iten, että 4-ulotteinen pituu on minimiään: d d g dx dx Suoaviivaiuu iippuu avauuden käyitymietä - täkeää tietää, illä
Suhteellisuusteorian perusteet 2017
Suhteellisuusteorian perusteet 017 Harjoitus 5 esitetään laskuharjoituksissa viikolla 17 1. Tarkastellaan avaruusaikaa, jossa on vain yksi avaruusulottuvuus x. Nollasta poikkeavat metriikan komponentit
SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA
MUSTAT AUKOT FAQ Kuinka gravitaatio pääsee ulos tapahtumahorisontista? Schwarzschildin ratkaisu on staattinen. Tähti on kaareuttanut avaruuden jo ennen romahtamistaan mustaksi aukoksi. Ulkopuolinen havaitsija
MITEN VALO KULKEE? valo kulkee pitkin geodeettia eli siten, että 4-ulotteinen pituus 2 on minimissään:
MITEN VALO KULKEE? Minkowkin avauu: x t x y z valo kulkee pitkin geoeettia eli iten, että 4-ulotteinen pituu on minimiään: g x x uoaviivaiuu iippuu käyitymietä - täkeää tietää, illä lähe kaikki havaintomme
Tilavuusintegroin3. Tilavuusintegroin3
/5/ z 2 y 2 x 2 z y x Tilavuusintegoin f(x,y,z)dxdydz z 2 # y 2 # x 2 & & = % % f(x,y,z)dx( dy( dz $ $ ' ' z y x Tyypillises kemian sovelluksissa f(x,y,z) on massaheys, jolloin integaalin avo on massa
Tilavuusintegroin3. Tilavuusintegroin3 3/19/13. f(x, y, z)dxdydz. ρ(x,y,z) = x 2 + y 2 + z 2 (kg) Ratkaisu: ρ(x,y,z)dxdydz
/9/ z 2 y 2 x 2 z y x Tilavuusintegoin f(x, y, z)dxdydz z 2 # y 2 # x 2 & & = % % f(x, y, z)dx( dy( dz $ $ ' ' z y x Tyypillises kemian sovelluksissa f(x,y,z) on massaheys, jolloin integaalin avo on massa
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokussi Fys10 Kevät 010 Jukka Maalampi LUENTO 5 Copyight 008 Peason Education, Inc., publishing as Peason Addison-Wesley. Newtonin painovoimateoia Knight Ch. 13 Satunuksen enkaat koostuvat
2r s b VALON TAIPUMINEN. 1 r. osittaisdifferentiaaliyhtälö. = 2 suppea suht.teoria. valo putoaa tähteen + avaruus kaareutunut.
MUSTAT AUKOT FAQ Miten gravitaatio pääsee ulos tapahtumahorisontista? massa ei sylje gravitaatiota kuin tennispalloja. Tähti on käyristänyt avaruuden jo ennen romahtamistaan mustaksi aukoksi, eikä tätä
Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan
3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
40 LUKU 3. GAUSSIN LAKI
Luku 3 Gaussin laki 3.1 Coulombin laista Gaussin lakiin Takastellaan pistemäisen vaauksen q aiheuttamaa sähkökenttää, joka noudattaa yhtälöä (1.1). Tämän sähkökentän vuo etäisyydellä olevan pienen pintaelementin
Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä
Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Kun yhdistetään kahdella tavalla esitetty sähkökentän vuo, saadaan Gaussin laki: S d S Q sis Gaussin laki peustuu siihen, että suljetun pinnan läpi
Mustien aukkojen astrofysiikka
Mustien aukkojen astrofysiikka Peter Johansson Fysiikan laitos, Helsingin yliopisto Kumpula nyt Helsinki 19.2.2016 1. Tähtienmassaiset mustat aukot: Kuinka isoja?: noin 3-100 kertaa Auringon massa, tapahtumahorisontin
Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti
Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi
1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta
766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio
Lyhyt katsaus gravitaatioaaltoihin
: Lyhyt katsaus gravitaatioaaltoihin Valtteri Lindholm Helsingin Yliopisto Teoreettisen fysiikan syventävien opintojen seminaari Sisältö Suppea ja yleinen suhteellisuusteoria Häiriöteoria Aaltoratkaisut
Sovelletun fysiikan pääsykoe
Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille
Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson
Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia Kosmologiaa tutkii maailmankaikkeuden rakennetta ja historiaa Yhdistää havaitsevaa tähtitiedettä ja fysiikkaa Tämän hetken
Suhteellisuusteorian perusteet, harjoitus 6
Suhteellisuusteorian perusteet, harjoitus 6 May 5, 7 Tehtävä a) Valo kulkee nollageodeettia pitkin eli valolle pätee ds. Lisäksi oletetaan valon kulkevan radiaalisesti, jolloin dω. Näin ollen, kun K, saadaan
Kosmologian yleiskatsaus. Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja Fysiikan tutkimuslaitos
Kosmologian yleiskatsaus Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja Fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Päämääriä Kosmologia tutkii maailmankaikkeutta kokonaisuutena. Kehitys,
x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x
Osittaisintegrointia käyttäen osoita integraalille I n x n e x dx oikeaksi reduktiokaava I n x n e x + ni n ja laske sen avulla mitä on I 4 kun x. x n e x dx n( e x ) nx n ( e x ) x n e x + ni n x 4 e
Luku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia
Luku 7 Työ ja energia Muuttuvan voiman tekemä työ Liike-energia Tavoitteet: Selittää työn käsite Mallittaa voiman tekemä työ Mallittaa liike-energian ja työn keskinäinen riippuvuus Esitiedot Newtonin lait
LORENTZIN MUUNNOSTEN FYSIKAALISIA SEURAAMUKSIA
LORENTZIN MUUNNOSTEN FYSIKAALISIA SEURAAMUKSIA Lorentzin kontraktio: liikkuva sauva kutistuu Aikadilataatio: liikkuva kello jätättää Nämä fysikaaliset efektit johtavat arkijärjen kannalta vaikeasti ymmärrettäviin
YLEINEN SUHTEELLISUUSTEORIA
YLEINEN SUHTEELLISUUSTEORIA suppean suhteellisuusteorian yleistys mielivaltaisiin, ei-inertiaalisiin koordinaatistoihin teoria painovoimasta lähtökohta: periaatteessa kahdenlaisia massoja F mia hidas,
Erityinen suhteellisuusteoria (Harris luku 2)
Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen
Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /
MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella
Kryogeniikka ja lämmönsiirto. DEE-54030 Kryogeniikka Risto Mikkonen
DEE-54030 Kyogeniikka Kyogeniikka ja lämmönsiito 1 DEE-54030 Kyogeniikka Risto Mikkonen 5.5.015 Lämmönsiion mekanismit '' q x ( ) x q '' h( s ) q '' 4 4 ( s su ) DEE-54030 Kyogeniikka Risto Mikkonen 5.5.015
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike
S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä
S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä (ks. esim. http://www.kotiposti.net/ajnieminen/sutek.pdf). 1. a) Suppeamman suhteellisuusteorian perusolettamukset (Einsteinin suppeampi suhteellisuusteoria
Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /
M-A5 ifferentiaali- ja integraalilaskenta, I/17 ifferentiaali- ja integraalilaskenta Mallit laskuharjoitusviikkoon 5 / 9. 1.1. Alkuviikon tehtävät Tehtävä 1: Määritä (ilman Gaussin lausetta) vektorikentän
YLEINEN SUHTEELLISUUSTEORIA
YLEINEN SUHTEELLISUUSTEORIA suppean suhteellisuusteorian yleistys mielivaltaisiin, ei-inertiaalisiin koordinaatistoihin teoria painovoimasta lähtökohta: periaatteessa kahdenlaisia massoja F mia hidas,
Shrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN
Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,
Sähkökentät ja niiden laskeminen I
ähkökentät ja niiden laskeminen I IÄLTÖ: 1.1. Gaussin lain integaalimuoto ähkökentän vuo uljetun pinnan sisään jäävän kokonaisvaauksen laskeminen Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä
Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö
Taivaanmekaniikkaa kaavojen johto, yksityiskohdat yms. ks. Kattunen, Johdatus taivaanmekaniikkaan tai Kattunen, Donne, Köge, Oja, Poutanen: Tähtitieteen peusteet tai joku muu tähtitieteen/taivaanmekaniikan
Kosmologia on yleisen suhteellisuusteorian sovellus suurimpaan mahdolliseen systeemiin: tutkitaan koko avaruuden aikakehitystä.
Kosmologia Kosmologia on yleisen suhteellisuusteorian sovellus suurimpaan mahdolliseen systeemiin: tutkitaan koko avaruuden aikakehitystä. Kosmologia tutkii maailmankaikkeutta kokonaisuutena. (Vrt. astrofysiikka,
Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut
Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan
Aikakoneen suunnittelusta ja rakentamisesta
Lopputyö FYST321 Suhteellisuusteoia ja aikakoneet Aikakoneen suunnittelusta ja akentamisesta Tekijä: Olli Koskivaaa 18. elokuuta 2014 Tiivistelmä Tämä kijoitelma on lopputyö Makku Lehdon kesällä 2014 luennoimalle
ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.
KEPLERIN LAI: (Ks. Physica 5, s. 5) Johannes Keple (57-60) yhtyi yko Bahen (546-60) havaintoaineiston pohjalta etsimään taivaanmekaniikan lainalaisuuksia. Keple tiivisti tutkimustyönsä kolmeen lakiinsa
Mustan kappaleen säteily
Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi
Pakotettu vaimennettu harmoninen värähtelijä Resonanssi
Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian
SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi
SMG-4 Sähkömagneettisten jäjestelmien lämmönsiito Ehdotukset hajoituksen 3 atkaisuiksi 1. Voidaan kohtuullisella takkuudella olettaa, että pallonmuotoisessa säiliössä lämpötila muuttuu vain pallon säteen
LIITE 1 VIRHEEN ARVIOINNISTA
1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista
a(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50
BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus 1, Syksy 015 1. (a) Kiihtyvyys on nopeuden derivaatta, eli a(t) v (t) 3 t 1 + 1 Nyt on siis selvitettävä, milloin kiihtyvyys kasvaa itseisarvoltaan
L a = L l. rv a = Rv l v l = r R v a = v a 1, 5
Tehtävä a) Energia ja rataliikemäärämomentti säilyy. Maa on r = AU päässä auringosta. Mars on auringosta keskimäärin R =, 5AU päässä. Merkitään luotaimen massaa m(vaikka kuten tullaan huomaamaan sitä ei
Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora
VOIMAN MOMENTTI Takastellaan jäykkää kappaletta, joka pääsee kietymään akselin O ympäi. VOIMAN MOMENTTI on voiman kietovaikutusta kuvaava suue. Voiman momentti määitellään voiman F ja voiman vaen tulona:
Keskeisliikkeen liikeyhtälö
Keskeisliikkeen liikeyhtälö L vakio keskeisliikkeessä liike tasossa L Val. L e z liike xy-tasossa naakoodinaatit, joille d dt e d = ϕe ϕ ; dt e ϕ = ϕe = e LY: m = f()e ṙ = ṙe + ϕe ϕ ; = ( ϕ 2 )e +(2ṙ ϕ+
LIITE 1 VIRHEEN ARVIOINNISTA
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 LIITE 1 VIRHEEN RVIOINNIST Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1
763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi
1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori
FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa
Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2
766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
J 2 = J 2 x + J 2 y + J 2 z.
FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,
Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 216 Tuntitehtävä 1: Laske sylinterikoordinaatteja käyttämällä sen kappaleen tilavuus,
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Vektorianalyysi (Ulaby, luku 3) Viiva-, pinta- ja tilavuusalkiot Nablaoperaatiot Gaussin ja Stokesin lauseet Nabla on ystävä
Sähköpotentiaali. Haarto & Karhunen.
Sähköpotentiaali Haato & Kahunen www.tukuamk.fi Johantoa Kun vaaus q on sähkökentässä siihen vaikuttaa voima Saman suuuinen voima tavitaan siitämään vaausta matkan sähkökentän aiheuttamaa voimaa vastaan
Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)
Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman
= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N
t. 1 Auringon ja kuun kohdistamat painovoimat voidaan saada hyvin tarkasti laksettua Newtonin painovoimalailla, koska ne ovat pallon muotoisia. Junalle sillä saadaan selville suuruusluokka, joka riittää
1 Tieteellinen esitystapa, yksiköt ja dimensiot
1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen
Tilavuusintegroin. f(x,y,z)dxdydz. = f(x,y,z)dx dy
z 2 y 2 x 2 z y x Tilavuusintegroin. f(x,y,z)dxdydz z 2 y 2 x 2 = f(x,y,z)dx dy dz z y x Tyypillises. kemian sovelluksissa f(x,y,z) on massa.heys, jolloin integraalin arvo on massa alueella jota integroin.rajat
LIITE 1 VIRHEEN ARVIOINNISTA
1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten
Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin (yo-kirjoituksissa hyväksytty) on sallittu apuväline tässä kokeessa!
Aalto yliopiston teknillinen korkeakoulu Mat-1.1040 L4 Tentti ja välikokeiden uusinta 21.5.2010 Gripenberg, Arponen, Siljander Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin
Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1
Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten
Kapasitiivinen ja induktiivinen kytkeytyminen
Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina
Fysiikka 8. Aine ja säteily
Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian
( ds ) A (2) ψ ξ dv + ψ 2 ξ dv = ψ 2 ξ ξ 2 ψ ) V
Kenttäteorian matemaattisia apuneuvoja 4..7. Gaussin ja Stokesin lauseet V S ds A = dl A = V S A dv, =, tai ) ds ) A ). Greenin kaavat I : II : 3. Diracin deltafunktio 4. Vektorilaskentaa V V ψ ξ dv +
Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi
Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain
Valon sironta - ilmiöt ja mallinnus. Jouni Mäkitalo Fysiikan seminaari 2014
Valon sironta - ilmiöt ja mallinnus Jouni Mäkitalo Fysiikan seminaari 2014 Sisältö Johdanto Sironnan sähkömagneettinen mallinnus Analyyttinen sirontateoria Sironta ei-pallomaisista hiukkasista Johdanto
Pintaintegraali. i j k cos(θ) sin(θ) 1. = r cos(θ)i r sin(θ)j + rk, r sin(θ) r cos(θ) 0 joten
.4.8 intintegrli. He krtion z x + y sylinterin x + y y sisäpuolelle jäävän osn pint-l käyttämällä npkoordinttej x r cosθ j y r sinθ jolloin epäyhtälö x + y y on r sinθ. Rtkisu: Symmetrin nojll voidn trkstell
RATKAISUT: 16. Peilit ja linssit
Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,
Fysiikkakilpailu , avoimen sarjan vastaukset AVOIN SARJA
AVOIN SARJA Kijoita tekstaten koepapeiin oma nimesi, kotiosoitteesi, sähköpostiosoitteesi, opettajasi nimi sekä koulusi nimi. Kilpailuaikaa on 100 minuuttia. Sekä tehtävä- että koepapeit palautetaan kilpailun
Kohti yleistä suhteellisuusteoriaa
Kohti yleistä suhteellisuusteoriaa Miksi vakionopeudella liikkuvat koordinaatistot ovat erityisasemassa (eli miksi Lorentz-muunnos tehdään samalla tavalla joka paikassa aika-avaruudessa)? Newtonin gravitaatiolaki
Mustan kappaleen säteily
Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi
MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset
MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,
Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut
A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan
Luvun 12 laskuesimerkit
Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine
infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1
infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.
Liikkeet. Haarto & Karhunen. www.turkuamk.fi
Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa
MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)
MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin
IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos
Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita
Differentiaali- ja integraalilaskenta
Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona
Liike pyörivällä maapallolla
Liike pyörivällä maapallolla Voidaan olettaa: Maan pyöriminen tasaista Maan rataliikkeen näennäisvoimat tasapainossa Auringon vetovoiman kanssa Riittää tarkastella Maan tasaisesta pyörimisestä akselinsa
Friedmannin yhtälöt. Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G 3. yleisin mahdollinen metriikka. Friedmannin yhtälö
Friedmannin yhtälöt Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G G [ R( t)] T [ aine, energia, R( t)] 3 yleisin mahdollinen metriikka d sin d dr ds c dt R( t) ( r d ) 1 kr Friedmannin
Muutoksen arviointi differentiaalin avulla
Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin
Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla.
Tehtävä.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. x = (a + b cos(θ)) cos(ψ) y = (a + b cos(θ)) sin(ψ) = b sin(θ), a > b, θ π, ψ π Figure. Toruksen hajoituskuva Oletetaan,
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 3 / versio 23. syyskuuta 2015 Vektorianalyysi (Ulaby, luku 3) Koordinaatistot Viiva-, pinta- ja tilavuusalkiot Koordinaattimuunnokset Nablaoperaatiot
Kerrin ratkaisun horisontti- ja singulariteettirakenne
Kandidaatintutkielma Teoreettinen fysiikka Kerrin ratkaisun horisontti- ja singulariteettirakenne Sami Raatikainen 2015 Ohjaaja: Tarkastaja: Syksy Räsänen Syksy Räsänen HELSINGIN YLIOPISTO FYSIIKAN LAITOS
RATKAISUT: Kertaustehtäviä
hysica 6 OETTAJAN OAS 1. painos 1(16) : Luku 1 1. c) 1 0,51 A c) 0,6 A 1 0,55 A 0,6 A. b) V B 4,0 V c) U BC,0 V b) 4,0 V c),0 V 3. a) Kichhoffin. 1 + 3 1 3 4 0,06 A 0,06 A 0 V. b) Alin lamppu syttyy. Kokonaisvita
Öljysäiliö maan alla
Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö
Keski-Suomen fysiikkakilpailu
Keski-Suomen fysiikkakilpailu 28.1.2016 Kilpailussa on kolme kirjallista tehtävää ja yksi kokeellinen tehtävä. Kokeellisen tehtävän ohjeistus on laatikossa mittausvälineiden kanssa. Jokainen tehtävä tulee
Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /
M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43
Kuva 1: Tehtävä 1a. = 2π. 3 x3 1 )
BMA58 - Integraalilaskenta ja sovellukset Harjoitus 3, Kevät 6 = Kuva : Tehtävä a. a Slinterinkuorelle tässä h = ja r = ja kä läpi välin [,], joka johtaa lausekkeeseen: V = π 6 / 3 d 3 3 3 = 3 Kuva : Tehtävä
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa
MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila
a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.
Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi
Bohr Einstein -väittelyt. Petteri Mäntymäki Timo Kärkkäinen
Bohr Einstein -väittelyt Petteri Mäntymäki Timo Kärkkäinen Esityksen sisältö Kvanttivallankumous Epätarkkuusperiaate Väittelyt Yhteenveto 24.4.2013 2 Kvanttivallankumous Alkoi 1900-luvulla (Einstein, Planck,
π yd cos 2 b) Osoita, että lauseke intensiteetille sirontakulman funktiona on I
PHYS-A140 Aineen rakenne C34 1. Monokromaattinen valo kulkee kaden vierekkäisen raon läpi. Rakojen takana olevalla varjostimella avaitaan valoisia ja mustia juovia. Rakojen välimatka d on samaa suuruusluokkaa
SÄHKÖMAGNEETTINEN KYTKEYTYMINEN
SÄHKÖMAGNEETTINEN KYTKEYTYMINEN H. Honkanen SÄHKÖMAGNEETTISEN KYTKEYTYMISEN TEORIAA Sähkömagneettinen kytkeytyminen on häiiöiden siitymistä sähkömagneettisen aaltoliikkeen välityksellä. Sähkömagneettisen